List of Contents

1)	General information and Materials	S2
2)	Optimization of the iron-catalyzed oxidation of 1a	
3)	Characterization data of alkenes	S4
4)	General procedure for the oxidative cleavage of alkenes	S11
5)	Characterization data of products	S11
6)	Synthesis of 45 , 46 , 47	S26
7)	Radical Inhition Experiments	S28
8)	Radical Clock Experiment	S28
9)	Cyclic Voltammetry Studies	S29
10)	Electron Paramagnetic Resonance (EPR) Experiments	
11)	Mechaistic studies	S29
12)	References	
13)	Copies of ¹ H NMR, and ¹³ C NMR spectra of Alkenes	S34
14)	Copies of ¹ H NMR, and ¹³ C NMR spectra of Products	

General information: ¹H NMR ad ¹³C NMR spectra were recorded on an Agilent 400MR or 600MR DD2 spectrometer at ambient temperature. Chemical shifts (δ) are reported in ppm, ad coupling constats (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹H NMR using mesitylene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise. MeCN, DCM and Toluene were distilled under reduced pressure from CaH₂. 1,4-Dioxane and THF were distilled from sodium and benzophenone before use.

Table S1. Optimization of the Iron-Catalyzed Oxidation of 2-Phenyl-1-propene 1a.^{*a*}

	8	^ · · · ·	Fe	(SH)	0	
	Ph + O_2		MeCN, 80 °C		Ph 1	
		-			-	
entry	[Fe]	[Thiol]	Temperature	Oxidant	Solvent (mL)	1 yield (%) ^b
1	Fe(OTf) ₂	S1	80 °C	O_2	MeCN (0.5)	30
2	Fe(ClO ₄) ₂	S1	80 °C	O_2	MeCN (0.5)	32
3	FeCl ₂	S2	80 °C	O_2	MeCN (0.5)	19
4	Fe(ClO ₄) ₂	S2	80 °C	O_2	MeCN (0.5)	44
5	Fe1	S2	80 °C	O_2	MeCN (0.5)	44
6	Fe(OTf) ₂	S3	80 °C	O_2	MeCN (0.5)	38
7	$Fe(ClO_4)_2$	S 3	80 °C	O_2	MeCN (0.5)	31
8	Fe4	S 3	80 °C	O_2	MeCN (0.5)	38
9	Fe4	<i>S3</i>	80°C	O_2	MeCN (0.5)	<i>39</i> ^c
10	Fe(OTf) ₂	S4	80 °C	O_2	MeCN (0.5)	40
11	Fe1	S4	80 °C	O_2	MeCN (0.5)	45
12	Fe2	S4	80 °C	O_2	MeCN (0.5)	67
13	Fe3	S4	80 °C	O_2	MeCN (0.5)	64
14	Fe4	<i>S4</i>	80°C	O ₂	MeCN (0.5)	85 (81)
15	Fe1	PhSH	80 °C	O_2	MeCN (0.5)	33
16	Fe2	PhSH	80 °C	O_2	MeCN (0.5)	67
17	Fe4	PhSH	80 °C	O_2	MeCN (0.5)	72
18	Fe4	S4	80 °C	O_2	MeCN (2.0)	71
19	Fe4	S4	60 °C	O_2	MeCN (0.5)	71
20	Fe4	S4	40 °C	O_2	MeCN (0.5)	19
21	Fe4	S4	rt	O_2	MeCN (0.5)	16
22	Fe4	S4	80 °C	air	MeCN (0.5)	40
23	Fe4	S4	80 °C	Ar	MeCN (0.5)	nd
24	Fe4	S4	80 °C	O_2	DCE (0.5)	70
25	Fe4	S4	80 °C	O_2	Toluene (0.5)	65
26	Fe4	S4	80 °C	O_2	Acetone (0.5)	53
27	Fe1	none	80 °C	O_2	MeCN (0.5)	29
28	Fe4	none	80 °C	O_2	MeCN (0.5)	trace
29	Fe(OTf) ₂	none	80 °C	O_2	MeCN (0.5)	< 5
30	$Fe(ClO_4)_2$	none	80 °C	O_2	MeCN (0.5)	15

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), O₂ (1 atm), [Fe] (0.03 mmol, 0.1 equiv), thiol (0.03 mmol, 0.1 equiv), MeCN (0.5 mL), 80 °C, 15 h. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard. The isolated yield is shown in parentheses. ^{*c*}[Fe] (0.03 mmol, 0.1 equiv), thiol (0.06 mmol, 0.2 equiv), MeCN (0.5 mL), 80 °C, 15 h.

Characterization data of alkenes

1-(Allyloxy)-4-((3-methylbut-2-en-1-yl)oxy)benzene (29a)

4-(Allyloxy)phenol (1.50 g, 10 mmol, 1.0 equiv) and K_2CO_3 (2.76 g, 20 mmol, 2.0 equiv) was added to a 50 ml of Schlenk tube under N₂, then acetone (10 mL) and 3,3-Dimethylallyl bromide (1.79 g, 12 mmol, 1.2 equiv) was injected by syringe. This mixture was heated to 80 °C and allowed to react for 5 h. The reaction mixture was filtered and the solvents removed in vacuo, the reaction crude was purified with silica gel chromatography (Petroleum ether/EtOAc = 40:1) to provide the product (1.53 g, 70% yield) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 4 H), 6.09-5.99 (m, 1 H), 5.51-5.46 (m, 1 H), 5.42-5.36 (m, 1 H), 5.28-5.24 (m, 1 H), 4.49-4.44 (m, 4 H), 1.78 (s, 3 H), 1.72 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 152.7, 137.9, 133.6, 119.9, 117.4, 115.6, 115.5, 69.5, 65.3, 25.8, 18.1. HRMS: Calculated for C₁₄H₁₈O₂ (M+Na)⁺: 241.1199; Found: 241.1203.

1-Allyl-4-(prop-1-en-2-yl)benzene (30a) ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.4 Hz, 2 H), 6.06-5.96 (m, 1 H), 5.39 (s, 1 H), 5.16-5.11 (m, 1 H), 5.11-5.08 (m, 2 H), 3.43 (d, J = 6.8 Hz, 2 H), 2.19 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 139.3, 139.1, 137.3, 128.4, 125.5, 115.8, 111.8, 39.8, 21.8. HRMS: Calculated for C₁₂H₁₄ (M⁺): 158.1096; Found:158.1092.

1-(Allyloxy)-4-(prop-1-en-2-yl)benzene (31a) ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.8 Hz, 2 H), 6.89 (d, J = 8.8 Hz, 2 H), 6.12-6.03 (m, 1 H), 5.46-5.41 (m, 1 H), 5.32-5.29 (m, 2 H), 5.01-5.00 (m, 1 H), 4.57-4.55 (m, 2 H), 2.15 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 142.5, 133.8, 133.2, 126.5, 117.7, 114.3, 110.7, 68.8, 21.9. HRMS: Calculated for C₁₂H₁₄O (M+H)⁺: 175.1117; Found: 175.1121.

