Supplementary Information

Oxidant-free oxidation of C-H bond by cathodic hydrogen evolution: a phosphonic Kolbe oxidation/cyclization process

Lei Zhang,^a Zhenxing Zhang, ^a Jianning Zhang,^a Kangle Li^a and Fanyang Mo*^a

Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871 (China). E-mail: fmo@pku.edu.cn

Contents

1. General Information	2
2. Preparation of Substrates	2
2.1 General methods for preparation of ethyl hydrogen [1,1'-biphenyl]-2-ylphosphona (1a) ^[1]	ate 2
2.2 Preparation of 2-(2-iodophenyl)thiophene ^[2]	3
2.3 Data of substrates	4
3. Electrochemical Reactions and Cyclized Products	8
3.1 Equipment and experiments setup pictures	8
3.2 General Procedure for the Electrochemical Experiments	8
3.3 Characterization data of cyclized products	9
4. CV measurements	15
5. Detection of H_2 by GC Analysis	17
6. References	18
7. NMR Spectra	18

1. General Information

Unless otherwise noted, chemicals and solvents were purchased with the highest purity grade available and were used without further purification. Purification of products was conducted by column chromatography on silica gel (200-300 mesh, from Qingdao, China) if not mentioned. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 101 MHz respectively with Brucker ARX 400 spectrometer. ³¹P NMR was recorded at 202 MHz and ¹⁹F NMR was recorded at 471 MHz both with Brucker ARX 500 spectrometer. Chemical shifts (δ) are reported in ppm and coupling constants (*J*) were reported in hertz (Hz). For ¹H NMR spectra, tetramethylsilane was used as internal standard with chemical shift at 0 ppm when CDCl₃ was solvent. For ¹³C NMR spectra, CDCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. For ¹⁹F NMR spectra, CFCl₃ was used as the reference with chemical shift at 0 ppm. The following abbreviations were used to symbolize the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, m = multiplet. HRMS data were obtained on a VG ZAB-HS mass spectrometer and Bruker Apex IV FTMS spectrometer.

2. Preparation of Substrates

2.1 General methods for preparation of ethyl hydrogen [1,1'-biphenyl]-2-

ylphosphonate (1a)^[1]

To a solution of $PdCl_2(PPh_3)_2$ (52.6 mg, 0.075 mmol) and potassium carbonate (1.728 g, 12.5 mmol) in water (2.5 mL) and DME (20.0 mL) were added 2-bromoiodobenzene (1.414 g, 5.0 mmol) and phenylboronic acid (0.914 g, 7.5 mmol). The reaction mixture was stirred at 80 °C under N₂ atmosphere for 6 h in oil bath until substrate disappeared on TLC. When the reaction was complete, water (20 mL) and ether (20 mL) were added. The aqueous layer was separated and extracted with ether (20 mL × 3). The combined organic layer was washed with brine and the organic fraction was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography (petroleum ether) on silica gel, producing the title compound as a colorless oil (874 mg, 75%).

An oven dried 100 mL Schlenk tube, 2-bromobiphenyl (1.166 g, 5.0 mmol), diisopropylethylamine

(1.357 g, 10.5 mmol), diethylphosphonate (2.762 g, 20.0 mmol), palladium(II) acetate (112 mg, 0.5 mmol), and 1,3-bis(diphenylphosphino)propane (309 mg, 0.75 mmol) were dissolved in dry toluene (25 mL, dried over Na), heated at 120 °C with seal for 48 hours. The reaction was cooled to room temperature and diluted with 100 mL EtOAc. The organic layer was washed three times with saturated NaHCO₃ solution, then once with brine. The organic layer was dried over Na₂SO₄, filtered, and the solvent was removed via vacuum yielding a crude yellow oil. The crude product was purified by flash column chromatography (PE/EA = 2:1), yielding a viscous colorless oil (1.002 g, 69% yield).

Ethyl hydrogen [1,1'-biphenyl]-2-ylphosphonate (1a) can be synthesized through two methods as shown above.

1,1'-biphenylphosphonic acid diethyl ester (580 mg, 2.0 mmol), NaOH (4.0 mmol), and H₂O (10.0 mL) were stirred under reflux overnight. The reaction solution was diluted with water (10 mL). The solution was neutralized with cooled concentrated hydrochloric acid and extracted with EtOAc. The extracts were evaporated under reduced pressure to give 1,1'-biphenylphosphonic acid monoethyl ester (472 mg, 90%) as a white crystalline solid.

A solution of 1,1'-biphenylphosphonic acid diethyl ester (580 mg, 2.0 mmol) in THF (6.0 mL) was treated with *L*-selectride (1.0 M solution in THF, 4.0 mL, 4.0 mmol) at 50 °C for 2 h. When the reaction was complete, the solution was quenched by addition of water. The aqueous layer was extracted with ethyl acetate (20 mL \times 3) to remove impurities, then acidified to pH = 1 with 1 N HCl (10 mL) and extracted with ethyl acetate (20 mL \times 5). The combined organic layer was dried with Na₂SO₄ and concentrated under reduced pressure. Then, the crude product was dried in vacuum to afford 1,1'-biphenylphosphonic acid monoethyl ester (383 mg, 73%) as a white crystalline solid.

2.2 Preparation of 2-(2-iodophenyl)thiophene^[2]

To a solution of 2-bromothiophene (9.0 mmol) in dry THF (30 mL) was added n-BuLi (2.5 M solution in n-hexane, 3.8 mL, 9.45 mmol) at -78 °C under nitrogen atmosphere. The reaction mixture was stirred at -78 °C for 30 min and then, 1-bromo-2-iodobenzene (9.0 mmol) was dropwise at -78 °C. The mixture was warmed to room temperature and stirred for 1 h. When the reaction was complete, the solution was quenched with ammonium chloride. The aqueous layer was extracted with ethyl ether (3 × 20 mL) and the combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was then purified by flash column chromatography (petroleum ether) on silica gel, producing the title compound as a yellow oil (1.95 g, 76%).

2.3 Data of substrates

Ethyl hydrogen [1,1'-biphenyl]-2-ylphosphonate (1a): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.64 (br, 1H), 8.04 (ddd, J = 14.8, 7.7, 1.4 Hz, 1H), 7.55 (tt, J = 7.6, 1.5 Hz, 1H), 7.48 – 7.29 (m, 7H), 3.70 (p, J = 7.2 Hz, 2H), 0.95 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.1 (d, J = 10.1 Hz), 141.4 (d, J = 4.1 Hz), 133.6 (d, J = 10.0 Hz), 132.0 (d, J = 2.9

Hz), 131.3 (d, *J* = 14.3 Hz), 129.4, 127.5, 127.4, 127.3 (d, *J* = 192.7 Hz), 126.8 (d, *J* = 14.9 Hz), 61.5 (d, *J* = 6.4 Hz), 15.8 (d, *J* = 7.4 Hz).

