Supporting Information

Non-Carbon Coating: A New Strategy for Improving Lithium Ion

Storage of Carbon Matrix

Lanju Sun, Wei liu *, Yongpeng Cui, Yuan Zhang, Huanlei Wang, Shuang Liu, Baohong Shan

Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.

*Email: weiliu@ouc.edu.cn

Figure. S1. SEM image of PBC

Figure. S2. SEM image of PBC@TC sample

Figure. S3. The high-resolution XPS C1s spectra of PBC@TC.

Figure. S4. The cycling performance and coulombic efficiency of TC at current density at 5 A g⁻¹.

Figure. S5. The long-term cycle stability of the PBC@TC electrode at 5 A g⁻¹ using different mass loadings of PBC@TC.

Figure. S6. Active mass normalized Ragone plots of AC//PBC@TC LICs based on total mass of the both cathode and anode tested between 0-4.0 V.

Figure. S7. (a) The CV curves of AC//PBC@TC LICs at various scan rates; (b) charge-discharge curves of AC//PBC@TC LICs at different current densities.

LIC	energy density	power density	ref
	(Wh kg ⁻¹)	(W kg ⁻¹)	
TiO ₂ -carbon //AC	27.5	5000	1
	67.4	75	
TiO ₂ @CNT@C //AC	81.2	126	2
TiC-carbon //AC	101.5	450	3
carbon //AC	83	128	4
	5718	41	
carbon nanosheets//AC	64.2	56.3	5
	25.8	1357	
Li ₄ Ti ₅ O ₁₂ /graphene//AC	50.3	225	6
	27.5	3000	
Li ₂ FeSiO ₄ // AC	43	200	7
TiO ₂ (reduced	42	800	8
graphene oxide) //AC	8.9	8000	9
GC1100//SFAC-2	104	143	10
	32	6628	
AC//PBC@TC	132	66.6	This work
	32.7	11500	

Table S1. Comparison with the performance of previously reported Li-ion capacitors

Notes and References

- 1 C. Yang, J. L. Lan, W. X. Liu, Y. Liu, Y. H. Yu and X. P. Yang, ACS Applied Materials & Interfaces, 2017, 9, 18710-18719.
- 2 H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Advanced Functional Materials*, 2016, **26**, 3082-3093.
- 3 H. Wang, D. Mitlin, J. Ding, Z. Li and K. Cui, Journal of Materials Chemistry A, 2016, 4, 5149-5158.
- 4 Z. Yang, H. Guo, X. Li, Z. Wang, J. Wang, Y. Wang, Z. Yan and D. Zhang, *Journal of Materials Chemistry A*, 2017, **5**, 15302-15309.
- 5 Y. Ma, H. Chang, M. Zhang and Y. Chen, Advanced Materials, 2015, 27, 5296-5308.
- 6 Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei and Z. Zhou, *Advanced Energy Materials*, 2017, 7, 1701222.
- 7 Z. Yang, H. Guo, X. Li, Z. Wang, Z. Yan and Y. Wang, Journal of Power Sources, 2016, 329, 339-346.
- H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen, Y. Liu and Y. Huang, *Nano Energy*, 2014, **10**, 163-171.
 K. Karthikeyan, V. Aravindan, S. B. Lee, I. C. Jang, H. H. Lim, G. J. Park, M. Yoshio and Y. S. Lee, *Journal of*
- Alloys and Compounds, 2010, **504**, 224-227.
- 10 Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu and Y. Lu, ACS Nano, 2017, 11, 2952-2960.