## Support information

## The confined space electron transfer enhances phosphotungstate intercalated ZnAl-LDHs for photocatalytic oxidation/extraction desulfurization of fuel oil with air

Yingjie Cai, Hongyan Song<sup>\*</sup>, Zhe An, Xu Xiang, Xin Shu, Jing He<sup>\*</sup>

State key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

\* Corresponding author: <u>songhy@mail.buct.edu.cn</u>; <u>hejing@mail.buct.edu.cn</u>

| Catalyst                                                                                                         |      | Wt % |      |      |      |      |  |
|------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|--|
|                                                                                                                  |      | Al   | Р    | W    | Ν    | Н    |  |
| Zn <sub>0.66</sub> Al <sub>0.34</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.34</sub> • 2.3H <sub>2</sub> O | 28.8 | 6.1  | -    | -    | 3.2  | 4.44 |  |
| $Zn_{0.63}Al_{0.37}(OH)_2(PW_{12}O_{40})_{0.04}(NO_3)_{0.25} \bullet 2.1H_2O$                                    | 22.8 | 5.5  | 0.63 | 45.4 | 1.38 | 2.45 |  |
| $Zn_{0.64}Al_{0.36}(OH)_2(PW_{12}O_{40})_{0.06}(NO_3)_{0.19} \bullet 2.6H_2O$                                    | 20.3 | 4.7  | 0.75 | 54.5 | 0.98 | 2.27 |  |
| $Zn_{0.63}Al_{0.37}(OH)_2(PW_{12}O_{40})_{0.07}(NO_3)_{0.16} \bullet 1.7H_2O$                                    | 15.3 | 3.7  | 0.87 | 61.6 | 0.81 | 1.65 |  |

Table S1 Elemental composition of different proportions of ZnAl-PW<sub>12</sub>O<sub>40</sub>.

| Table S2 Asymmetric vibration bands position in FT-IR spectra |      |      |           |                     |                     |  |  |  |
|---------------------------------------------------------------|------|------|-----------|---------------------|---------------------|--|--|--|
| Samples                                                       | N-O  | P-Oa | $W = O_d$ | W-O <sub>b</sub> -W | W-O <sub>C</sub> -W |  |  |  |
| $H_{3}PW_{12}O_{40}$                                          | -    | 1086 | 987       | 895                 | 803                 |  |  |  |
| ZnAl-(PW12O40)0.07-LDHs                                       | 1384 | 1064 | 960       | 895                 | 803                 |  |  |  |
| ZnAl-(PW12O40)0.06-LDHs                                       | 1384 | 1064 | 961       | 895                 | 804                 |  |  |  |
| ZnAl-NO <sub>3</sub> -LDHs                                    | 1384 | -    | -         | -                   | -                   |  |  |  |

\_ \_ \_ \_ \_ \_ \_ 



Fig. S1 Schematic illustration of the PODS reactor (1-cooling water, 2- air inlet, 3- stirrer, 4-reaction liquid, 5-mercury lamp, 6- condenser, 7-air outlet)

 Table S3 Electron binding energy of related elements.

| Samples                    | Zn2p <sub>1/2</sub> | Zn2p <sub>3/2</sub> | Al2p <sub>3/2</sub> | W4f <sub>7/2</sub> | W4f <sub>5/2</sub> |
|----------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|
| ZnAl-NO <sub>3</sub> -LDHs | 1045.0              | 1021.9              | 74.3                | -                  | -                  |
| ZnAl-(PW12O40)0.07-LDHs    | 1045.6              | 1022.5              | 74.7                | 35.9               | 37.9               |
| $H_3PW_{12}O_{40}$         | -                   | -                   | -                   | 36.3               | 38.4               |



**Fig. S2** Experimental results of catalyst adsorption Condition: 500ppm oil(90 mL), catalyst dosage 1g/L



Fig. S3. GC–MS analysis of the acetonitrile phase after reaction.



Fig. S4. Mott-Schottky plots of LDHs, measured in 1 kHz at room temperature in the dark, Solution: 0.1 M NaSO<sub>4</sub>.