Ethyl hydrogen (4'-methyl-[1,1'-biphenyl]-2-yl)phosphonate (1b): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.88 (br, 1H), 8.03 (ddd, *J* = 14.8, 7.7, 1.4 Hz, 1H), 7.53 (tt, *J* = 7.6, 1.5 Hz, 1H), 7.40 (dd, *J* = 7.6, 3.5 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.16 (d, *J* = 7.8 Hz, 2H), 3.71 (p, *J* = 7.2 Hz, 2H), 2.36 (s, 3H), 0.97 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.2 (d, *J* = 10.1 Hz), 138.5 (d, *J* = 4.4 Hz), 137.0, 133.6 (d, *J* = 9.9 Hz),

131.9 (d, *J* = 2.9 Hz), 131.4 (d, *J* = 14.4 Hz), 129.3, 128.2, 126.6 (d, *J* = 14.7 Hz), 126.4, 61.5 (d, *J* = 6.1 Hz), 21.3, 15.8 (d, *J* = 7.4 Hz).

Ethyl hydrogen (3'-methyl-[1,1'-biphenyl]-2-yl)phosphonate (1c): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 12.10 (br, 1H), 8.02 (ddd, J = 14.8, 7.7, 1.4 Hz, 1H), 7.58 – 7.50 (m, 1H), 7.39 (tdd, J = 7.6, 3.6, 1.3 Hz, 1H), 7.31 (ddd, J = 7.3, 5.6, 1.2 Hz, 1H), 7.28 – 7.20 (m, 3H), 7.14 (dt, J = 6.2, 2.3 Hz, 1H), 3.72 (p, J = 7.1 Hz, 2H), 2.37 (s, 3H), 0.97 (t, J = 7.1 Hz,

3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.3 (d, J = 10.2 Hz), 141.3 (d, J = 4.4 Hz), 137.0, 133.5 (d, J = 10.2 Hz), 131.9 (d, J = 2.9 Hz), 131.2 (d, J = 14.5 Hz), 130.1, 128.1, 127.4, 127.2 (d, J = 192.6 Hz), 126.7 (d, J = 14.7 Hz), 126.5, 61.4 (d, J = 6.4 Hz), 21.4, 15.8 (d, J = 7.4 Hz).

Ethyl hydrogen (4'-(*tert*-butyl)-[1,1'-biphenyl]-2-yl)phosphonate (1d): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.23 (br, 1H), 8.07 (ddd, J = 14.9, 7.7, 1.4 Hz, 1H), 7.60 – 7.49 (m, 1H), 7.43 – 7.37 (m, 5H), 7.34 (ddd, J = 7.3, 5.6, 1.2 Hz, 1H), 3.66 (p, J = 7.1 Hz, 2H), 1.34 (s, 9H), 0.85 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.2, 146.1 (d, J =

9.8 Hz), 138.6 (d, *J* = 4.3 Hz), 133.6 (d, *J* = 10.3 Hz), 131.9 (d, *J* = 3.0 Hz), 131.4 (d, *J* = 14.5 Hz), 129.1, 127.4 (d, *J* = 192.4 Hz), 126.6 (d, *J* = 15.2 Hz), 124.4, 61.4 (d, *J* = 6.2 Hz), 34.6, 31.4, 15.6 (d, *J* = 7.6 Hz).

Ethyl hydrogen [1,1':4',1''-terphenyl]-2-ylphosphonate (1e): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 8.01 (m, 1H), 7.66 – 7.49 (m, 7H), 7.48 – 7.31 (m, 5H), 3.74 (p, *J* = 7.2 Hz, 2H), 0.94 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, DMSO-d6) δ 144.5 (d, *J* = 9.4 Hz), 140.7 (d, *J* = 3.9 Hz), 139.8, 138.8, 133.0 (d, *J* = 9.2 Hz), 131.5, 131.2 (d, *J* =

13.2 Hz), 129.8, 129.4 (d, *J* = 181.6 Hz), 128.5, 127.4, 126.9 (d, *J* = 13.9 Hz), 126.6, 125.6, 60.2 (d, *J* = 5.6 Hz), 15.8 (d, *J* = 7.0 Hz).

Ethyl hydrogen (4'-pentyl-[1,1'-biphenyl]-2-yl)phosphonate (1f): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.00 (br, 1H), 8.05 (ddd, J = 14.8, 7.7, 1.4 Hz, 1H), 7.59 – 7.50 (m, 1H), 7.45 – 7.29 (m, 4H), 7.17 (d, J = 8.1 Hz, 2H), 3.68 (p, J = 7.1 Hz, 2H), 2.62 (t, J = 8.0 Hz, 2H), 1.63 (p, J = 7.6 Hz, 2H), 1.42 – 1.28 (m, 4H), 1.01 – 0.80 (m, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.2 (d, J = 9.9 Hz), 142.0, 138.7 (d, J = 4.3

Hz), 133.6 (d, *J* = 10.2 Hz), 131.9 (d, *J* = 2.9 Hz), 131.4 (d, *J* = 14.2 Hz), 129.3, 127.6, 127.3 (d, *J* = 192.3 Hz), 126.6 (d, *J* = 14.8 Hz), 61.4 (d, *J* = 6.2 Hz), 35.7, 31.6, 31.2, 22.6, 15.7 (d, *J* = 7.4 Hz), 14.1.

Ethyl hydrogen (2-(naphthalen-2-yl)phenyl)phosphonate (1g): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (dd, *J* = 14.8, 7.7 Hz, 1H), 7.86 (s, 1H), 7.84 – 7.75 (m, 3H), 7.63 – 7.50 (m, 2H), 7.49 – 7.32 (m, 4H), 3.58 (p, *J* = 7.1 Hz, 2H), 0.78 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 146.0 (d, *J* = 9.9 Hz), 138.8 (d, *J* = 4.3 Hz), 133.5 (d, *J* = 10.1 Hz), 132.8, 132.6, 131.9 (d, *J* = 2.9 Hz), 131.5 (d, *J* = 14.4 Hz), 128.0 (d, *J*

= 53.2 Hz), 127.9 (d, *J* = 64.9 Hz), 127.5 (d, *J* = 192.9 Hz), 126.9, 126.9 (d, *J* = 14.7 Hz), 126.0, 61.4 (d, *J* = 6.4 Hz), 15.7 (d, *J* = 7.2 Hz).

Ethyl hydrogen (4'-fluoro-[1,1'-biphenyl]-2-yl)phosphonate (1h): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (ddd, J = 14.7, 7.8, 1.4 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.47 – 7.37 (m, 3H), 7.33 – 7.27 (m, 1H), 7.04 (t, J = 8.7 Hz, 2H), 3.76 (p, J = 7.2 Hz, 2H), 1.02 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, J = 246.3 Hz), 145.0 (d, J = 10.1 Hz), 137.4 – 137.2 (m), 133.5 (d, J = 9.8 Hz), 132.1 (d, J = 3.0 Hz), 131.4 (d, J = 14.2 Hz),

131.1 (d, *J* = 8.1 Hz), 127.4 (d, *J* = 192.4 Hz), 127.0 (d, *J* = 14.8 Hz), 114.4 (d, *J* = 21.3 Hz), 61.5 (d, *J* = 6.3 Hz), 15.8 (d, *J* = 7.0 Hz).