1-(But-3-en-1-yloxy)-4-(prop-1-en-2-yl)benzene (32a) ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.8 Hz, 2 H), 6.88 (d, J = 8.8 Hz, 2 H), 5.98-5.88 (m, 1 H), 5.31 (s, 1 H), 5.22-5.12 (m, 2 H), 5.01 (s, 1 H), 4.04 (t, J = 6.8 Hz, 2 H), 2.60-2.54 (m, 2 H), 2.15 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 142.5, 134.4, 133.7, 126.5, 117.0, 114.2, 110.6, 67.2, 33.6, 21.9. HRMS: Calculated for C₁₃H₁₆O (M+H)⁺: 189.1273; Found: 189.1277.

1-(Cyclohex-2-en-1-yloxy)-4-(prop-1-en-2-yl)benzene (33a) ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2 H), 6.89 (d, *J* = 8.4 Hz, 2 H), 6.00-5.96 (m, 1 H), 5.90-5.86 (m, 1 H), 5.29 (s, 1 H), 4.99 (s, 1 H), 4.83-4.79 (m, 1 H), 2.14 (s, 3 H), 2.08-1.80 (m, 5 H), 1.69-1.60 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 142.5, 133.6, 132.1, 126.6, 126.3, 115.4, 110.5, 70.9, 28.3, 25.1, 21.9, 19.0. HRMS: Calculated for C₁₅H₁₈O (M+H)⁺: 215.1430; Found: 215.1434.

1-((3-Methylbut-2-en-1-yl)oxy)-3-(prop-1-en-2-yl)benzene (34a) ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, J = 8.0 Hz, 1 H), 7.09-7.06 (m, 1 H), 7.04 (m, 1 H), 6.86 (dd, J = 8.0, J = 2.4 Hz, 1 H), 5.56-5.51 (m, 1 H), 5.38 (s, 1 H), 5.10 (s, 1 H), 4.55 (d, J = 6.4 Hz, 2 H), 2.16 (s, 3 H), 1.82 (s, 3 H), 1.78 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 143.2, 142.7, 138.1, 129.1, 119.8, 118.0, 113.3, 112.5, 112.4, 64.7, 25.8, 21.8, 18.2. HRMS: Calculated for C₁₄H₁₈O (M⁺): 202.1358; Found: 202.1364.

4-Chloro-1-(pent-4-en-1-yloxy)-2-(prop-1-en-2-yl)benzene (35a) ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1 H), 7.17-7.15 (m, 1 H), 6.77 (d, J = 8.0 Hz, 1 H), 5.90-5.90 (m, 1 H), 5.15 (m, 1 H), 5.08 (m, 1 H), 5.08-5.04 (m, 1 H), 4.99 (d, J = 8.4 Hz, 1 H), 3.96 (t, J = 6.4 Hz, 2 H), 2.27-2.11 (m, 2 H), 2.11 (s, 3 H), 1.93-1.86 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 143.1, 137.6, 134.4, 129.2, 127.7, 125.1, 115.8, 115.3, 113.0, 67.8, 30.2, 28.4, 23.0. HRMS: Calculated for C₁₄H₁₇ClO (M⁺): 236.0968; Found: 236.0977.

1,3-Dibromo-2-(pent-4-en-1-yloxy)-5-(prop-1-en-2-yl)benzene (36a) ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 2 H), 5.94-5.84 (m, 1 H), 5.30 (s, 1 H), 5.12-5.07 (m, 1 H), 5.09 (s, 1 H), 5.02-4.99 (d, *J* = 10.0 Hz, 1 H), 4.01 (t, *J* = 6.4 Hz, 2 H), 2.35-2.29 (m, 2 H), 2.07 (s, 3 H), 2.00-1.93 (m, 2 H). ¹³C

NMR (100 MHz, CDCl₃) δ 152.5, 140.4, 139.7, 138.0, 129.7, 118.1, 115.0, 114.0, 72.9, 30.1, 29.3, 21.6. HRMS: Calculated for C₁₄H₁₆Br₂O (M+Na)⁺: 380.9460; Found: 380.9462.

Allyldimethyl((4-(prop-1-en-2-yl)phenoxy)methyl)silae (37a) ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.8 Hz, 2 H), 6.91 (d, *J* = 8.8 Hz, 2 H), 5.87-5.77 (m, 1 H), 5.28 (s, 1 H), 4.98 (m, 1 H), 4.93-4.85 (m, 2 H), 3.61 (s, 2 H), 2.13 (s, 3 H), 1.70 (d, *J* = 8.0, 2 H), 0.15 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 142.7, 134.2, 133.4, 126.4, 113.7, 113.5, 110.4, 59.6, 21.9, 21.5, -5.1. HRMS: Calculated for C₁₅H₂₂OSi (M+H)⁺: 247.1512; Found: 247.1518.

Allyl (3-(prop-1-en-2-yl)phenyl) carbonate (38a) ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 2 H), 7.26 (s, 1 H), 7.12-7.06 (m, 1 H), 6.06-5.96 (m, 1 H), 5.44 (dd, J = 17.6, J = 1.2 Hz, 1 H), 5.39 (s, 1 H), 5.34 (dd, J = 10.4, J = 1.2 Hz, 1 H), 5.12 (s, 1 H), 4.75 (d, J = 6.0 Hz, 2 H), 2.14 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 151.0, 142.9, 142.1, 131.1, 129.2, 123.2, 119.9, 119.6, 118.2, 113.5, 69.2, 21.7. HRMS: Calculated for C₁₃H₁₄O₃ (M+H)⁺: 219.1015; Found: 219.1019.

4-(Prop-1-en-2-yl)phenyl undec-10-enoate (39a) ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2 H), 7.03 (d, J = 8.4 Hz, 2 H), 5.87-5.76 (m, 1 H), 5.34 (s, 1 H), 5.08 (s, 1 H), 5.01 (d, J = 16.4 Hz, 1 H), 4.93 (d, J = 10.4 Hz, 1 H), 2.55 (t, J = 7.6 Hz, 2 H), 2.14 (s, 3 H), 2.05 (q, J = 7.6 Hz, 2 H), 1.79-1.71 (m, 2 H), 1.42-1.25 (m, 10 H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 150.0, 142.4, 139.2, 138.8, 126.5, 121.2, 114.1, 112.6, 34.4, 33.8, 29.3, 29.2, 29.1, 29.0, 28.9, 24.9, 21.9. HRMS: Calculated for C₂₀H₂₈O₂ (M+Na)⁺: 323.1981; Found: 323.1985.

