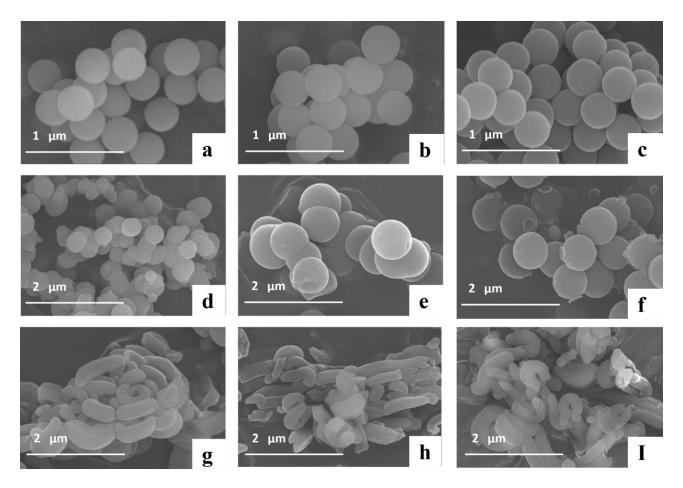
Supporting Information


A comprehensive investigation of condensation of furanic platform molecules to diesel precursors over sulfonic acid functionalized silica supports

Mahlet N. Gebresillase¹, Raghavendra Shavi, Jeong Gil Seo*

Department of Energy Science Technology, Myongji University, Myongji-ro 116, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea

*Corresponding author.

E-mail address: jgseo@mju.ac.kr (J.G. Seo)

Figure S1: SEM images of NP (a), NPSO₃H (b), NPAPSO₃H (c), MCM-41 (d), MCM-41SO₃H (e), MCM-41APSO₃H (f), SBA-15 (g), SBA-15SO₃H (h), and SBA-15APSO₃H (I).

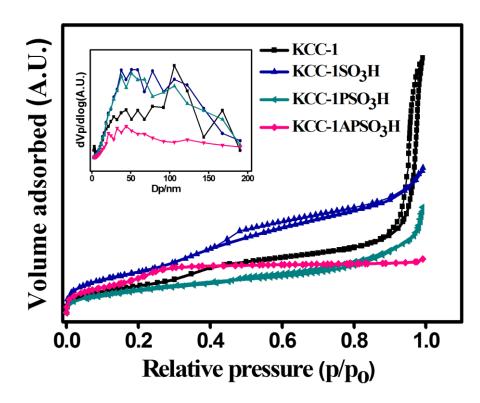


Figure S2: N₂ Adsorption-desorption isotherms (pore size distribution in inset) of KCC-1, KCC-1SO₃H, KCC-1 PSO₃H and KCC-1APSO₃H.

In the FT-IR spectra of KCC-1, KCC-1SO₃H, KCC-1PSO₃H, and KCC-1APSO₃H, the asymmetric Si—O—Si stretching from 1,200 to 1,000 cm⁻¹ and OH stretch from 3,600 to 3,000 cm⁻¹ showed broad absorption band. The two peaks at 880 cm⁻¹ and 450 cm⁻¹ are contributed by the symmetric stretching of Si—O—Si and Si—O—Si bending, respectively. As for the sulfuric acid functional groups only, the FT-IR absorption range of the O=S=O asymmetric and symmetric stretching band of Si–O–Si. The S–O stretching mode lies about 574 cm⁻¹, and the O–Si–O bending from KCC-1APSO₃H lies about 460 cm⁻¹. The catalysts KCC-1PSO₃H, and KCC-1APSO₃H show characteristic peaks for the stretching vibrations of aliphatic C–H bonds around 2960 cm⁻¹ and S—C stretching around 600 cm⁻¹. The peak at 1650 cm⁻¹ represents the water.

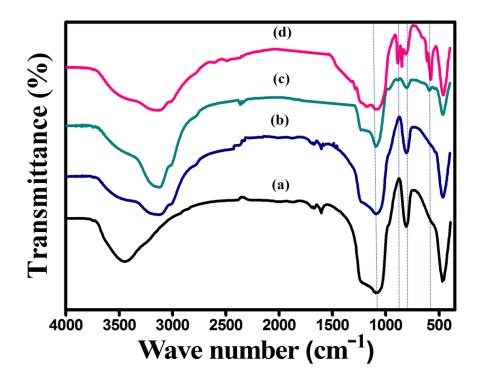


Figure S3: FTIR spectra of KCC-1 (a), KCC-1SO₃H (b), KCC-1PSO₃H (c) and KCC-1APSO₃H (d).

Only a negligible weight loss of 2.4% is detected. The TGA plot of all the catalysts supported on KCC-1 confirm the incorporation of organic functionality in the silica framework. The sharp weight loss below 150 °C corresponds to the surface physiosorbed water. The additional weight loss between the temperatures 150-450 °C can be attributed to the loss of organic functionality. The weight loss increase from KCC-1SO₃H to KCC-1APSO₃H indicates the presence of additional organic moieties (alkyl chain).