Ethyl hydrogen (4'-chloro-[1,1'-biphenyl]-2-yl)phosphonate (1i): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (ddd, *J* = 14.8, 7.8, 1.4 Hz, 1H), 7.60 – 7.52 (m, 1H), 7.48 – 7.41 (m, 1H), 7.40 – 7.27 (m, 5H), 5.91 (br, 1H), 3.76 (p, *J* = 7.2 Hz, 2H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.8 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 133.5, 133.5 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 133.5, 133.5 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 133.5, 133.5 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 133.5, 133.5 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 133.5, 133.5 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 133.5, 133.5 (d, *J* = 10.1 Hz), 139.8 (d, *J* = 4.3 Hz), 149.8 (d, J = 10.1 Hz), 149.8 (d, J = 10.1 Hz), 149.8 (d, J = 10.1 Hz), 149.8 (d, J = 1

J = 9.6 Hz), 132.1 (d, *J* = 2.8 Hz), 131.2 (d, *J* = 14.0 Hz), 130.8, 127.7, 127.3 (d, *J* = 192.4 Hz), 127.2 (d, *J* = 14.7 Hz), 61.6, 15.9.

Ethyl hydrogen (4'-methoxy-[1,1'-biphenyl]-2-yl)phosphonate (1j): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (ddd, J = 14.8, 8.4, 1.9 Hz, 1H), 7.53 (tt, J = 7.6, 1.5 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.30 (ddd, J = 7.2, 5.6, 1.2 Hz, 1H), 6.94 – 6.86 (m, 2H), 3.82 (s, 3H), 3.73 (p, J = 7.2 Hz, 2H), 0.99 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.1, 145.8 (d, J = 10.2 Hz), 133.8 (d, J = 4.4 Hz), 133.6 (d, J = 10.2 Hz), 131.9

(d, *J* = 2.9 Hz), 131.5 (d, *J* = 14.5 Hz), 130.6, 127.3 (d, *J* = 191.9 Hz), 126.5 (d, *J* = 15.2 Hz), 113.0, 61.5 (d, *J* = 6.3 Hz), 55.2, 15.8 (d, *J* = 7.3 Hz).

Ethyl hydrogen (4'-(trifluoromethoxy)-[1,1'-biphenyl]-2yl)phosphonate (1k): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.10 (br, 1H), 8.03 (ddd, J = 14.8, 7.7, 1.4 Hz, 1H), 7.57 (tt, J = 7.6, 1.5 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.30 (ddd, J = 7.2, 5.6, 1.2 Hz, 1H), 7.24 – 7.17 (m, 2H), 3.73 (p, J = 7.2 Hz, 2H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.7, 144.6 (d, J = 9.6 Hz), 140.1 (d, J = 4.5

Hz), 133.5 (d, *J* = 10.1 Hz), 132.1 (d, *J* = 2.8 Hz), 131.2 (d, *J* = 14.3 Hz), 130.9, 127.4 (d, *J* = 192.9 Hz), 127.2 (d, *J* = 14.9 Hz), 120.6 (q, *J* = 257.3 Hz), 120.0, 61.5 (d, *J* = 6.2 Hz), 15.6 (d, *J* = 7.4 Hz).

Ethyl hydrogen (4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)phosphonate (1l): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (ddd, *J* = 14.8, 7.7, 1.4 Hz, 1H), 7.67 – 7.53 (m, 5H), 7.51 – 7.42 (m, 1H), 7.33 – 7.28 (m, 1H), 5.20 (br, 1H), 3.74 (p, *J* = 7.2 Hz, 2H), 0.96 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.0 (d, *J* = 4.6 Hz), 144.5 (d, *J* = 9.7 Hz), 133.5 (d, *J* = 10.1 Hz), 132.2 (d, *J* = 2.9 Hz), 131.0 (d, *J* = 14.1 Hz),

129.8, 129.6 (q, J = 32.4 Hz), 127.5 (d, J = 14.7 Hz), 127.3 (d, J = 193.0 Hz), 124.5 (q, J = 3.8 Hz), 124.3 (q, J = 271.9 Hz), 61.5 (d, J = 6.5 Hz), 15.7 (d, J = 7.3 Hz).

Ethyl hydrogen (4'-acetyl-[1,1'-biphenyl]-2-yl)phosphonate (1m): white solid and it was synthesized by using NaOH in water; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 8.00 (m, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.59 (tt, J = 7.6, 1.5 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.46 (tdd, J = 7.6, 3.6, 1.3 Hz, 1H), 7.34 – 7.28 (m, 1H), 3.73 (p, J = 7.2 Hz, 2H), 2.62 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.9, 146.2 (d, J = 4.3 Hz), 144.8

(d, *J* = 10.0 Hz), 136.0, 133.6 (d, *J* = 10.0 Hz), 132.2 (d, *J* = 3.0 Hz), 131.0 (d, *J* = 14.2 Hz), 129.7, 127.6, 127.4 (d, *J* = 14.7 Hz), 127.1 (d, *J* = 192.3 Hz), 61.6 (d, *J* = 6.1 Hz), 26.7, 15.8 (d, *J* = 7.3 Hz).

Ethyl hydrogen (2-(thiophen-2-yl)phenyl)phosphonate (1n): yellow solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (ddd, *J* = 14.9, 7.7, 1.4 Hz, 1H), 7.86 (br, 1H), 7.56 – 7.44 (m, 2H), 7.44 – 7.37 (m, 2H), 7.32 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.02 (dd, *J* = 5.1, 3.5 Hz, 1H), 3.83 (p, *J* = 7.2 Hz, 2H), 1.05 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.5 (d, *J* = 5.0 Hz), 138.2 (d, *J* = 8.8

Hz), 134.1 (d, *J* = 9.6 Hz), 132.3 (d, *J* = 13.3 Hz), 131.9 (d, *J* = 2.9 Hz), 128.7, 128.2 (d, *J* = 192.2 Hz), 127.4 (d, *J* = 14.7 Hz), 127.1, 125.8.