1-(But-2-yn-1-yloxy)-3-(prop-1-en-2-yl)benzene (40a) ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 8.4, 1 H), 7.10-7.07 (m, 2 H), 6.88 (dd, J = 8.4, J = 6.0 Hz, 1 H), 5.37 (s, 1 H), 5.08 (s, 1 H), 4.66 (dd, J = 4.8, J = 2.4 Hz, 2 H), 2.14 (s, 3 H), 1.87 (t, J = 2.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 143.0, 142.7, 129.0, 118.6, 113.4, 112.7, 112.6, 83.7, 74.0, 56.4, 21.8, 3.6. HRMS: Calculated for C₁₃H₁₄O (M+H)⁺: 187.1117; Found: 187.1121.

2-Fluoro-4-(prop-1-en-2-yl)-1-(prop-2-yn-1-yloxy)benzene (41a) ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.17 (m, 2 H), 7.05 (t, J = 8.4 Hz, 2 H), 5.31 (s, 1 H), 5.05 (s, 1 H), 4.77 (d, J = 2.4 Hz, 2 H), 2.54 (t, J = 2.4 Hz, 1 H), 2.11 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 152.4 (J = 245.0 Hz), 144.6 (J = 11.0 Hz), 141.4 (J = 2.0 Hz), 135.8 (J = 7.0 Hz), 121.0 (J = 3.0 Hz), 115.4 (J = 2.0 Hz), 113.6 (J = 18.0 Hz), 112.2, 78.0, 76.2, 57.1, 21.6. HRMS: Calculated for C₁₂H₁₁FO (M⁺): 190.0794; Found: 190.0788.

Trimethyl(3-(4-(prop-1-en-2-yl)phenoxy)prop-1-yn-1-yl)silae (42a) ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.8 Hz, 2 H), 6.94 (d, J = 8.8 Hz, 2 H), 5.31 (s, 1 H), 5.01 (s, 1 H), 4.68 (s, 2 H), 2.14 (s, 3 H), 0.19 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 142.4, 134.3, 126.5, 114.5, 110.9, 100.0, 92.7, 56.7, 21.9, -0.2. HRMS: Calculated for C₁₅H₂₀OSi (M+H)⁺: 245.1356; Found: 245.1359.

1-((6,6-Dimethylhept-2-en-4-yn-1-yl)oxy)-4-(prop-1-en-2-yl)benzene (43a) ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 2 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.23-6.16 (m, 1 H), 5.87-5.82 (m, 1 H), 5.29 (s, 1 H), 5.00 (m, 1 H), 4.57 (dd, J = 5.6, J = 1.6 Hz, 2 H), 2.13 (s, 3 H), 1.25 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 142.5, 135.8, 134.0, 126.6, 114.3, 113.3, 110.8, 100.1, 67.8, 30.9, 27.9, 21.9. HRMS: Calculated for C₁₈H₂₂O (M+H)⁺: 255.1743; Found: 255.1748.

Hepta-1,6-dien-2-ylbenzene (44a)

To a solution of the α -bromomethyl styrenes (985 mg, 5 mmol, 1.0 equiv) in THF (20 mL) was added 0.5 M solution of 3-Butenylmagnesium bromide in THF (30 mL, 15 mmol, 3 equiv) at room temperature. The reaction mixture was stirred at room temperature overnight, before it was quenched by adding sat. aq. NH₄Cl solution. Then the aqueous solution was extracted with diethyl ether three times. The combined orgaic phases were washed with sat. aq. NaHCO₃ solution and brine, dried over Na₂SO₄, filtered and removed in vacuo. The reaction crude was purified with silica gel chromatography (Petroleum ether/EtOAc = 40:1) to provide the product (440 mg, 51% yield) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2 H), 7.40-7.36 (m, 2 H), 7.33-7.29 (m, 1 H), 5.91-5.81 (m, 1 H), 5.33 (m, 1 H), 5.12 (m, 1 H), 5.08-5.04 (m, 1 H), 5.02-5.00 (m, 1 H), 2.57 (t, *J* = 7.6 Hz, 2 H), 2.14 (dd, *J* = 14.8, *J* = 7.2 Hz, 2 H), 1.65-1.57 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 141.3, 138.6, 128.2, 127.3, 126.1, 114.7, 112.3, 34.7, 33.3, 27.4. HRMS: Calculated for C₁₃H₁₆ (M⁺): 172.1252; Found: 172.1256.

2-Phenyl-6-(prop-1-en-2-yl)chroma-4-one (45a) This compound was synthesized via crosscoupling according to the literature.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 2.4 Hz, 1 H), 7.68 (dd, *J* = 8.4, *J* = 2.4 Hz, 1 H), 7.51-7.38 (m, 5 H), 7.03 (d, *J* = 8.4 Hz, 1 H), 5.49 (dd, *J* = 13.2, *J* = 2.8 Hz, 1 H), 5.38 (s, 1 H), 5.09 (s, 1 H), 3.10 (dd, *J* = 16.8, *J* = 13.2 Hz, 1 H), 2.91 (dd, *J* = 16.8, *J* = 2.8 Hz, 1 H), 2.16 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 160.9, 141.6, 138.6, 134.6, 133.4, 128.89, 128.85, 126.1, 123.5, 120.2, 118.0, 112.2, 79.6, 44.6, 21.8. HRMS: Calculated for C₁₈H₁₆O₂ (M+H)⁺: 265.1223; Found: 265.1227.

(8R,9S,13S,14S)-13-Methyl-3-(prop-1-en-2-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-

cyclopenta[*a*]**phenathren-17-one (46a)** This compound was synthesized via cross-coupling according to the literature.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 2 H), 7.19 (s, 1 H), 5.32 (s, 1 H), 5.03 (s, 1 H), 2.92 (dd, J = 9.2, J = 4.4 Hz, 2 H), 2.53-2.40 (m, 2 H), 2.33-2.27 (m, 1 H), 2.18-1.94 (m, 7 H), 1.68-1.40 (m, 6 H), 1.90 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 220.8, 143.0, 139.0, 138.8, 136.2, 126.1, 125.2, 123.0, 111.8, 50.5, 48.0, 44.4, 38.2, 35.8, 31.6, 29.5, 26.6, 25.7, 21.8, 21.6, 13.8. HRMS: Calculated for C₂₁H₂₆O (M+Na)⁺:317.1875; Found: 317.1879.