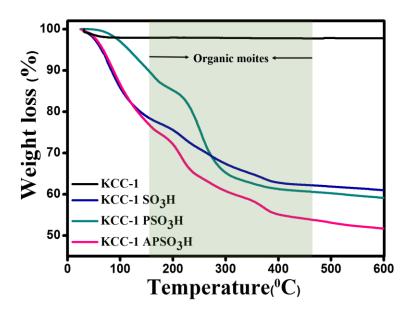
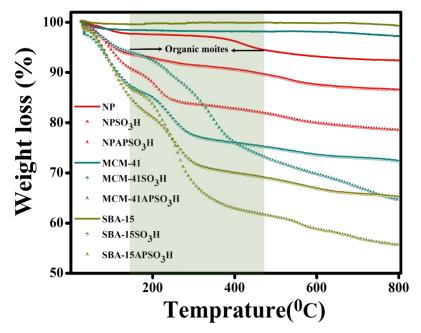



Figure S4: TGA diagram of KCC-1, KCC-1SO₃H, KCC-1PSO₃H and KCC-

Figure S5: TGA diagram of NP, NPSO₃H, NPAPSO₃H, MCM-41, MCM-41SO₃H, MCM-41, APSO₃H, SBA-15, SBA-15SO₃H, and SBA-15APSO₃H.

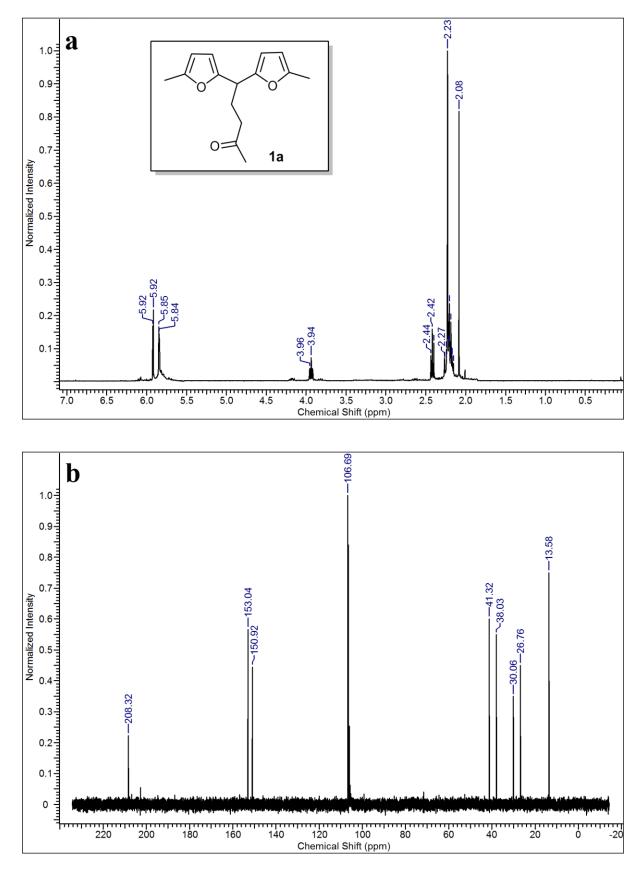


Figure S6: ¹H and ¹³C NMR spectra of the 1a produced by the self-condensation of 2-MF.

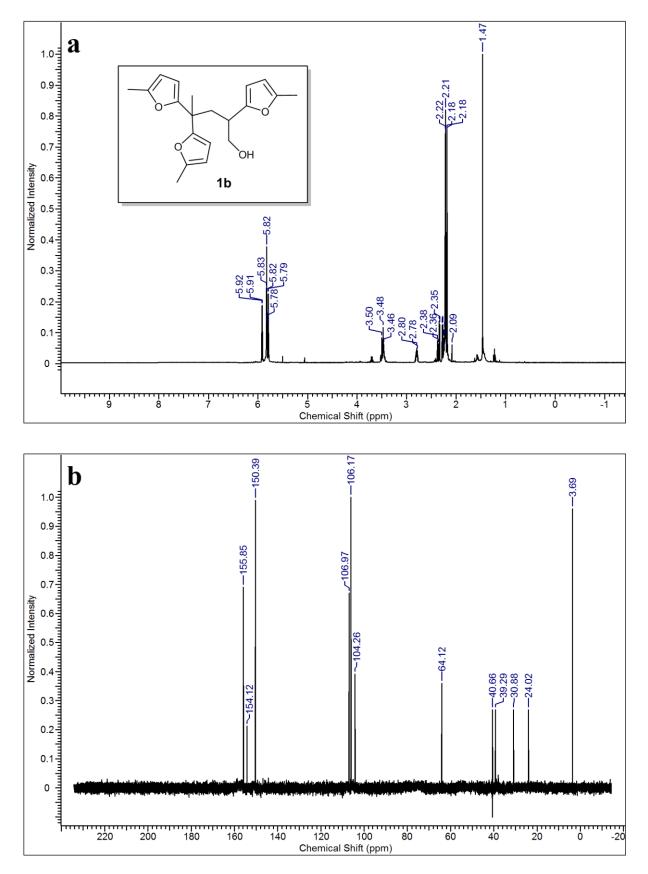
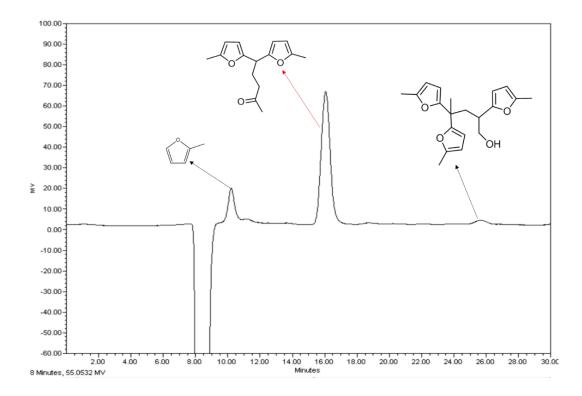
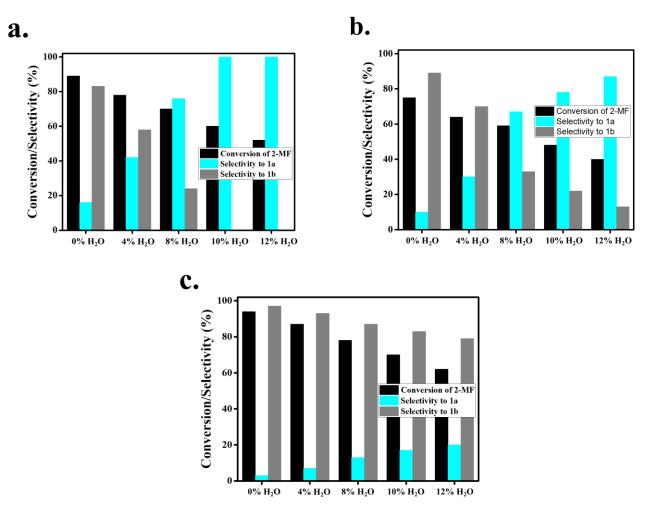