6-Ethoxy-9-fluoro-3-methoxydibenzo[c,e][1,2]oxaphosphinine oxide (10): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.70 (br, 1H), 8.01 (ddd, *J* = 14.5, 8.6, 6.1 Hz, 1H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.12 – 6.97 (m, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 3.82 (s, 3H), 3.72 (p, *J* = 7.2 Hz, 2H), 0.99 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.6 (dd, *J* = 253.9, 3.7 Hz), 159.4, 149.0 (dd, *J* = 11.8, 8.5 Hz), 136.3 (dd, *J* =

11.4, 9.4 Hz), 132.6 (dd, *J* = 4.0, 1.5 Hz), 130.4, 123.4 (dd, *J* = 196.8, 3.1 Hz), 118.6 (dd, *J* = 21.3, 15.7 Hz), 113.6 (dd, *J* = 20.6, 16.2 Hz), 113.1, 61.6 (d, *J* = 6.4 Hz), 55.3, 15.8 (d, *J* = 7.3 Hz).

Ethyl hydrogen (4'-methoxy-4-methyl-[1,1'-biphenyl]-2yl)phosphonate (1p): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 12.99 (br, 1H), 7.85 (d, J = 15.2 Hz, 1H), 7.42 – 7.35 (m, 2H), 7.33 (d, J= 7.9 Hz, 1H), 7.19 (t, J = 6.8 Hz, 1H), 6.89 (d, J = 7.4 Hz, 2H), 3.81 (s, 3H), 3.72 (p, J = 7.0 Hz, 2H), 2.39 (s, 3H), 0.98 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.9, 142.9 (d, J = 9.7 Hz), 136.3 (d,

J = 14.9 Hz), 134.1 (d, *J* = 10.2 Hz), 133.8 (d, *J* = 4.4 Hz), 132.7 (d, *J* = 3.2 Hz), 131.5 (d, *J* = 15.3 Hz), 130.6, 127.0 (d, *J* = 190.7 Hz), 112.9, 61.4 (d, *J* = 6.0 Hz), 55.2, 21.0, 15.8 (d, *J* = 7.4 Hz).

Ethyl hydrogen (4'-methoxy-5-(trifluoromethyl)-[1,1'-biphenyl]-2yl)phosphonate (1q): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.97 (br, 1H), 8.13 (dd, J = 14.5, 8.0 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.56 (d, J = 4.8 Hz, 1H), 7.41 – 7.33 (m, 2H), 6.98 – 6.87 (m, 2H), 3.83 (s, 3H), 3.75 (p, J = 7.2 Hz, 2H), 1.01 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.6, 146.8 (d, J = 10.3 Hz), 134.2

(d, *J* = 10.5 Hz), 133.7 (dd, *J* = 32.7, 3.2 Hz), 132.4 (d, *J* = 4.3 Hz), 131.4 (d, *J* = 191.3 Hz), 130.5, 128.2 (dq, *J* = 14.3, 3.6 Hz), 123.5 (q, *J* = 272.8 Hz), 123.1 (dq, *J* = 15.4, 3.8 Hz), 113.2, 62.0 (d, *J* = 6.1 Hz), 55.3, 15.8 (d, *J* = 7.2 Hz).

Ethyl hydrogen (4-chloro-4'-methoxy-[1,1'-biphenyl]-2yl)phosphonate (1r): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (dd, J = 15.3, 2.3 Hz, 1H), 7.49 (ddd, J = 8.2, 2.4, 1.0 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.26 – 7.20 (m, 1H), 6.93 – 6.88 (m, 2H), 3.82 (s, 3H), 3.75 (p, J = 7.2 Hz, 2H), 1.01 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 159.3, 144.2 (d, *J* = 9.5 Hz), 133.3 (d, *J* = 11.1 Hz), 133.0 (d, *J* = 15.8 Hz), 132.9 (d, *J* = 20.3 Hz), 132.6 (d, *J* = 4.3 Hz), 132.0 (d, *J* = 3.0 Hz), 130.5, 129.3 (d, *J* = 192.0 Hz), 113.1, 61.9 (d, *J* = 6.1 Hz), 55.3, 15.8 (d, *J* = 7.3 Hz).

Ethyl hydrogen (4-chloro-[1,1'-biphenyl]-2-yl)phosphonate (1s): white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (br, 1H), 7.99 (dd, *J* = 15.2, 2.3 Hz, 1H), 7.51 (ddd, *J* = 8.2, 2.3, 1.0 Hz, 1H), 7.44 – 7.33 (m, 5H), 7.29 – 7.23 (m, 1H), 3.72 (p, *J* = 7.2 Hz, 2H), 0.98 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.4 (d, *J* = 9.5 Hz), 140.2 (d, *J* = 4.2

Hz), 133.3, 133.1 (d, *J* = 9.4 Hz), 132.8 (d, *J* = 15.5 Hz), 132.0 (d, *J* = 3.0 Hz), 129.4, 129.3 (d, *J* = 192.4 Hz), 127.7, 127.7, 61.9 (d, *J* = 6.1 Hz), 15.8 (d, *J* = 7.3 Hz).

3. Electrochemical Reactions and Cyclized Products

3.1 Equipment and experiments setup pictures

Figure S1 Electrodes, power supply and reaction tube

3.2 General Procedure for the Electrochemical Experiments

A 15 mL test tube with a stir bar was charged with 0.5 mmol of 2-(aryl)aryl phosphonic acid monoester **1**, followed by 2,7 mL of MeOH, 0.3 mL DMF and 0.3 mL of an aqueous NaOH solution (0.167 M, 0.05 mmol). Two platinum net electrodes ($1.0 \text{ cm} \times 1.0 \text{ cm}$) were set up in the tube, and the electrodes were totally immersed. The resulting mixture was electrolyzed at a constant current mode with a current of 23 mA under ambient temperature. The reaction was monitored by TLC. Upon completion, the reaction mixture was concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with PE/EA to give the desired product **2**.

3.3 Characterization data of cyclized products

6-Ethoxydibenzo[**c**,**e**][**1**,**2**]**oxaphosphinine 6-oxide (2a**): reaction time 3 h; *R*_f = 0.4 (PE: EA = 1:1); yellow oil (71%, 91.8 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.89 (m, 3H), 7.75 – 7.67 (m, 1H), 7.55 – 7.47 (m, 1H), 7.42 – 7.35 (m, 1H), 7.30 – 7.20 (m, 2H), 4.22 (dq, *J* = 9.0, 7.1 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9 (d, *J* = 8.0 Hz), 137.0 (d, *J* =

6.7 Hz), 133.4, 130.4, 130.1 (d, J = 9.4 Hz), 128.3 (d, J = 15.4 Hz), 125.2, 124.7, 124.0 (d, J = 11.9 Hz), 122.6 (d, J = 12.3 Hz), 122.4 (d, J = 181.8 Hz), 120.2 (d, J = 6.6 Hz), 62.9 (d, J = 6.6 Hz), 16.3 (d, J = 6.0 Hz); ³¹P NMR (202 MHz, Chloroform-d) δ 10.09.