Isopropyl 2-(4-(1-(4-chlorophenyl)vinyl)phenoxy)-2-methylpropaoate (47a) This compound was synthesized via methylenation of the Fenofibrate. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 4 H), 7.17 (d, *J* = 8.8 Hz, 2 H), 6.78 (d, *J* = 8.8 Hz, 2 H), 5.38 (s, 1 H), 5.32 (s, 1 H), 5.13-5.03 (m, 1 H),

1.60 (s, 6 H), 1.21 (d, J = 6.0 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 155.4, 148.3, 140.1, 134.3, 133.4, 129.6, 128.8, 128.2, 118.2, 113.6, 79.0, 69.0, 25.3, 21.5. HRMS: Calculated for C₂₁H₂₃ClO₃ (M+H)⁺: 359.1408; Found: 359.1410.

General procedure for the oxidative cleavage of alkenes

To a 25 ml of Schlenk tube was added **1,1'-bis(diphenylphosphino)ferrocene (dppf)** (16.6 mg, 0.03 mmol, 0.1 equiv) and **bismuththiol** (4.5 mg, 0.03 mmol, 0.1 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then alkenes (0.30 mmol, 1 equiv) and freshly distilled MeCN (0.5 mL) were added. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The mixture was concentrated, and the residue was purified with silica gel chromatography to give product.

Characterization data of products

Acetophenone (1) The product (29 mg, 81% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (d, *J* = 7.6 Hz, 2 H), 7.55(t, *J* = 7.6 Hz, 1 H), 7.45 (t, *J* = 8.0 Hz, 2 H), 2.60 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 137.1, 133.0, 128.5, 128.2, 26.5. HRMS Calculated for C₈H₈O (M⁺): 120.0575; Found: 120.0574

1-(4-Cyclohexylphenyl)etha-1-one (2) The product (46 mg, 76% yield) as a white solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.87 (d, *J* = 8.4 Hz, 2 H), 7.29 (d, *J* = 8.4 Hz, 2 H), 2.57 (s, 3 H),

1.90-1.74 (m, 5 H), 1.48-1.23 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 153.7, 135.0, 128.5, 127.0, 44.7, 34.1, 26.7, 26.5, 26.0. HRMS: Calculated for C₁₄H₁₈O (M+Na)⁺: 225.1249; Found: 225.1248.

1-(4-(2-Phenylpropa-2-yl)phenyl)etha-1-one (3) The product (57 mg, 79% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 6.8, 2 H), 7.33 (d, *J* = 6.8, 2 H), 7.30-7.25 (m, 2 H), 7.22-7.17 (m, 3 H), 2.57 (s, 3 H), 1.71 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 156.3, 149.6, 134.6, 128.19, 128.15, 127.0, 126.6, 125.9, 43.2, 30.4, 26.5. HRMS: Calculated for C₁₇H₁₈O (M+H)⁺: 239.1430; Found: 239.1434.

1-(4-Methoxyphenyl)etha-1-one (4) The product (36 mg, 80% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 2 H), 6.92 (d, *J* = 8.4 Hz, 2 H), 3.85 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 163.4, 130.5, 130.3, 113.6, 55.4, 26.3. HRMS: Calculated for C₉H₁₀O₂ (M+Na)⁺: 173.0573; Found: 173.0571.

1-(3-Methoxyphenyl)etha-1-one (5) The product (34 mg, 75% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1 H), 7.47 (m, 1 H), 7.36 (t, *J* = 8.0 Hz, 1 H), 7.12-7.09 (m, 1 H), 3.85 (s, 3 H), 2.59 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 159.8, 138.5,

129.5, 121.1, 119.5, 112.3, 55.4, 26.7. HRMS: Calculated for C₉H₁₀O₂ (M+Na)⁺: 173.0573; Found: 173.0576.

1-(2-Methoxyphenyl)etha-1-one (6) The product (23 mg, 50% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0, *J* = 1.6 Hz, 1 H), 7.48-7.44 (m, 1 H), 7.01-6.96 (m, 2 H), 3.91 (s, 3 H), 2.61 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 158.9, 133.6, 130.3, 128.3, 120.5, 111.5, 55.4, 31.8. HRMS: Calculated for C₉H₁₀O₂ (M+Na)⁺: 173.0573; Found: 173.0575.

Methyl 4-acetylbenzoate (7) The product (43 mg, 81% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4, 2 H), 7.98 (d, *J* = 8.4, 2 H), 3.93 (s, 3H), 2.62 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 166.1, 140.2, 133.8, 129.7, 128.1, 52.4, 26.8. HRMS: Calculated for C₁₀H₁₀O₃ (M+H)⁺: 179.0702; Found: 179.0706.

1-(4-(Trifluoromethyl)phenyl)etha-1-one (8) The product (39 mg, 70% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2 H), 7.72 (d, *J* = 8.0 Hz, 2 H), 2.64 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 139.7, 134.5 (q, *J* = 32.0 Hz), 128.6, 125.7 (q, *J* = 3.6 Hz), 123.6 (q, *J* = 271.0 Hz), 26.7. HRMS: Calculated for C₉H₇F₃O (M⁺): 188.0449; Found: 188.0450

4-Acetylbenzonitrile (9) The product (37 mg, 85% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 12:1). This compound is known.⁸ ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 2 H), 7.77 (d, *J* = 8.8 Hz, 2 H), 2.64 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 139.9, 132.5, 128.7, 117.9, 116.4, 26.7.

1-(4-Nitrophenyl)etha-1-one (10) The product (35 mg, 71% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.⁹ ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.8 Hz, 2 H), 8.11 (d, *J* = 8.8 Hz, 2 H), 2.68 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 150.4, 141.4, 129.3, 123.8, 27.0. HRMS: Calculated for C₈H₇NO₃ (M-H)⁻: 164.0353 ; Found: 164.0359.

1-(4-Fluoro-3-methylphenyl)etha-1-one (11) The product (37 mg, 82% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.80 (m, 1 H), 7.79-7.75 (m, 1 H), 7.05 (t, *J* = 8.8 Hz, 1 H), 2.57 (s, 3 H), 2.31 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 164.3 (d, *J* = 252.0 Hz), 133.2 (d, *J* = 4.0 Hz), 132.1 (d, *J* = 6.0 Hz), 128.3 (d, *J* = 9.0 Hz), 125.3 (d, *J* = 18.0 Hz), 115.2 (d, *J* = 23.0 Hz), 26.5, 14.5 (d, *J* = 3.0 Hz). HRMS: Calculated for C₉H₉FO (M⁺): 152.0637; Found: 152.0535.

1-(4-Bromophenyl)etha-1-one (12) The product (49 mg, 82% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.4 Hz, 2 H), 7.58 (d, *J* = 8.4 Hz, 2 H), 2.57 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 135.8, 131.8, 129.8, 128.2, 26.5. HRMS: Calculated for C₈H₇BrO (M⁺): 197.9680; Found: 197.9684.