Figure S7: ¹H and ¹³C spectra NMR of the 1b produced by the self-condensation of 2-MF.

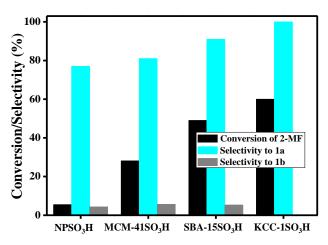

Figure S8: HPLC chromatogram of the liquid products from the self-condensation of 2-MF.

Table S1: Elemental Analysis data of the KCC-1 based catalysts

	C(wt%)	H(wt%)	S(wt%)	
KCC-1SO ₃ H	0.1518	0.9712	3.8219	
KCC-1PSO₃H	1.1675	1.2449	2.8694	
KCC-1APSO ₃ H	1.6902	1.8851	5.5207	

Figure S9: The effect of water on conversion of 2-MF and selectivity to 1a and 1b over a. KCC-1SO₃H b. Amberlyst-15 and c. Nafion-212.

Figure S10: The effect of support morphology on conversion and selectivity. 2-MF (10 g) and catalyst (3 wt %) were condensed with an addition of water (10 wt %) at 85 0 C for 48 h.



Figure S11: TON and TOF calculated from the yield after 24h reaction. 2-MF (10 g) and catalyst (3 wt%) were condensed with an addition of water (10 wt%) at 85 ^oC.

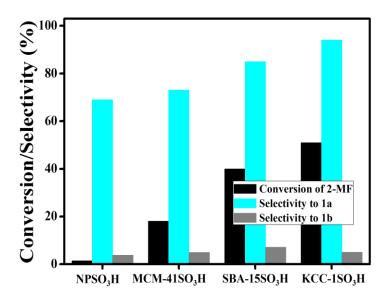


Figure S12: Self-condensation of 2-MF using recycled NP, MCM-41, SBA-15 and KCC-1 supported catalysts (reaction time = 48 h). 2-MF (10 g) and catalyst (3 wt%) were condensed with an addition of water (10 wt%) at 85°C.

Catalyst	^a S _{BET} (m ² g ⁻¹)	% Change in SBET	^a V _{total} (cm ² g ⁻¹)	% Change in V _{total} (cm ² g ⁻¹)	^b Acidic amount (mmolg-1)				
Recycled catalyst from the Self-condensation reaction									
RNPSO ₃ H	2.4	84.8	0.03	26.8	0.2				
RMCM-41SO ₃ H	187	56.8 0.10 60.7		0.45					
RSBA-15SO ₃ H	205	53.4 0.13 66.7		66.7	0.78				
RKCC-1SO ₃ H	243	36.8	36.8 0.71 39.3		1.01				
Recycled catalyst from the Cross-condensation reaction of 2-MF and FUR									
RNPAPSO ₃ H	4.1	50	0.01	34.6	0.10				
RMCM-41APSO ₃ H	MCM-41APSO ₃ H 163		0.13	47.3	0.47				
RSBA-15APSO ₃ H	178	16.8	0.19	34.4	0.76				
RKCC-1APSO ₃ H	206	8.4	0.75	7.4	0.99				
Recycled catalyst from the Cross-condensation reaction of 2-MF and n-butanal									
RNPAPSO ₃ H	4.2	48.7	0.01	38.4	0.11				
RMCM-41APSO ₃ H	161	21.0	0.11	52.6	0.74				
RSBA-15APSO ₃ H	176	17.7	0.17 41.3		0.45				
RKCC-1APSO ₃ H	209	7.1	0.73	9.8	0.97				
Recycled catalyst from the Cross-condensation reaction of 2-MF and 2-pentanone									
RNPAPSO ₃ H	3.7	54.8	0.01	46.1	0.09				
RMCM-41APSO ₃ H	124	37.2	0.11 63.1		0.41				
RSBA-15APSO ₃ H	148	30.8	0.14	51.7	0.68				
RKCC-1APSO ₃ H	207	8	0.71	12.3	0.91				