6-Ethoxy-3-methyldibenzo[c,e][1,2]oxaphosphinine **6-oxide** (2b): reaction time 3.0 h; $R_f = 0.4$ (PE: EA = 1:1); yellow oil (71%, 97.4 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.87 (m, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.52 – 7.43 (m, 1H), 7.10 – 7.01 (m, 2H), 4.27 – 4.14 (m, 2H), 2.39 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8 (d, J = 7.9 Hz), 141.2, 137.2 (d, J = 7.3 Hz), 133.3

(d, J = 2.8 Hz), 130.1 (d, J = 8.9 Hz), 127.8 (d, J = 15.4 Hz), 125.6, 125.0, 123.7 (d, J = 12.0 Hz), 122.0 (d, J = 181.3 Hz), 120.4 (d, J = 6.7 Hz), 119.8 (d, J = 11.8 Hz), 62.9 (d, J = 6.6 Hz), 21.2, 16.3 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.42.

6-Ethoxy-4-methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide and 6-ethoxy-2methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (2c): reaction time 3.0 h; $R_f = 0.4$ (PE: EA = 1:1); yellow oil (68%, 93.6 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 - 7.93 (m, 2H), 7.81 - 7.68 (m, 2H), 7.55 - 7.48 (m,

1H), 7.29 – 7.10 (m, 3H), 4.30 – 4.12 (m, 2H), 2.42 (s, 1.4 H, $2c^2$), 2.41 (s, 1.6 H, $2c^1$) 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.4 (d, J = 8.1 Hz, $2c^1$), 147.9 (d, J = 7.9 Hz, $2c^2$), 137.4 (d, J = 7.0 Hz, $2c^1$), 137.1 (d, J = 6.7 Hz, $2c^2$), 134.1 ($2c^2$), 133.4 (d, J = 2.4 Hz, $2c^1$), 133.3 (d, J = 2.9 Hz, $2c^2$), 131.9 ($2c^1$), 131.2 ($2c^2$), 130.1 (t, J = 9.8 Hz, $2c^1$ and $2c^2$), 129.0 (d, J = 6.0 Hz, $2c^1$), 128.11 (d, J = 15.4 Hz, $2c^2$), 128.08 (d, J = 15.4 Hz, $2c^1$), 125.5 ($2c^2$), 124.3 (d, J = 12.0 Hz, $2c^1$), 124.1 ($2c^1$), 124.0 (d, J = 11.9 Hz, $2c^2$), 123.0 ($2c^1$), 122.5 (d, J = 181.3 Hz, $2c^2$), 122.4 (d, J = 11.8 Hz, $2c^1$), 122.3 (d, J = 181.9 Hz, $2c^1$), 122.2 (d, J = 12.2 Hz, $2c^2$), 119.9 (d, J = 6.6 Hz, $2c^2$), 62.84 (d, J = 6.6 Hz, $2c^2$), 62.81 (d, J = 6.6 Hz, $2c^1$), 21.0 ($2c^2$), 16.3 (d, J = 5.8 Hz, $2c^1$ and $2c^2$), 16.2 ($2c^1$); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.37 ($2c^2$), 10.32 ($2c^1$).

6-Ethoxy-4-methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (2c¹): $R_f = 0.3$ (Chloroform; column chromatography on silica gel, 300-400 mesh, from Qingdao, China); yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.92 (m, 2H), 7.78 (dd, J = 8.0, 1.6 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.54 – 7.48 (m, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 4.30 – 4.10 (m, 2H), 2.41 (s, 3H), 1.27 (t, J = 7.1 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-

d) δ 148.4 (d, J = 8.1 Hz), 137.5 (d, J = 7.2 Hz), 133.4 (d, J = 2.7 Hz), 131.9, 130.1 (d, J = 9.4 Hz), 129.1 (d, J = 6.5 Hz), 128.1 (d, J = 15.4 Hz), 124.3 (d, J = 12.0 Hz), 124.1, 123.0, 122.4 (d, J = 12.1 Hz), 122.4 (d, J = 182.1 Hz), 62.8 (d, J = 6.7 Hz), 16.3 (d, J = 5.9 Hz), 16.2; ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.32. HRMS (ESI): calcd for C₁₅H₁₆O₃P⁺ [M + H]⁺, 275.0832; found, 275.0831.

3-(*tert*-Butyl)-6-ethoxydibenzo[c,e][1,2]oxaphosphinine 6-oxide (2d): reaction time 2.5 h; $R_f = 0.3$ (PE: EA = 2:1); yellow oil (78%, 124.8 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.90 (m, 2H), 7.85 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 7.3 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.28 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 4.28 – 4.16 (m, 2H), 1.35 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.6, 149.8 (d, J = 7.5 Hz), 137.0

(d, J = 7.1 Hz), 133.3 (d, J = 2.5 Hz), 130.0 (d, J = 9.0 Hz), 127.8 (d, J = 15.4 Hz), 124.7, 123.7 (d, J = 12.3 Hz), 122.1 (d, J = 181.0 Hz), 121.9, 119.6 (d, J = 11.8 Hz), 117.0 (d, J = 6.7 Hz), 63.0 (d, J = 6.6 Hz), 34.9, 31.1, 16.3 (d, J = 5.8 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.45.

6-Ethoxy-3-phenyldibenzo[**c,e**][**1,2**]**oxaphosphinine 6-oxide (2e**): reaction time 14.0 h; $R_f = 0.35$ (PE: EA = 1:1); white solid (40%, 67.3 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.93 (m, 3H), 7.70 (t, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 2H), 7.55 – 7.43 (m, 5H), 7.42 – 7.36 (m, 1H), 4.24 (dq, *J* = 9.1, 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ

150.3 (d, J = 8.0 Hz), 143.5, 139.1, 136.8 (d, J = 7.2 Hz), 133.4 (d, J = 2.4 Hz), 130.2 (d, J = 8.9 Hz), 129.0, 128.2, 128.2 (d, J = 15.4 Hz), 126.9, 125.6, 123.9 (d, J = 11.9 Hz), 123.2, 122.2 (d, J = 193.0 Hz), 121.4, 118.3 (d, J = 6.7 Hz), 63.0 (d, J = 6.6 Hz), 16.3 (d, J = 5.8 Hz); ³¹P NMR (202 MHz, Chloroform-d) δ 10.29.