1-(4-Chlorophenyl)etha-1-one (13) The product (42 mg, 91% yield) as a light yellow liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.8 Hz, 2 H), 7.42 (*J* = 8.8 Hz, 2 H), 2.57 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 139.5, 135.4, 129.7, 128.8, 26.5. HRMS: Calculated for C₈H₇ClO (M⁺): 154.0185; Found: 154.0182.

1-(4-Benzoylphenyl)etha-1-one (14) The product (53 mg, 78% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 12:1). This compound is known.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2 H), 7.84 (d, *J* = 8.4 Hz, 2 H), 7.77 (d, *J* = 8.4 Hz, 2 H), 7.59 (t, *J* = 8.4 Hz, 1 H), 7.47 (d, *J* = 8.4 Hz, 2 H), 2.64 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 195.9, 141.2, 139.4, 136.8, 132.9, 130.06, 130.01, 128.4, 128.1, 26.9. HRMS: Calculated for C₁₅H₁₂O₂ (M+H)⁺: 225.0910; Found: 225.0913.

1-(Naphthalen-2-yl)etha-1-one (15) The product (39 mg, 76% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.¹² ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1 H), 8.03 (dd, J = 8.8, J = 2.0 Hz, 1 H), 7.95 (d J = 8.0, 1 H), 7.89-7.85 (m, 2 H), 7.61-7.53 (m, 2 H), 2.72 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 135.5, 134.4, 132.4, 130.1, 129.5, 128.4, 128.3, 127.7, 126.7, 123.8, 26.6. HRMS: Calculated for C₁₂H₁₀O (M+H)⁺: 171.0804; Found: 171.0806.

1-(6-Methoxynaphthalen-2-yl)etha-1-one (16) The product (45 mg, 75% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 12:1). This compound is known.¹³ ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H), 8.00 (dd, *J* = 8.8, *J* = 2.0 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 1 H), 7.75 (d, *J* = 8.8 Hz, 1 H), 7.20 (dd, *J* = 8.8, *J* = 2.4 Hz, 1 H), 7.14 (d, *J* = 2.4 Hz, 1 H), 3.94 (s, 3 H), 2.69 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 159.7, 137.2, 132.6, 131.0, 130.0, 127.8, 127.0, 124.6, 119.6, 105.7, 55.4, 26.5. HRMS: Calculated for C₁₃H₁₂O₂(M+H) ⁺: 201.0910; Found: 201.0913.

1-(*p***-Tolyl)propa-1-one (17)** The product (27 mg, 62% yield) as a light yellow liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.¹⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2 H), 7.24 (d, *J* = 8.0 Hz, 2 H), 2.97 (q, *J* = 7.2 Hz, 2 H), 2.40 (s, 3 H), 1.21 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 143.5, 134.4, 129.2, 128.0, 31.6, 21.6, 8.3. HRMS: Calculated for C₁₀H₁₂O (M+Na)⁺:171.0780; Found: 171.0785.

Benzophenone (18) The product (39 mg, 72% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.79 (d, *J* = 7.2 Hz, 4 H), 7.57 (d, *J* = 7.2 Hz, 2 H), 7.47 (t, *J* = 7.6 Hz, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 137.5, 132.3, 130.0, 128.2. HRMS: Calculated for C₁₃H₁₀O (M+Na)⁺: 205.0623; Found: 205.0627.

(4-Bromophenyl)(phenyl)methaone (19) The product (56 mg, 72% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.6 Hz, 2 H), 7.68 (d, *J* = 8.0 Hz, 2 H), 7.63-7.58 (m, 3 H), 7.49 (t, *J* = 7.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 137.1, 136.3, 132.6, 131.6, 131.5, 129.9, 128.4, 127.5. HRMS: Calculated for C₁₃H₉BrO (M+H)⁺: 260.9909; Found: 260.9913.

3-Methyl-1,3-diphenylbuta-1-one (20) The product (44 mg, 62% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.¹⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.80 (m, 2 H), 7.51-7.46 (m, 1 H), 7.39-7.35 (m, 4 H), 7.30-7.25 (m, 2 H), 7.17-7.13 (m, 1 H), 3.30 (s, 2 H), 1.50 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 148.8, 138.1, 132.6, 128.3, 128.1, 128.0, 125.7, 125.4, 50.8, 37.5, 29.1. HRMS: Calculated for C₁₇H₁₈O (M+Na)⁺: 261.1249 ; Found: 261.1254.

Chroma-4-one (21) The product (29 mg, 66% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.¹⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.0 Hz, J = 1.6 Hz, 1 H), 7.48-7.44 (m, 1 H), 7.03-6.99 (m, 1 H), 6.96 (d, J = 8.8, 1 H), 4.53 (t, J = 6.4 Hz, 2 H), 2.80 (t, J = 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 161.8, 135.9, 127.1, 121.3, 117.8, 67.0, 37.7. HRMS: Calculated for C₉H₈O₂ (M+MeOH+H)⁺: 181.0859; Found: 181.0864.

1-(Thiophen-2-yl)etha-1-one (22) The product (25 mg, 66% yield) as a yellow liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.¹⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 4.4 Hz, 1 H), 7.63 (d, *J* = 5.2 Hz, 1 H), 7.12 (t, *J* = 4.4 Hz, 1 H), 2.56 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 144.5, 133.7, 132.4, 128.1, 26.9. HRMS: Calculated for C₆H₆OS (M⁺): 126.0139; Found: 126.0136.

Phenyl(thiophen-2-yl)methaone (23) The product (33 mg, 59% yield) as a yellow solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.85 (m, 2 H), 7.71 (dd, *J* = 5.2 Hz, *J* = 1.2 Hz, 1 H), 7.64 (dd, *J* = 4.0 Hz, *J* = 1.2 Hz, 1 H), 7.61-7.57 (m, 1 H), 7.51-7.48 (m, 2 H), 7.16 (dd, *J* = 4.8 Hz, *J* = 4.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 143.6, 138.1, 134.8, 134.1, 132.2, 129.1, 128.4, 127.9. HRMS: Calculated for C₁₁H₈OS (M+Na)⁺: 211.0188; Found: 211.0191.

(4-Fluorophenyl)(thiophen-2-yl)methaone (24) The product (33 mg, 53% yield) as a yellow solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.¹⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.89 (m, 2 H), 7.72 (dd, J = 5.2 Hz, J = 1.2 Hz, 1 H), 7.63 (dd, J = 4.0 Hz, J = 1.2 Hz, 1 H), 7.20-7.15 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 186.6, 165.5 (d, J = 252.0 Hz), 143.3, 134.5, 134.3 (d, J = 3.0 Hz), 134.2, 131.7 (d, J = 9.0 Hz), 127.9, 115.6 (d, J = 21 Hz). HRMS: Calculated for C₁₁H₇FOS (M+H) ⁺: 207.0274; Found: 207.0278.