Table S2: Physicochemical properties of the recycled catalysts

^a As measured by BET

^b From titration

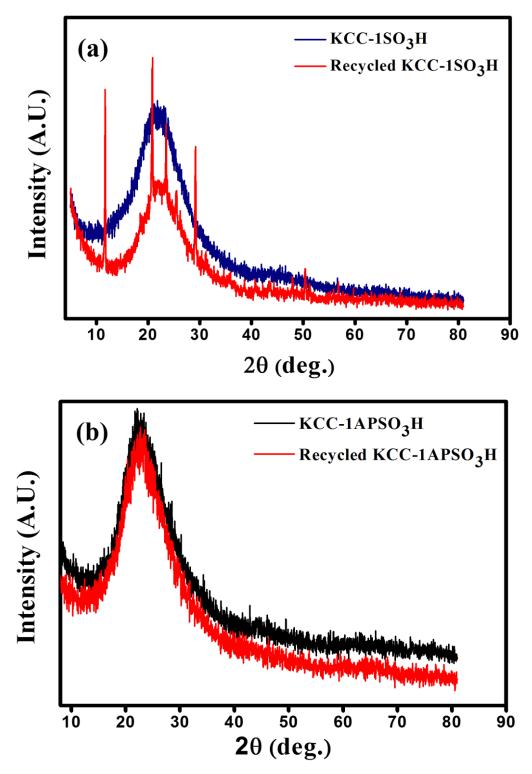


Figure S13: XRD spectrum of fresh and recycled KCC-1SO₃H from the self-condensation reaction (a) and KCC-1APSO₃H from the cross-condensation of 2-MF and FUR (b).

Figure S14: TGA diagram of fresh and recycled Amberlyst-15 from self-condensation of 2-MF (a), recycled silica supported catalysts from self-condensation of 2-MF (b), recycled silica supported catalysts from cross-condensation of 2-MF and FUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and publica supported catalysts from cross-condensation of 2-MF and PUR (c), recycled silica supported catalysts from cross-condensation of 2-MF and publica supported catalysts

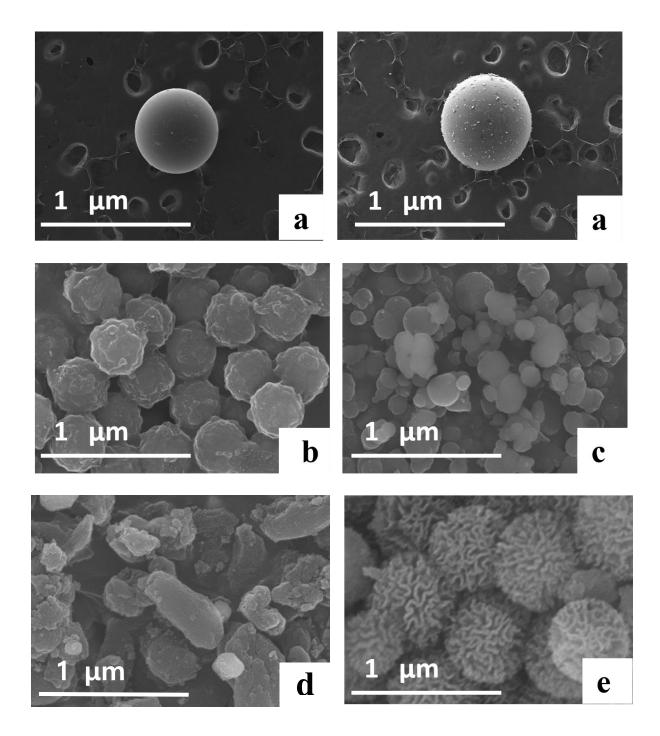
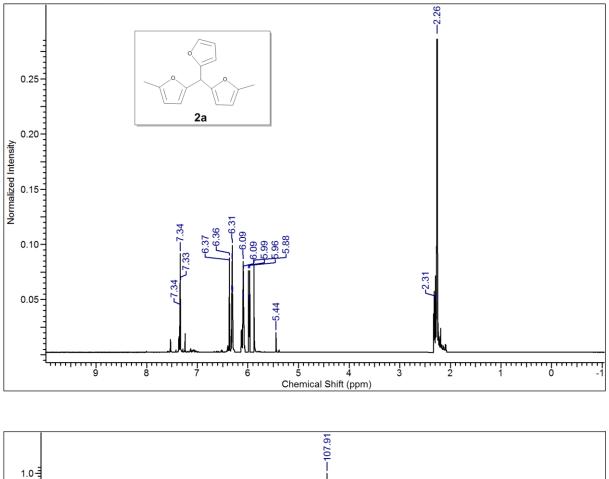



Figure S15: SEM images of Amberlyst-15 fresh and recycled (a), RNPSO₃H (b), RMCM-41SO₃H (c), RSBA-15SO₃H (d), and RKCC-1 SO₃H (e).

