Electronic Supplementary Information (ESI)

Exploiting the real wastewater potential for resource recovery – n-caproate production from acid whey

Anna Duber, Lukasz Jaroszynski, Roman Zagrodnik, Joanna Chwialkowska, Wojciech Juzwa, Slawomir Ciesielski, Piotr Oleskowicz-Popiel

Parameter	Seed sludge	Acid whey wastewater
рН	7.48 ± 0.30	4.70 ± 0.16
Total solids (TS) [g/L]	30.86 ± 3.85	58.15 ± 1.58
Volatile solids (VS) [g/L]	19.046 ± 3.69	50.99 ± 1.14
Total chemical oxygen demand (TCOD) [g/L]	50.86 ± 0.21	71.92 ± 0.21
Soluble chemical oxygen demand (SCOD) [g/L]	1.54 ± 0.04	70.71 ± 0.12
VFAs [g/L]	0.12 ± 0.04	0.75 ± 0.13
VFAs [mM C]	0.01 ± 0.00	27.73 ± 6.15
Lactic acid [g/L]	-	25.16 ± 1.94
Lactic acid [mM C]	-	837.93 ± 64.77
Lactose [g/L]	-	18.63 ± 1.87
Lactose [mM C]	-	653.05 ± 65.50
Ethanol [g/L]	-	0.78 ± 0.38
Ethanol [mM C]	-	33.91 ± 16.71

Table S1. The characteristics of seed sludge and feedstock after delivery.

Table S2. The operating and performance parameters for each phase of the fermentation process.

Specificity was calculated as product-to-carboxylates production ratio in % mol C. The table contain average production rates for each HRT of each phase.

		Stage I	Stage II		Stage III	
	HRT [d]	20	10	5	2.5	
Days of the process [d]		0 - 177	178 - 230	231 - 350	351 - 410	
SCCAs (C2, C3, C4, C5	Production rate [mmol C/L/d]	11.25 ± 5.21	22.23 ± 15.60	52.55 ± 11.53	56.67 ± 31.48	
without lactic acid)	SCCA specificity [% mol C]	47 ± 20 35 ± 13		44 ± 7	31 ± 14	
Caproic acid (C6)	Production rate [mmol C/L/d]	12.65 ± 5.67	34.03 ± 7.72	65.52 ± 15.76	119.95 ± 30.68	
	n-caproate specificity [% mol C]	50 ± 20	63 ± 12	55 ± 7	70 ± 14	
	Production rate [mmol C/L/d]	13.16 ± 5.60	35.03 ± 7.72	66.72 ± 15.38	122.40 ± 30.21	
	MCCA specificity [% mol C]	53 ± 20	65 ± 13	56 ± 7	69 ± 14	

Table S3. The microbi	al population	biodiversity.
-----------------------	---------------	---------------

Seqs/ Sample	observed_ otus Ave,	observed_ otus Err,	observed _species Ave,	Observed _species Err,	Shannon Ave,	Shannon Err,	chao1 Ave,	chao1 Err,	Gini _index Ave,	Gini _index Err,
10	6.264	1.498	6.264	1.498	2.331	0.545	14.24	10.455	0.895	0.03
8269	354.05	122.585	354.05	122.585	4.263	1.237	546.08	148.966	0.981	0.017
16528	463.364	141.717	463.364	141.717	4.289	1.24	649.46	167.224	0.981	0.016
24787	532.221	151.283	532.221	151.283	4.299	1.245	709.485	173.731	0.981	0.016
33046	581.743	158.461	581.743	158.461	4.305	1.245	757.595	183.112	0.981	0.016
41305	620.114	164.489	620.114	164.489	4.307	1.246	792.933	189.09	0.981	0.016
49564	651.893	168.682	651.893	168.682	4.31	1.246	820.388	189.146	0.981	0.016
57823	678.357	171.628	678.357	171.628	4.312	1.246	844.205	192.206	0.98	0.016
66082	700.964	175.13	700.964	175.13	4.314	1.247	866.28	197.39	0.98	0.016
74341	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
82600	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan

