Supporting Information

Macroporous-Mesoporous Carbon Supported Ni Catalysts for the Conversion of Cellulose to Polyols

Bin Zhang,^[a,b,c] Bin Chen,^[d] Mark Douthwaite,^[c] Qiang Liu,^[a] Chao Zhang,^{*[a]} Qifan Wu,^[a] Ruhui Shi,^[a] Peixuan Wu,^[a] Fengyu Zhao,^{*[a]} Graham Hutchings^[c]

^[a] State Key Laboratory of Electroanalytical Chemistry and Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

[b] University of Chinese Academy of Sciences, Beijing 100049, PR China

[c] Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT UK

^[d] State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

Figure S1. The bar chart of yield distribution of polyols over Ni/MMC catalysts with different ratio of mesopore to macropore (18, 6, 1 respectively).

Figure S2. The tendency of polyol yield over the loading amount of nickel of Ni/MMC catalysts in cellulose conversion. The catalysts with the loading amount of Ni between 12.5% and 25% are tested, and are found there are no difference in yield of polyols.

Figure S3. SEM images of MMC materials in the proportion of TEOS/PS (18:1, 6:1,1:1), which was denoted as the ratio of mesopore to macropore.

Figure S4. NH₃-TPD profile of carbon series supported 12.5% Ni catalysts.

Figure S5. H₂-TPD profile of carbon series supported 12.5% Ni catalysts. The low-temperature desorption peak (< 100 °C) appears to be larger in the hierarchical MMC and MC catalysts than with the CNT and AC catalysts.

Entry	G 1	BET surface	Micropore Volume	Mesopore Volume	Mesopore	
	Sample	area $(m^2 g^{-1})$	$(cm^3 g^{-1})^a$	(cm ³ g ⁻¹) ^b	diameter (nm) ^c	
1	Ni/AC	244	0.11	-	1.6	
2	Ni/CNT	276	0.09	1.04	3.8	
3	Ni/MC	1083	0.42	1.47	3.4	
4	Ni/MMC-18	1116	0.44	1.21	3.8	
5	Ni/MMC-6	1324	0.53	1.43	3.4	
6	Ni/MMC-1	1173	0.47	1.22	3.4	
^a HK me	ethod micropore vol	umes.				
^b BJH m	esopore volumes fro	om the desorption isoth	nerm.			
° BJH av	verage pore diameter	rs from desorption isot	therm.			

Table S1. Physic structural properties of carbon catalysts.

Table S2. Boehm titration of catalysts.

Catalant	M (mg)	V (0.05M NaOC ₂ H ₅)	0.05M HCl titration volume (ml)			
Catalyst			jump 1	jump 2	total	total acid amount (mmol/g)
Ni/CNT	10.3	10	2.67	7.11	9.78	1.07
Ni/AC	19.6	20	9.67	7.99	17.66	5.97

Ni/MMC-6 25 25 14.85 8.3 23.15 13.7	
-------------------------------------	--