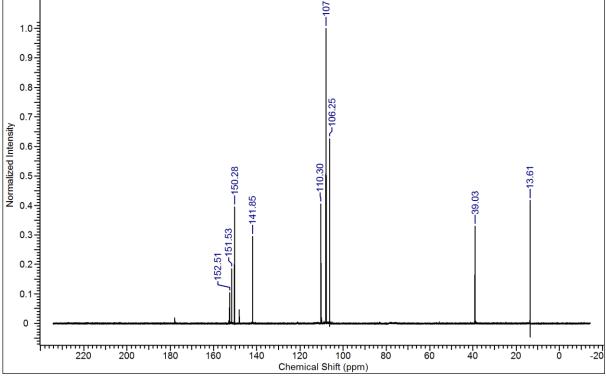
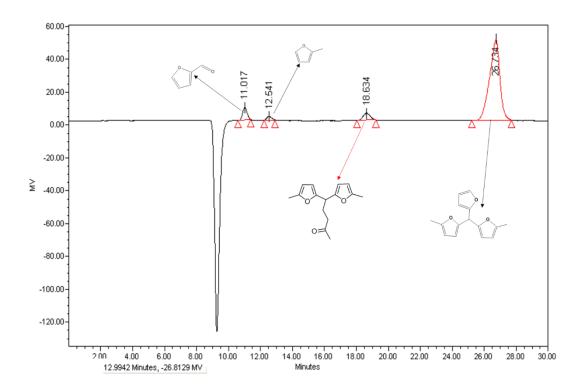
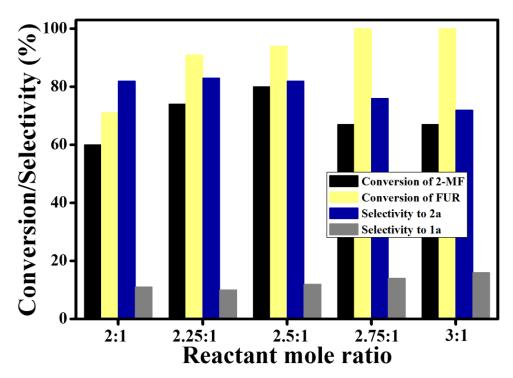
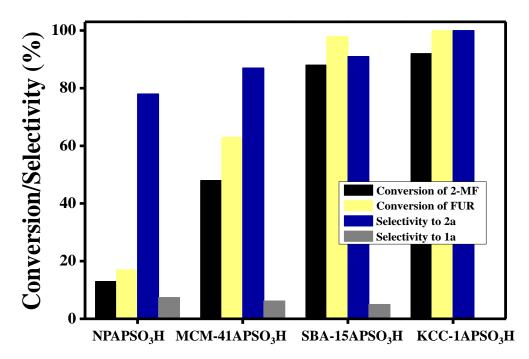
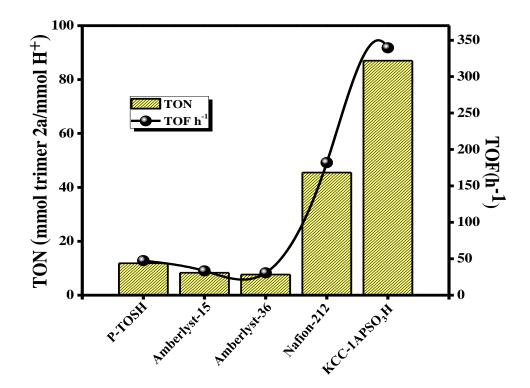


Figure S16: ¹H and ¹³C NMR spectra of the 2a produced by the cross -condensation of 2-MF and FUR.


Figure S17: HPLC chromatogram of the liquid products from the cross-condensation of 2-MFand FUR

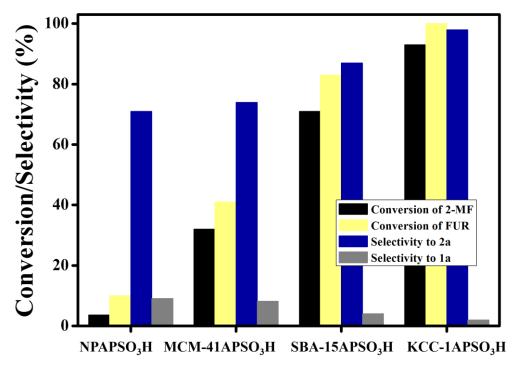

Figure S18: Result of the molar ratio study of the cross-condensation reaction of 2-MF and FUR using Amberlyst-15 catalysts for 2 h at 70 ^oC.

Figure S19: The effect of support morphology on conversion and selectivity. 2-MF (3.7 g), FUR (1.93 g) and catalyst (3 wt% by mass of 2-MF) were condensed for 2 h at 70 $^{\circ}$ C.

Figure S20: TON and TOF calculated from the yield after 0.25 h reaction. 2-MF (3.7 g), FUR (1.93 g) and catalyst (5 wt% by mass of 2-MF) were condensed for 2 h at 70 $^{\circ}$ C.

Figure S21: Result of the cross-condensation reaction of 2-MF and FUR using recycled NP, MCM-41, SBA-15 and KCC-1 supported catalysts. 2-MF (3.7 g), FUR (1.93 g) and catalyst (5 wt% by mass of 2-MF) were condensed for 2 h at 70 °C.