			non-active	9		mid-active			active		
Day	Sample name	Sample type	P4 #Events	P4 %Parent	P4 FITC-A Median	P5 #Events	P5 %Parent	P5 FITC-A Median	P6 #Events	P6 %Parent	P6 FITC-A Median
121	1	effluent	1178	12.9	410	2295	25.1	1267	4607	50.5	4580
	1_001		1161	12.8	409	2226	24.5	1425	4581	50.4	4823
	1_002		1136	12.5	394	2275	25.1	1478	4551	50.1	4836
	2	flocks	361	4.4	585	4529	55.6	1415	2055	25.2	10302
	2_001		302	3.9	572	4290	54.7	1550	2112	26.9	10481
	2_002		290	3.7	588	4299	55.2	1603	2117	27.2	10154
155	с	effluent	347	3.9	493	899	10.1	995	6087	68.1	9182
	C_001		321	3.6	439	899	10.1	1373	5918	66.6	8379
	C_002		316	3.4	411	1022	11.1	1495	5183	56.5	9241
	ο	flocks	229	2.9	468	839	10.5	995	5152	64.3	9968
	O_001		207	2.6	469	896	11.1	1034	5137	63.9	10155
	O_002		232	2.8	428	935	11.1	1022	5436	64.7	10397
175	с	effluent	167	2.1	461	563	7	1133	5906	73.5	17160
	C_001		220	2.7	501	625	7.8	1201	5688	70.9	16950
	C_002		282	3.2	515	614	6.9	1233	6080	67.9	16613
	о	flocks	427	5.4	825	1185	14.8	2245	4330	54.3	19842
	O_001		391	4.9	797	1156	14.5	2495	4386	54.9	20778
	O_002		362	4.6	751	1224	15.4	2643	4266	53.7	20516
230	С	effluent	418	4.6	667	324	3.6	3254	6596	72.7	21591
	C_001		384	4.2	650	330	3.6	3851	6744	74.4	20826
	C_002		396	4.4	605	340	3.8	4185	6672	73.8	20055
	0	flocks	173	2	895	724	8.4	3065	5932	68.9	24137
	O_001		155	1.8	866	795	9.3	3285	5795	67.5	24334
	O_002		189	2.2	878	780	9	3159	5810	67	24091
237	с	effluent	128	1.5	350	167	1.9	3303	7673	87.6	11752
	C_001		135	1.5	358	143	1.6	3195	7595	86.7	11672
	C_002		106	1.2	368	153	1.7	3057	7579	86.5	11686
	C_003		93	1.1	340	162	1.9	3054	7509	86.9	11644
	0	flocks	89	1	370	177	2.1	2777	7606	88.2	13212
	O_001		96	1.1	353	170	1.9	2860	7785	88.9	13354
	O_002		100	1.2	378	184	2.1	2988	7672	88.3	13328
	O_003		85	1	363	174	2	3261	7660	88.4	13165
292	с	effluent	290	3.4	271	612	7.3	423	5785	68.8	5165
	C_001		295	3.5	266	655	7.7	432	5792	68	4997
	C_002		128	1.7	401	259	3.4	604	4318	56.8	8933
	C_003		157	2.1	325	300	4	537	4366	58.2	8063
	C_004		130	1.7	405	217	2.8	689	4530	57.6	8504
	C_005		181	2.5	267	400	5.5	453	4655	63.9	6630
	ο	flocks	217	2.7	262	618	7.7	366	5962	73.8	6411
	O_001		280	3.3	279	715	8.3	359	6422	74.8	6008
	O_002		251	2.9	265	710	8.3	368	6460	75.2	5692
	O_003		256	2.9	272	734	8.4	371	6517	74.4	5908

Table S4. The flow cytometry measurement of non-active, mid-active and active microbial subpopulations.

Fig. S1 Concentration of total carboxylates, n-caproate (dissociated form), caproic acid (undissociated form) lactate and lactose as well as pH along the fermentation process.

Fig. S2 Heatmap of relative abundance at family level. The relative abundance were calculated as log for better visualisation and clustered based on the Bray-Curtis dissimilarity index.

Fig. S3 PCoA analysis of the microbial society of inoculum, feedstock and samples taken throughout bioreactor operation. The PCoA analysis was performed based on the weighted UniFrac algorithm. The plot is based on the first two principal coordinates (PC1 and PC2) which explain 48.39% and 28.05% of overall phylogenetic variation, respectively.

PCoA analysis was used to determine the dissimilarity between the community of the inoculum, feedstock and samples taken throughout bioreactor operation based on the weighted UniFrac algorithm. Weighted UniFrac is a measure of the pairwise dissimilarity in community composition which takes into account the relative abundance of different members of the microbial community. The distances are visualised based on the first two principal coordinates (PC) that collectively explained 76.44% of overall phylogenetic variations between samples (PC1 explains 28% of the overall phylogenetic variation, while PC2 explains 48.4%). Inoculum and ACW samples were distanced from each other and from the reactor samples significantly. Sample from day 36 (beginning of the process) diverged from inoculum and feedstock, however it was slightly separated from the other reactor samples on the PCoA plot. Samples from days 77 to 292 were grouped together. Sample from day 336 was separated along the PC2 making it closer to the inoculum as at that time methanogens appeared in the reactor. The results showed similar bacterial community in the reactor microbiome along the process with small spacial and temporal variations indicating a quite stable microbial population.