6-Ethoxy-3-pentyldibenzo[**c**,**e**][**1**,**2**]**oxaphosphinine 6-oxide** (**2f**): reaction time 7.3 h; $R_f = 0.3$ (PE: EA = 2:1); colorless oil (36%, 60.0 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.88 (m, 2H), 7.82 (d, J =8.1 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.47 (td, J = 7.4, 3.6 Hz, 1H), 7.12 – 7.02 (m, 2H), 4.21 (dq, J = 9.0, 7.1 Hz, 2H), 2.69 – 2.58 (m, 2H), 1.72

-1.58 (m, 2H), 1.35 (dp, *J* = 8.9, 5.0 Hz, 4H), 1.28 (t, *J* = 7.1 Hz, 3H), 0.90 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9 (d, *J* = 7.5 Hz), 146.3, 137.2 (d, *J* = 6.7 Hz), 133.3 (d, *J* = 2.8 Hz), 130.1 (d, *J* = 9.0 Hz), 127.8 (d, *J* = 15.4 Hz), 124.9 (d, *J* = 5.0 Hz), 123.7 (d, *J* = 12.4 Hz), 122.0 (d, *J* = 181.2 Hz), 120.0 (d, *J* = 12.3 Hz), 119.8 (d, *J* = 6.6 Hz), 62.9 (d, *J* = 6.6 Hz), 35.5, 31.4, 30.7, 22.5, 16.3 (d, *J* = 5.8 Hz), 14.0; ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.45. HRMS (ESI): calcd for C₁₉H₂₄O₃P⁺ [M + H]⁺, 331.1458; found, 331.1464.

6-Ethoxybenzo[c]naphtho[2,1-e][1,2]oxaphosphinine 6-oxide (2g): reaction time 4.0 h; $R_f = 0.35$ (PE: EA = 1:1); white solid (39%, 60.5 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 – 8.40 (m, 1H), 8.09 – 8.00 (m, 2H), 7.97 (d, J = 8.8 Hz, 1H), 7.88 – 7.83 (m, 1H), 7.79 – 7.69 (m, 2H), 7.63 – 7.50 (m, 3H), 4.77 – 3.86 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (101

MHz, Chloroform-*d*) δ 145.8 (d, *J* = 8.6 Hz), 137.5 (d, *J* = 7.0 Hz), 134.5, 133.5 (d, *J* = 2.3 Hz), 130.3 (d, *J* = 9.0 Hz), 128.1 (d, *J* = 15.6 Hz), 127.7, 127.6, 127.1, 126.0 (d, *J* = 5.8 Hz), 124.4 (d, *J*

= 11.9 Hz), 124.3, 122.3 (d, J = 182.7 Hz), 122.3, 121.7, 117.4 (d, J = 12.4 Hz), 62.9 (d, J = 6.7 Hz), 16.4 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.80. HRMS (ESI): calcd for C₁₈H₁₆O₃P⁺ [M + H]⁺, 311.0832; found, 311.0830.

6-Ethoxy-3-fluorodibenzo[**c**,**e**][**1**,**2**]**oxaphosphinine 6-oxide (2h**): reaction time 3.7 h; $R_f = 0.4$ (PE: EA = 1:1); white solid (62%, 86.7 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.81 (m, 3H), 7.74 – 7.65 (m, 1H), 7.56 – 7.44 (m, 1H), 7.04 – 6.89 (m, 2H), 4.30 – 4.17 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.2 (d, J = 251.4 Hz), 150.8 (dd, J = 12.1, 7.6 Hz), 136.3 (d, J = 7.1 Hz), 133.6 (d, J = 2.8 Hz), 130.1 (d,

J = 9.4 Hz), 128.2 (d, J = 15.5 Hz), 126.7 (d, J = 9.7 Hz), 123.9 (d, J = 12.2 Hz), 121.6 (d, J = 182.1 Hz), 119.1 (dd, J = 11.9, 3.6 Hz), 112.2 (d, J = 21.5 Hz), 107.6 (dd, J = 24.8, 7.1 Hz), 63.2 (d, J = 6.6 Hz), 16.3 (d, J = 5.8 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.20; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -108.98 – -109.08 (m). HRMS (ESI): calcd for C₁₄H₁₃FO₃P⁺ [M + H]⁺, 279.0581; found, 279.0587.

3-Chloro-6-ethoxydibenzo[**c**,**e**][**1**,**2**]**oxaphosphinine 6-oxide (2i**): reaction time 3.8 h; $R_f = 0.4$ (PE: EA = 1:1); white solid (60%, 87.6 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (dd, J = 14.7, 7.6 Hz, 1H), 7.90 (t, J = 7.3Hz, 1H), 7.85 (dd, J = 9.1, 1.7 Hz, 1H), 7.72 (t, J = 8.1 Hz, 1H), 7.58 – 7.48 (m, 1H), 7.28 – 7.21 (m, 2H), 4.30 – 4.17 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.22 (d, J = 7.5 Hz), 136.08 (d, J =

7.0 Hz), 135.58, 133.59 (d, J = 2.7 Hz), 130.23 (d, J = 9.3 Hz), 128.57 (d, J = 15.4 Hz), 126.18, 125.07, 123.99 (d, J = 11.9 Hz), 122.21 (d, J = 167.3 Hz), 121.24 (d, J = 2.8 Hz), 120.41 (d, J = 6.9 Hz), 63.22 (d, J = 6.6 Hz), 16.35 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 9.93.

6-Ethoxy-3-methoxydibenzo[**c**,**e**][**1**,**2**]**oxaphosphinine 6-oxide** (**2j**): reaction time 1.7 h; $R_f = 0.3$ (PE: EA = 1:1); white solid (80%, 116.1 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (ddd, J = 14.6, 7.6, 1.5 Hz, 1H), 7.87 – 7.77 (m, 2H), 7.69 – 7.59 (m, 1H), 7.47 – 7.38 (m, 1H), 6.80 (dd, J = 8.8, 2.6 Hz, 1H), 6.74 (d, J = 2.6 Hz, 1H), 4.20 (dq, J = 9.0, 7.1 Hz, 2H),

3.83 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.3, 151.1 (d, J = 7.3 Hz), 137.1 (d, J = 7.3 Hz), 133.4 (d, J = 2.7 Hz), 130.0 (d, J = 9.3 Hz), 127.2 (d, J = 15.4 Hz), 126.1, 123.3 (d, J = 12.1 Hz), 121.1 (d, J = 181.4 Hz), 115.3 (d, J = 12.3 Hz), 111.4, 104.8 (d, J = 7.0 Hz), 62.9 (d, J = 6.6 Hz), 55.6, 16.3 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.76.

6-Ethoxy-3-(trifluoromethoxy)dibenzo[c,e][1,2]oxaphosphinine 6oxide (2k): reaction time 3.2 h; $R_f = 0.3$ (PE: EA = 1:1); yellow oil (68%, 116.4 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 7.87 (m, 3H), 7.78 – 7.69 (m, 1H), 7.59 – 7.49 (m, 1H), 7.19 – 7.08 (m, 2H), 4.33 – 4.19 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.5

 $(d, J = 7.3 \text{ Hz}), 149.9, 135.8 (d, J = 7.3 \text{ Hz}), 133.6 (d, J = 2.6 \text{ Hz}), 130.2 (d, J = 9.0 \text{ Hz}), 128.7 (d, J = 15.4 \text{ Hz}), 126.5, 124.1 (d, J = 12.3 \text{ Hz}), 122.2 (d, J = 162.8 \text{ Hz}), 121.2 (d, J = 7.3 \text{ Hz}), 120.3 (q, J = 258.6 \text{ Hz}), 116.8, 112.6 (d, J = 7.1 \text{ Hz}), 63.3 (d, J = 6.6 \text{ Hz}), 16.3 (d, J = 5.8 \text{ Hz}); ^{31}P \text{ NMR} (202)$

MHz, Chloroform-*d*) δ 9.90; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -57.86. HRMS (ESI): calcd for C₁₅H₁₃F₃O₄P⁺ [M + H]⁺, 345.0498; found, 345.0497..