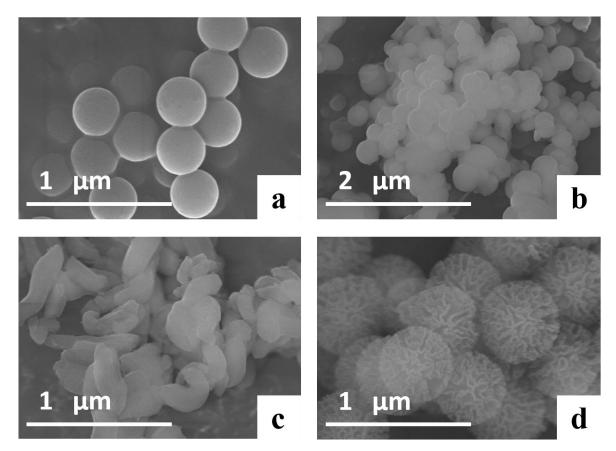
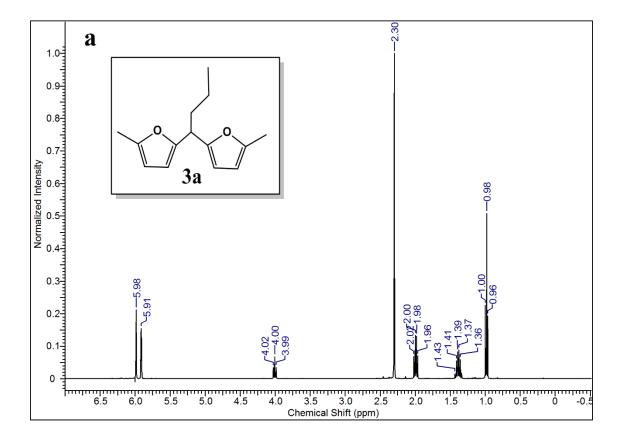



Figure S22: SEM images of recycled RNPAPSO₃H (a), RMCM-41APSO₃H (b), RSBA-15APSO₃H (c), and RKCC-1 APSO₃H (c).

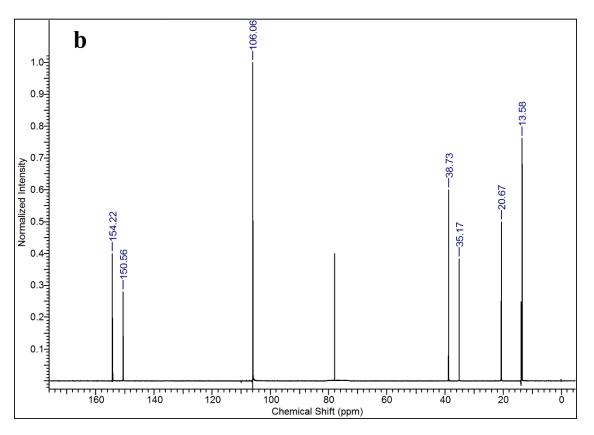


Figure S 23: ¹H and ¹³C NMR spectra of the 3a produced by the cross -condensation of 2-MF and n-butanal.

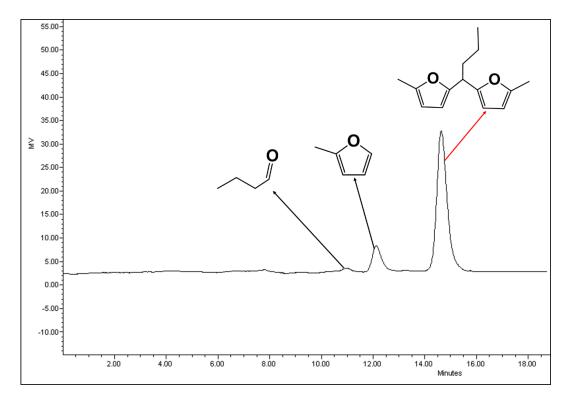
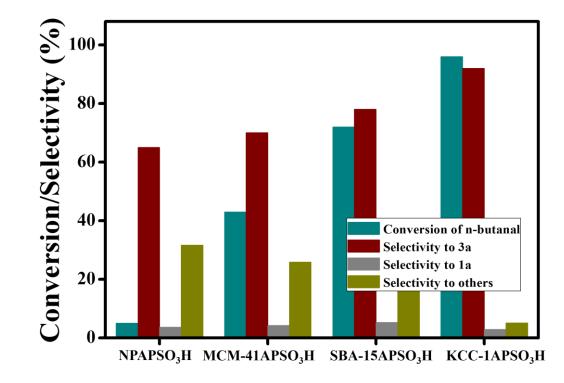



Figure S24: HPLC chromatogram of the liquid products from the cross-condensation of 2-MFand n-butanal.

Figure S25: Result of the cross-condensation reaction of 2-MF and n-butanal using recycled NP, MCM-41, SBA-15 and KCC-1 supported catalysts. 2-MF (5 g), n-butanal (2.2 g) and catalyst (3 wt%) were condensed for 4 h at 50^oC.

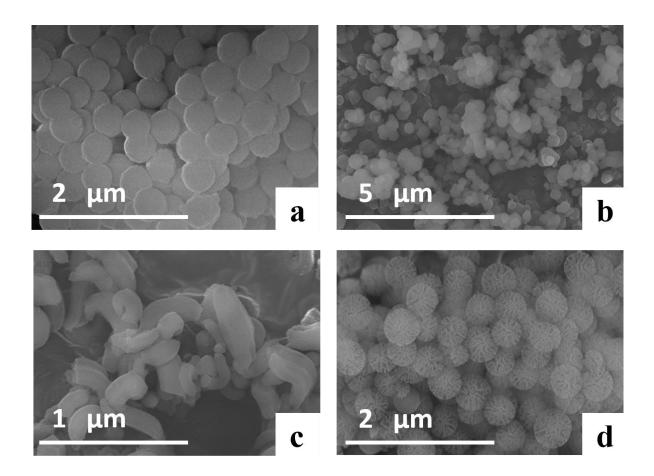


Figure S26: SEM images of recycled RNPAPSO₃H (a), RMCM-41APSO₃H (b), RSBA-15APSO₃H (c), and RKCC-1 APSO₃H (d).