1-(Benzo[b]thiophen-2-yl)etha-1-one (25) The product (43 mg, 82% yield) as a yellow solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.¹⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1 H), 7.87 (t, *J* = 9.6 Hz, 2 H), 7.48-7.43(m, 1 H), 7.42-7.38 (m, 1 H), 2.66 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 143.9, 142.6, 139.1, 129.6, 127.4, 125.9, 124.9, 122.9, 26.7. HRMS: Calculated for C₁₀H₈OS (M+H)⁺: 177.0368; Found: 177.0372.

1,1'-(1,4-Phenylene)bis(etha-1-one) (26) The product (29 mg, 60% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.²⁰ ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 4 H), 2.63 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 140.1, 128.4, 26.8. HRMS: Calculated for C₁₀H₁₀O₂ (M⁺): 162.0681; Found: 162.0678.

4-Methoxybenzaldehyde (27) The product (25 mg, 60% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1 H), 7.84 (d, *J* = 8.8 Hz, 2 H), 7.01 (d, *J* = 8.8 Hz, 2 H), 3.89 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 164.6, 132.0, 130.0, 114.3, 55.6.

3,4-Dimethoxybenzaldehyde (28) The product (25 mg, 50% yield) as a yellow liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1 H), 7.43 (dd, *J* = 8.0, *J* = 2.0 Hz, 1 H), 7.39 (s, 1 H), 6.95 (d, *J* = 8.0 Hz, 1 H), 3.94 (s, 3 H), 3.91 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 154.4, 149.6, 130.1, 126.8, 110.3, 108.9, 56.1, 56.0. HRMS: Calculated for C₉H₁₀O₃ (M+H)⁺: 189.0522; Found: 189.0526.

1-(4-allylphenyl)etha-1-one (30) The product (30 mg, 63% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.²¹ ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2 H), 7.27 (d, *J* = 8.0 Hz, 2 H), 5.99-5.89 (m, 1 H), 5.11 (s, 1 H), 5.07 (d, *J* = 8.0 Hz, 1 H), 3.43 (d, *J* = 6.8 Hz, 2 H), 2.57 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 145.7, 136.2, 135.3, 128.7, 128.5, 116.6, 40.1, 26.5. HRMS: Calculated for C₁₁H₁₂O (M+Na)⁺: 183.0780; Found: 183.0785.

1-(4-(Allyloxy)phenyl)etha-1-one (31) The product (30 mg, 78% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.²² ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.8 Hz, 2 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 6.08-5.99 (m, 1 H), 5.41 (d, *J* = 17.2 Hz, 1 H), 5.30 (d, *J* = 10.4 Hz, 1 H), 4.58 (d, *J* = 4.8 Hz, 2 H), 2.53 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 162.4, 132.4, 130.5, 130.3, 118.1, 114.3, 68.8, 26.3. HRMS: Calculated for C₁₁H₁₂O₂ (M+Na)⁺: 199.0729; Found: 199.0735.

1-(4-(But-3-en-1-yloxy)phenyl)etha-1-one (32) The product (41 mg, 71% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.²³ ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.8 Hz, 2 H), 6.91 (d, *J* = 8.8 Hz, 2 H), 5.94-5.84 (m, 1 H), 5.19-5.14 (m, 1 H), 5.13-5.09 (m, 1 H), 4.06 (t, *J* = 6.8 Hz, 2 H), 2.58-2.52 (m, 2 H), 2.53 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 162.8, 133.9, 130.5, 130.2, 117.3, 114.1, 67.3, 33.4, 26.2. HRMS: Calculated for C₁₂H₁₄O₂ (M+Na)⁺: 213.0886; Found: 213.0889.

1-(4-(Cyclohex-2-en-1-yloxy)phenyl)etha-1-one (33) The product (39 mg, 60% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 12:1). This compound is known.²⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.8 Hz, 2 H), 6.94 (d, *J* = 8.8 Hz, 2 H), 6.03-5.98 (m, 1 H), 5.85 (m, 1 H), 4.91-4.86 (m, 1 H), 2.54 (s, 3 H), 2.54-1.79 (m, 5 H), 1.70-1.61 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 161.9, 132.8, 130.6, 130.0, 125.4, 115.1, 70.9, 28.2, 26.3, 25.0, 18.8. HRMS: Calculated for C₁₄H₁₆O₂ (M+Na)⁺: 239.1042; Found: 239.1044.

1-(3-((3-Methylbut-2-en-1-yl)oxy)phenyl)etha-1-one (34) The product (38 mg, 62% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). This compound is known.^{25 1}H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1 H), 7.50 (m, 1 H), 7.35 (t, *J* = 8.0 Hz, 1 H), 7.11 (dd, *J* = 8.4 Hz, *J* = 2.4 Hz, 1 H), 5.51-5.47 (m, 1 H), 4.56 (d, *J* = 6.8 Hz, 2 H), 2.58 (s, 3 H), 1.80 (s, 3 H), 1.76 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 159.0, 138.6, 138.4, 129.5, 120.9, 120.2, 119.2, 113.2, 64.9, 26.7, 25.8, 18.2. HRMS: Calculated for C₁₃H₁₆O₂ (M+Na)⁺: 227.1042; Found: 227.1043.

1-(5-Chloro-2-(pent-4-en-1-yloxy)phenyl)etha-1-one (35) The product (36 mg, 50% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 2.8 Hz, 1 H), 7.37 (dd, J = 8.8, J = 2.8 Hz, 1 H), 6.88 (d, J = 8.8 Hz, 1 H), 5.89-5.78 (m, 1 H), 5.09-5.01 (m, 2 H), 4.07-4.03 (t, J = 6.4 Hz, 2 H), 2.62 (s, 3 H), 2.29-2.23 (m, 2 H), 1.99-1.92 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 156.9, 137.1, 133.1, 130.0, 129.3, 125.8, 115.7, 113.8, 68.2, 31.9, 30.2, 28.2. HRMS: Calculated for C₁₃H₁₅ClO₂ (M+Na)⁺: 261.0652; Found: 261.0656.

1-(3,5-Dibromo-4-(pent-4-en-1-yloxy)phenyl)etha-1-one (36) The product (74 mg, 68% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 12:1). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 2 H), 5.93-5.83 (m, 1 H), 5.12-5.06 (m, 1 H), 5.03-4.99 (m, 1 H), 4.07 (t, *J* = 6.4 Hz, 2 H), 2.55 (s, 3 H), 2.35-2.29 (m, 2 H), 2.02-1.95 (m, 2 H). ¹³C NMR (100 MHz,

CDCl₃) δ 194.5, 157.3, 137.7, 134.8, 132.9, 118.7, 115.2, 73.2, 30.0, 29.2, 26.4. HRMS: Calculated for C₁₃H₁₄Br₂O₂ (M+Na)⁺: 382.9252; Found: 382.9254.