6-Ethoxy-3-(trifluoromethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (**2l**): reaction time 18.0 h; $R_f = 0.4$ (PE: EA = 1:1); yellow oil (61%, 100.5 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 7.95 (m, 3H), 7.76 (t, J = 7.8 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.56 – 7.47 (m, 2H), 4.32 – 4.21 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8 (d, J = 7.5 Hz), 135.5 (d, J = 7.0 Hz), 133.7 (d, J = 2.6 Hz), 132.2 (q, J = 33.6 Hz),

130.3 (d, J = 8.9 Hz), 129.4 (d, J = 14.9 Hz), 126.0, 125.9 (d, J = 12.3 Hz), 123.2 (q, J = 273.6 Hz), 124.6 (d, J = 12.1 Hz), 122.9 (d, J = 182.0 Hz), 121.3 (d, J = 3.7 Hz), 117.5 (dq, J = 7.9, 4.0 Hz), 63.4 (d, J = 6.6 Hz), 16.3 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 9.45; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.91. HRMS (ESI): calcd for C₁₅H₁₃F₃O₃P⁺ [M + H]⁺, 329.0549; found, 329.0544.

1-(6-Ethoxy-6-oxidodibenzo[c,e][1,2]oxaphosphinin-3-yl)ethan-1-one (**2m**): reaction time 9.0 h; R_f = 0.25 (PE: EA = 1:1); white solid (40%, 59.8 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 7.95 (m, 3H), 7.84 (d, *J* = 8.3 Hz, 1H), 7.81 – 7.72 (m, 2H), 7.63 – 7.55 (m, 1H), 4.31 – 4.19 (m, 2H), 2.64 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ

196.4, 150.0 (d, J = 7.5 Hz), 138.5, 135.8 (d, J = 7.3 Hz), 133.6 (d, J = 2.5 Hz), 130.3 (d, J = 9.3 Hz), 129.4 (d, J = 15.4 Hz), 126.8 (d, J = 11.8 Hz), 125.6, 124.7 (d, J = 11.9 Hz), 124.2, 123.1 (d, J = 181.5 Hz), 120.1 (d, J = 7.0 Hz), 63.3 (d, J = 6.6 Hz), 26.7, 16.3 (d, J = 5.8 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 9.56. HRMS (ESI): calcd for C₁₆H₁₆O₄P⁺ [M + H]⁺, 303.0781; found, 303.0778.

5-Ethoxybenzo[c]thieno[2,3-e][1,2]oxaphosphinine 5-oxide (2n): reaction time 2.0 h; $R_f = 0.4$ (PE: EA = 1:1); yellow solid (29%, 38.8 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (ddd, J = 14.2, 7.6, 1.3 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.41 (tdd, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4, 1.8 Hz, 1H), 6.92 (d, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.10 (td, J = 7.6, 3.7, 1.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4, 1.8 Hz, 1H), 6.92 (d, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4, 1.8 Hz, 1H), 6.92 (d, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 1H), 7.26 (dd, J = 5.4 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.7, 1.1 Hz, 3.8 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.8 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.8 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.8 Hz, 1H), 4.23 (dq, J = 9.0, 7.1 Hz, 2H), 1.31 (t, J = 7.6, 3.8 Hz, 1H), 3.8 Hz, 1H), 3.8 Hz, 1H), 3.8 Hz, 1H), 3.8 Hz, 1H, 3.8 Hz, 1H), 3.8 Hz,

7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.5 (d, J = 7.8 Hz), 134.5 (d, J = 7.3 Hz), 133.6 (d, J = 2.8 Hz), 130.4 (d, J = 9.4 Hz), 127.4 (d, J = 15.5 Hz), 124.1, 123.1 (d, J = 11.0 Hz), 120.3 (d, J = 6.6 Hz), 118.5 (d, J = 183.4 Hz), 118.5 (d, J = 13.4 Hz), 63.1 (d, J = 6.7 Hz), 16.3 (d, J = 6.0 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 13.2.

6-Ethoxy-9-fluoro-3-methoxydibenzo[**c**,**e**][**1**,**2**]**oxaphosphinine 6-oxide** (**2o**): reaction time 2.0 h; $R_f = 0.3$ (PE: EA = 1:1); white solid (81%, 124.8 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (ddd, J = 14.4, 8.5, 6.0 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.51 (ddd, J = 10.6, 5.2, 2.3 Hz, 1H), 7.14 (tt, J = 8.3, 2.6 Hz, 1H), 6.83 (dd, J = 8.8, 2.6 Hz, 1H), 6.75 (d, J = 2.6 Hz, 1H), 4.22 (dq, J = 9.0, 7.1 Hz, 2H), 3.86 (s, 3H),

1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.1 (dd, *J* = 252.6, 3.6 Hz), 161.9, 151.4 (d, *J* = 7.3 Hz), 140.4 (t, *J* = 8.8 Hz), 132.9 (t, *J* = 10.1 Hz), 126.3, 117.2 (dd, *J* = 186.3, 3.0

Hz), 114.8 (dd, J = 22.0, 16.6 Hz), 114.5 (d, J = 2.8 Hz), 111.6, 110.3 (dd, J = 23.4, 13.3 Hz), 104.9 (d, J = 7.3 Hz), 63.0 (d, J = 6.5 Hz), 55.7, 16.3 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 10.24; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -103.86 – -103.95 (m). HRMS (ESI): calcd for C₁₅H₁₅FO₄P⁺ [M + H]⁺, 309.0686; found, 309.0683.

6-Ethoxy-3-methoxy-8-methyldibenzo[c,e][1,2]oxaphosphinine **6-oxide (2p)**: reaction time 2.0 h; $R_f = 0.3$ (PE: EA = 1:1); white solid (64%, 97.4 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.68 (m, 3H), 7.45 (d, J = 8.2 Hz, 1H), 6.79 (dd, J = 8.8, 2.6 Hz, 1H), 6.73 (d, J = 2.6 Hz, 1H), 4.20 (dq, J = 8.9, 7.1 Hz, 2H), 3.83 (s, 3H), 2.41 (s, 3H),

1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.9, 150.8 (d, J = 7.4 Hz), 137.4 (d, J = 15.3 Hz), 134.4, 134.4 (d, J = 2.9 Hz), 130.2 (d, J = 9.4 Hz), 125.8, 123.3 (d, J = 13.1 Hz), 120.8 (d, J = 180.5 Hz), 115.4 (d, J = 12.4 Hz), 111.3, 104.8 (d, J = 7.2 Hz), 62.8 (d, J = 6.6 Hz), 55.6, 21.0, 16.3 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 11.21. HRMS (ESI): calcd for C₁₆H₁₈O₄P⁺ [M + H]⁺, 305.0937; found, 305.0941..