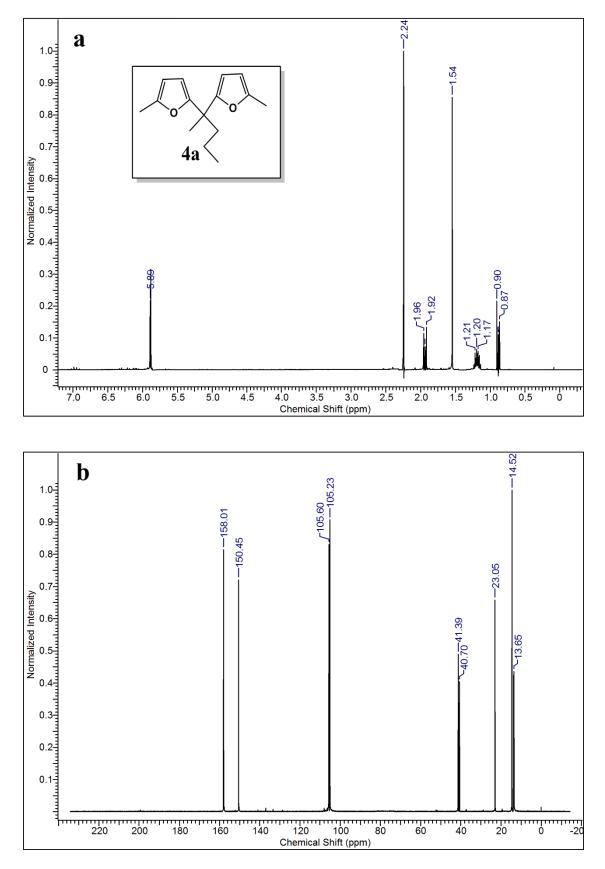


Figure S27: 1 H and 13 C NMR spectra of the 4a produced by the cross -condensation of 2-MF and 2-pentanone.

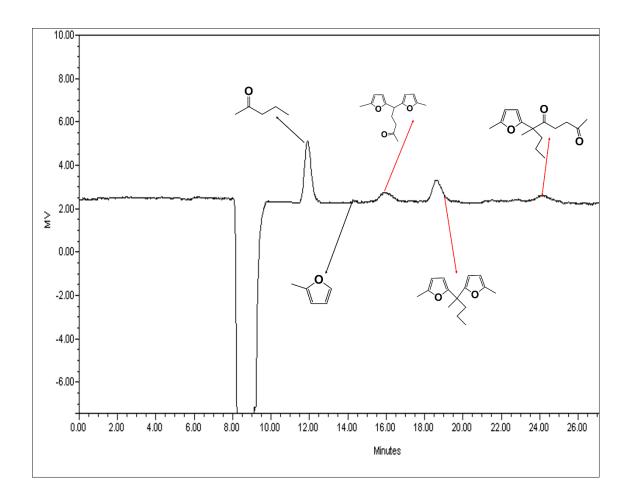
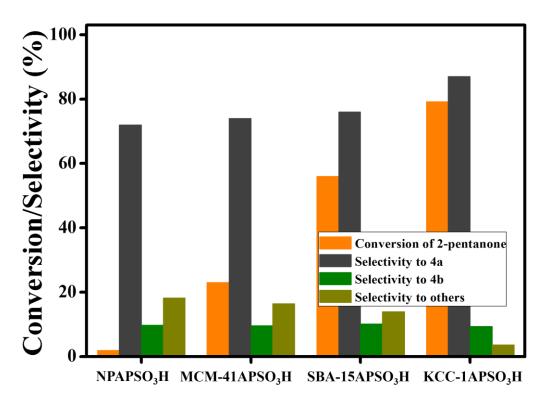



Figure S28: HPLC chromatogram of the liquid products from the cross-condensation of 2-MFand 2-pentanone.

Figure S29: Result of the cross-condensation reaction of 2-MF and 2-pentanone using recycled NP, MCM-41, SBA-15 and KCC-1 supported catalysts. 2-MF (5 g), 2-pentanone (2.6 g) and catalyst (3 wt %) were condensed for 6 h at 85 °C.

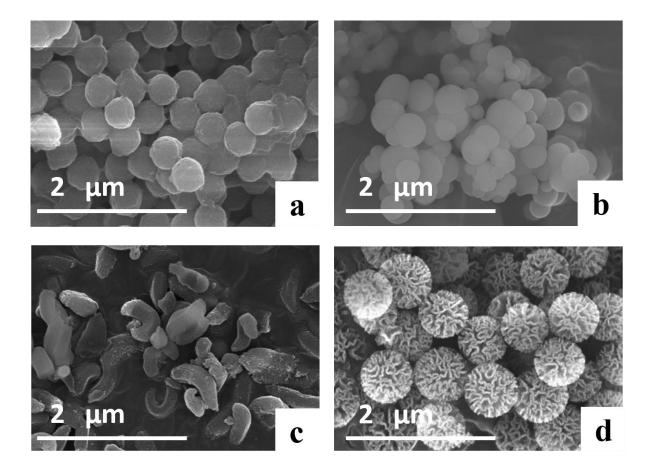


Figure S30: SEM images of recycled RNPAPSO₃H (a), RMCM-41APSO₃H (b), RSBA-15APSO₃H (c), and RKCC-1 APSO₃H (d).