1-(4-((Allyldimethylsilyl)methoxy)phenyl)etha-1-one (37) The product (50 mg, 67% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.8 Hz, 2 H), 6.98 (d, *J* = 8.8 Hz, 2 H), 5.86-5.75 (m, 1 H), 4.92-4.85 (m, 2 H), 3.67 (s, 2 H), 2.54 (s, 3 H), 1.69 (d, *J* = 8.0 Hz, 2 H), 0.16 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 165.3, 133.8, 130.4, 130.0, 113.8, 113.7, 59.9, 26.2, 21.3, -5.1. HRMS: Calculated for C₁₄H₂₀O₂Si (M+Na)⁺: 271.1124; Found: 271.1129.

3-Acetylphenyl allyl carbonate (38) The product (47 mg, 71% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.82 (dt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1 H), 7.76 (t, *J* = 1.6 Hz, 1 H), 7.48 (t, *J* = 8.0 Hz, 1 H), 7.40-7.37 (m, 1 H), 6.04-5.95 (m, 1 H), 5.44 (dq, *J* = 13.6 Hz, *J* = 1.6 Hz, 1 H), 5.33 (dq, *J* = 10.4 Hz, *J* = 1.2 Hz, 1 H), 4.74 (dt, *J* = 5.6 Hz, *J* = 1.6 Hz, 2 H), 2.59 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 153.2, 151.3, 138.6, 130.9, 129.7, 125.9, 125.7, 120.9, 119.7, 69.3, 26.6. HRMS: Calculated for C₁₂H₁₂O₄ (M+Na)⁺: 243.0627; Found: 243.0631.

4-Acetylphenyl undec-10-enoate (39) The product (64 mg, 70% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 12:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2 H), 7.18 (d, *J* = 8.8 Hz, 2 H), 5.86-5.76 (m, 1 H), 5.01-4.96 (m, 1 H), 4.94-4.91 (m, 1 H), 2.58 (s, 3 H), 2.56 (d, *J* = 7.6 Hz, 2 H), 2.07-2.01 (m, 2 H), 1.79-1.71 (m, 2 H),

1.45-1.25 (m, 10 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 171.6, 154.4, 139.1, 134.6, 129.9, 121.7, 114.1, 34.3, 33.7, 29.2, 29.1, 29.0, 28.8, 26.5, 24.8. HRMS: Calculated for C₁₉H₂₆O₃ (M+Na)⁺: 325.1774; Found: 325.1780.

1-(3-(But-2-yn-1-yloxy)phenyl)etha-1-one (40) The product (42 mg, 75% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.53 (m, 2 H), 7.37 (t, *J* = 8.0 Hz, 1 H), 7.16 (dd, *J* = 8.4 Hz, 2.8 Hz, 1 H), 4.69 (q, *J* = 2.4 Hz, 2 H), 2.58 (s, 3 H), 1.85 (t, *J* = 2.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 157.9, 138.4, 129.5, 121.4, 120.1, 113.7, 84.1, 73.5, 56.5, 26.7, 3.6. HRMS: Calculated for C₁₂H₁₂O₂ (M+Na)⁺: 211.0729; Found: 211.0732.

1-(3-Fluoro-4-(prop-2-yn-1-yloxy)phenyl)etha-1-one (41) The product (41 mg, 70% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.68 (m, 2 H), 7.14 (t, *J* = 8.0 Hz, 1 H), 4.83 (d, *J* = 2.4 Hz, 2 H), 2.58 (t, *J* = 2.4 Hz, 1 H), 2.54 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 152.2 (d, *J* = 247.0 Hz), 149.6 (d, *J* = 11.0 Hz), 131.5(d, *J* = 5.0 Hz), 125.3(d, *J* = 4.0 Hz), 116.2(d, *J* = 19.0 Hz), 114.4, 77.2, 76.8, 56.9, 26.3. HRMS: Calculated for C₁₁H₉FO₂ (M+Na)⁺: 215.0478; Found: 215.0480.

1-(4-((3-(Trimethylsilyl)prop-2-yn-1-yl)oxy)phenyl)etha-1-one (42) The product (54 mg, 73% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.8 Hz, 2 H), 7.00 (d, *J* = 8.8 Hz, 2 H), 4.72 (s, 2

H), 2.54 (s, 3 H), 0.16 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 161.5, 130.8, 130.4, 114.6, 99.1, 93.5, 56.7, 26.3, -0.3. HRMS: Calculated for C₁₄H₁₈O₂Si (M+Na)⁺: 269.0968; Found: 269.0973.

1-(4-((6,6-Dimethylhept-2-en-4-yn-1-yl)oxy)phenyl)etha-1-one (43) The product (44 mg, 57% yield) as a white solid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.90 (m, 2 H), 6.99-6.96 (m, 0.4 H), 6.92-6.90 (m, 1.6 H), 6.20-6.14 (m, 0.8 H), 6.01-5.96 (m, 0.2 H), 5.86-5.81 (m, 0.8 H), 5.74-5.71 (m, 0.2 H), 4.85 (dd, *J* = 6.4 Hz, *J* = 1.6 Hz, 0.4 H), 4.61 (dd, *J* = 5.6 Hz, *J* = 1.6 Hz, 1.6 H), 2.54 (s, 3 H), 1.28 (s, 1.8 H), 1.24 (s, 7.2 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 162.2, 135.1 (134.7), 130.5, 114.3, 113.9 (113.6), 110.5, 76.4, 67.9 (66.0), 30.9 (30.8), 27.9, 26.3. HRMS: Calculated for C₁₇H₂₀O₂ (M+Na)⁺: 279.1355; Found: 279.1361.

1-Phenylhex-5-en-1-one (44) The product (15 mg, 30% yield) as a colorless liquid, was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1). This compound is known.²⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 2 H), 7.57-7.53 (t, *J* = 7.6 Hz, 1 H), 7.46 (t, *J* = 7.6 Hz, 2 H), 5.88-5.77 (m, 1 H), 5.08-4.98 (m, 2 H), 2.98 (t, *J* = 7.2 Hz, 2 H), 2.16 (q, *J* = 7.6 Hz, 2 H), 1.89-1.82 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 138.0, 137.0, 132.9, 128.5, 128.0, 115.3, 37.7, 33.2, 23.3. HRMS: Calculated for C₁₂H₁₄O (M+Na)⁺: 197.0936; Found: 197.0940.