6-Ethoxy-3-methoxy-9-

(trifluoromethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (2q): reaction time 3.0 h; $R_f = 0.3$ (PE: EA = 1:1); white solid (48%, 85.3 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 8.01 (m, 2H), 7.86 (d, *J* = 8.9 Hz, 1H), 7.71 – 7.66 (m, 1H), 6.86 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.77 (d,

J = 2.6 Hz, 1H), 4.33 – 4.19 (m, 2H), 3.87 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.0, 151.3 (d, *J* = 7.8 Hz), 138.1 (d, *J* = 7.4 Hz), 135.1 (qd, *J* = 32.3, 2.7 Hz), 130.9 (d, *J* = 9.6 Hz), 126.3, 124.7 (d, *J* = 181.3 Hz), 123.5 (dq, *J* = 15.9, 3.6 Hz), 123.5 (q, *J* = 273.1 Hz), 120.2 (dq, *J* = 11.8, 3.8 Hz), 114.4 (d, *J* = 11.8 Hz), 111.9, 105.0 (d, *J* = 6.9 Hz), 63.4 (d, *J* = 6.6 Hz), 55.7, 16.3 (d, *J* = 5.8 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 8.46; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -63.42. HRMS (ESI): calcd for C₁₆H₁₅F₃O₄P⁺ [M + H]⁺, 359.0655; found, 359.0657..

8-Chloro-6-ethoxy-3-methoxydibenzo[c,e][1,2]oxaphosphinine 6oxide (2r): reaction time 2.1 h; $R_f = 0.3$ (PE: EA = 1:1); white solid (52%, 84.5 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, J = 15.1 Hz, 1H), 7.76 (ddd, J = 8.8, 6.6, 2.3 Hz, 2H), 7.60 (dt, J = 8.7, 2.4 Hz, 1H), 6.82 (d, J = 8.9 Hz, 1H), 6.74 (s, 1H), 4.31 – 4.16 (m, 2H), 3.85 (s, 1H), 1.30

(t, J = 7.0 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.6, 150.9 (d, J = 7.5 Hz), 135.6 (d, J = 6.7 Hz), 133.5 (d, J = 2.8 Hz), 133.3 (d, J = 21.0 Hz), 129.8 (d, J = 10.2 Hz), 126.1, 125.0 (d, J = 13.7 Hz), 122.8 (d, J = 181.2 Hz), 114.6 (d, J = 11.7 Hz), 111.7, 104.9 (d, J = 6.9 Hz), 63.3 (d, J = 6.6 Hz), 55.7, 16.4 (d, J = 5.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 8.74. HRMS (ESI): calcd for C₁₅H₁₅ClO₄P⁺ [M + H]⁺, 325.0391; found, 325.0398.

8-Chloro-6-ethoxydibenzo[c,e][1,2]oxaphosphinine 6-oxide (2s): reaction time 3.2 h; $R_f = 0.4$ (PE: EA = 1:1); white solid (73%, 107.2 mg); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (dd, J = 15.1, 2.3 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.64 (dd, J = 8.6, 2.3 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.30 – 7.20 (m, 2H), 4.29 – 4.18 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 149.7 (d, *J* = 8.0 Hz), 135.3 (d, *J* = 6.4 Hz), 134.5 (d, *J* = 20.7 Hz), 133.6 (d, *J* = 2.9 Hz), 130.8, 129.8 (d, *J* = 10.2 Hz), 125.8 (d, *J* = 13.4 Hz), 125.2, 124.9, 124.2 (d, *J* = 181.2 Hz), 121.8 (d, *J* = 11.7 Hz), 120.2 (d, *J* = 6.6 Hz), 63.3 (d, *J* = 6.6 Hz), 16.3 (d, *J* = 5.8 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 8.03. HRMS (ESI): calcd for C₁₄H₁₃ClO₃P⁺ [M + H]⁺, 295.0285; found, 295.0285.

4. CV measurements

Cyclic voltammetry of **1a** (0.001 M), **1j** (0.001 M), **1a** (0.001 M with ca. 5 equiv NaOH) and **1a'** (0.001 M) in CH₃CN with LiClO₄ (0.1 M) using platinum wires as working and counter electrodes and SCE as reference electrodes at a scan rate of 50 mV/s.

5. Detection of H₂ by GC Analysis

数据文件: C:\Chem32\1\Data\CY\z1-h2 2018-06-20 19-37-03.D 样品名称: z1-h2

外标法报告

推序	信号		

11F/T*		1百 5			
乘积因子		:	1.0000		
稀释因子		:	1.0000		
样品量:		:	1.00000	[m1]	(校正中没有使用)
内标中不使用乘积因	子和稀释因	子			

6. References

(a) Shin, S.; Kang, D.; Jeon, W. H.; Lee, P. H. *Beilstein Journal of Organic Chemistry* **2014**, *10*, 1220-1227; (b) Kendall, A. J.; Salazar, C. A.; Martino, P. F.; Tyler, D. R. *Organometallics* **2014**, *33*, 6171-6178; (c)
Park, Y.; Jeon, I.; Shin, S.; Min, J.; Lee, P. H. *The Journal of Organic Chemistry* **2013**, *78*, 10209-10220.
Becht, J.-M.; Ngouela, S.; Wagner, A.; Mioskowski, C. Tetrahedron **2004**, *60*, 6853-6857.

7. NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

170 160 $\dot{70}$ o -10 f1 (ppm)

-120 -140 -160 -180 -2 :00 0 f1 (ppm) 180 -80 -100 160 140 120 100 80 60 40 20 -20 -40 -60

6-Ethoxy-4-methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (2c1)

100 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

200 -2 0 -20 f1 (ppm) 80 60 40 -60 -80 -100 -120 -140 -160 -180 180 160 140 120 100 20 -40

6-Ethoxy-3-phenyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (2e)

100 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

f1 (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

l0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

:00 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

110 100 90 f1 (ppm)

:00 -100 -120 -140 -160 -180 -2 f1 (ppm) -40 -60 -80 -20

— 9.928

100 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

110 100 90 f1 (ppm)

100 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

110 100 f1 (ppm) $\frac{1}{70}$ -10 $\dot{40}$

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$-162.05 \\ < 5151.20 \\ < 151.22 \\ < 138.15 \\ < 138.15 \\ < 138.35.27 \\ < 138.35.27 \\ < 138.35.27 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.35.27 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49 \\ < 138.49$

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)

8-Chloro-6-ethoxy-3-methoxydibenzo[c,e][1,2]oxaphosphinine 6-oxide (2r)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -2 f1 (ppm)