			S	elf-conde	nsation reaction					
Entry	Catalyst		Temp. (⁰ C)	Time (h)	Conversion (%)	Selectivity 1a (%)	Selectivity 1b (%)	Ref.		
1	24 wt % H ₂ SO ₄		85	3	45	86.8	NA	1		
2	p-TosOH		85	3	37	NA	83.1	1		
3	Amberlyst-15 with 15wt% H ₂ O		85	52	55.4	91	3.2	1		
4	KCC-1SO ₃	H with 10 wt% H ₂ O	85	48	60	100	0	This work		
Cross-condensation reaction of 2-methylfuran and furfural										
Entry	Molar ratio	Catalyst (Wt %)	Temp. (⁰ C)	Time (h)	Conversion (%)	Yield /Selectivity 2a (%)	Yield/Select ivity 1a (%)	Ref.		
1	2:1	Nafion-212	50	2	80 (FUR)	67 (yield)	NA	2		
2	2.2:1	Silica-supported alkyl sulfonic acid- functionalized catalyst	65	2	100 (FUR)	88.2 (yield)	NA	3		
3	2:1	Lignosulfonate- based acidic resin	50	2	70.4 (2-MF)	65.4 (yield)	NA	4		
4	2:1	Pd/NbOPO ₄	80	5	92.3 (FUR)	89.7 (yield)	1.6	5		
5	2.2:1	Improved graphene oxide carbocatalyst	60	3	100 (2-MF)	95 (yield)	NA	6		
6	2:1	KCC-1APSO ₃ H	70	2	100 (FUR)	100 (selectivity)	0	This work		
NA- not	t available									
		Cross-c			n of 2-methylfuran and					
Entry	Molar ratio	Catalyst (Wt %)	Temp. (⁰ C)	Time (h)	Conversion (%)	Yield/Selectivity 3a (%)		Ref.		
1	2:1				85 (n-Butanal)	91 (selectivity)				
2	3:1	<i>para</i> - toluenesulfonic acid	50	6	90 (n-Butanal)	93 (selectivity)		7		
3	3.5:1	toluenesulionic acid			93 (n-Butanal)	95 (selectivity)				
4	2:1	Nafion-212	50	4	96.6 (2-MF)	88.4 (yield)		8		
5	2:1	Lignosulfonate- based acidic resin	50	2	78 (2-MF)	76 (yield)		4		
6	2:1	KCC-1APSO ₃ H	50	4	100 of n-Butanal	94 (selectivity)		This work		
Cross-condensation reaction of 2-methylfuran and 2-pentanone										
Entry	Molar ratio	Catalyst (Wt %)	Temp. (⁰ C)	Time (h)	Conversion (%)	Selectivity 4a (%)	Selectivity 1a (%)	Ref.		
1	2.5:1	p-TosOH (3.8)	60	22.5	63 (2-pentanone)	76	11			
2	2.5:1	p-TosOH (2.6)	100	3	76 (2-pentanone)	67	15	7		
3	2.5:1	H ₂ SO ₄ (22.4)	60	9.5	61 (2-pentanone)	22	46			
4	3:1	H ₂ SO ₄ (22.4)	100	1	71 (2-pentanone)	14	55			
5	2.5:1	KCC-1APSO₃H	85	6	89 (2-pentanone)	82	10.2	This work		

Table S3: Comparison of the results acquired from this study with the previously reported values.

1 I. Yati, M. Yeom, J. W. Choi, H. Choo, D. J. Suh and J. M. Ha, Appl. Catal. A Gen., , DOI:10.1016/j.apcata.2015.02.002.

2 G. Li, N. Li, Z. Wang, C. Li, A. Wang, X. Wang, Y. Cong and T. Zhang, ChemSusChem, 2012, 5, 1958–1966.

3 M. Balakrishnan, E. R. Sacia and A. T. Bell, *ChemSusChem*, 2014, 7, 1078–1085.

4 S. Li, N. Li, G. Li, L. Li, A. Wang, Y. Cong, X. Wang and T. Zhang, Green Chem., , DOI:10.1039/C5GC00372E.

5 Q. Xia, Y. Xia, J. Xi, X. Liu, Y. Zhang, Y. Guo and Y. Wang, *ChemSusChem*, 2017, **10**, 747–753.

6 S. Dutta, A. Bohre, W. Zheng, G. R. Jenness, M. Núñez, B. Saha and D. G. Vlachos, ACS Catal., 2017, 7, 3905–3915.

7 A. Corma, O. de la Torre and M. Renz, *Energy Environ. Sci.*, DOI:10.1039/c2ee02778j.

8 G. Li, N. Li, J. Yang, A. Wang, X. Wang, Y. Cong and T. Zhang, Bioresour. Technol., , DOI:10.1016/j.biortech.2013.01.116.