Synthesis of 6-Acetyl-2-phenylchroma-4-one (45)

To a 25 ml of Schlenk tube was added dppf (11 mg, 0.02 mmol, 0.1 equiv), bismuththiol (3.0 mg, 0.02 mmol, 0.1 equiv) and **45a** (52.8 mg, 0.20 mmol, 1 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then freshly distilled MeCN (0.5 mL) was injected by syringe. The reaction tube was heated to 80 °C and allowed to react for 15 h. The reaction mixture was concentrated and the residual was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1) to provide the product **45** (35 mg, 66% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 2.4 Hz, 1 H), 8.17 (dd, J = 8.8 Hz, 2.4 Hz, 1 H), 7.50-7.39 (m, 5 H), 7.12 (d, J = 8.8 Hz, 1 H), 5.56 (dd, J = 13.2, J = 3.2 Hz, 1 H), 3.14 (dd, J = 16.8, J = 13.2 Hz, 1 H), 2.96 (dd, J = 16.8, J = 3.2 Hz, 1 H), 2.61 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 191.1, 164.7, 137.8, 135.4, 130.9, 129.0, 128.9, 128.5, 126.1, 120.0, 118.8, 79.9, 44.2, 26.4. HRMS: Calculated for C₁₇H₁₄O₃ (M+H)⁺: 267.1015; Found: 267.1021.

Synthesis of (8*R*,9*S*,13*S*,14*S*)-3-Acetyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*cyclopenta[*a*]phenathren-17-one (46)

To a 25 ml of Schlenk tube was added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv) and **46a** (88.3 mg, 0.30 mmol, 1 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then freshly distilled MeCN (0.5 mL) was injected by syringe. The reaction tube was heated to 80 °C and allowed to react for 15 h. The reaction mixture was concentrated and the residual was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1) to provide the product **46** (36 mg, 40% yield) as a white solid

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 1 H), 7.68 (s, 1 H), 7.36 (d, *J* = 8.4 Hz, 1 H), 2.97-2.93 (m, 2 H), 2.55 (s, 3 H), 2.53-2.41 (m, 2 H), 2.35-2.29 (m, 1 H), 2.18-1.95 (m, 4 H), 1.68-1.41 (m, 6 H), 0.90 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 220.3, 198.0, 145.4, 136.9, 134.9, 128.9, 125.8, 125.5, 50.5, 47.8, 44.7, 37.8, 35.8, 31.5, 29.3, 26.5, 26.3, 25.6, 21.6, 13.8. HRMS: Calculated for C₂₀H₂₄O₂ (M+Na)⁺: 319.1668 ; Found: 319.1672.

Synthesis of Isopropyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropaoate (47)

To a 25 ml of Schlenk tube was added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv) and **47a** (107.6 mg, 0.30 mmol, 1 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then freshly distilled MeCN (0.5 mL) was injected by syringe. The reaction tube was heated to 80 °C and allowed to react for 15 h. The reaction mixture was concentrated and the residual was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1) to provide the product **47** (72 mg, 67% yield) as a white solid. This compound is known.²⁶

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 2 H), 7.70 (d, *J* = 8.4 Hz, 2 H), 7.44 (d, *J* = 8.4 Hz, 2 H), 6.86 (d, *J* = 8.4 Hz, 2 H), 5.08 (m, 1 H), 1.66 (s, 6 H), 1.20 (d, *J* = 6.4 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 173.1, 159.7, 138.3, 136.3, 131.9, 131.1, 130.1, 128.5, 117.1, 79.3, 69.3, 25.3, 21.5. HRMS: Calculated for C₂₀H₂₁ClO₄ (M+H)⁺: 361.1201; Found: 361.1202.

Radical Inhibtion Experiments

Ph + O ₂ 1a	Fe SH MeCN, 80 °C	Ph 1
Entry	additive	Yield
1	None	85%
2	TEMPO (10 mol%)	76%
3	TEMPO (100 mol%)	11%
4	BHT (10 mol%)	74%
5	BHT (100 mol%)	54%

General Procedure: To a 25 mL of Schlenk tube were added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv), additive (0.1-1.0 equiv) under air. The mixture was then evacuated and backfilled with O_2 (3 times). 2-phenyl-1-propene **1a** (0.3 mmol), and fresh distilled MeCN (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C (oil bath). After stirring for 15 h, the reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. The yield was determined by ¹H NMR.

Radical Clock Experiment

To a 25 ml of Schlenk tube was added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then **48a** (0.30 mmol, 1 equiv) and freshly distilled MeCN (0.5 mL) was injected by syringe. The reaction tube was heated to 80 °C and allowed to react for 15 h. The reaction mixture was trasfered to a round bottom flask and the solvents removed in vacuo, the reaction crude was purified with silica gel chromatography (Petroleum ether/EtOAc = 19:1) to provide the product (28 mg, 65% yield) as a light yellow liquid.

Cyclopropyl(phenyl)methaone (48) This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 7.6 Hz, 2 H), 7.56 (t, *J* = 7.6 Hz, 1 H), 7.47 (t, *J* = 7.6 Hz, 2 H), 2.71-2.65 (m, 1 H), 1.27-1.23

(m, 2 H), 1.07-1.02 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 138.0, 132.7, 128.5, 128.0, 17.1, 11.6. HRMS: Calculated for C₁₀H₁₀O (M+Na)⁺: 169.0623; Found: 169.0628.

Cyclic Voltammetry Studies

The cyclic voltammograms were recorded in an electrolyte of nBu_4NClO_4 (0.1 M) in MeCN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate is 100 mV/s. The electrode potential of ferrocene: $E_{p/2} =+ 0.52$ V vs. Ag/AgCl; and bismuththiol: $E_p =+ 0.44$ V vs. Ag/AgCl.

Figure S2. Cyclic voltammograms of ferrocene or bismuththiol in 0.1 M nBu₄ClO₄/MeCN

Electron Paramagnetic Resonance (EPR) Experiments.

To a 25 ml of Schlenk tube was added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then **1a** (0.30 mmol, 1 equiv), PBN (0.30 mmol) and freshly distilled MeCN (0.5 mL) was injected by syringe. The reaction tube was heated to 80 °C and allowed to react for 3 h. The resulting mixture was then analyzed by EPR at 80 °C.

The EPR showed a broad EPR triplet spectrum of nitroxide (g = 2.0056, a = 16.15 G), indicating that a free radical must be involved in this reaction.

Figure S1. The Electron Paramagnetic Resonance (EPR) Spectrum of our reaction mixture in the presence of PBN

Mechaistic studies

To a 25 ml of Schlenk tube was added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv) and DL-methionine (49.7 mg, 0.3 mmol, 1.0 equiv) at room temperature. The reaction tube was degassed with dioxygen gas (1 atm, 3 times), then 2-phenyl-1-propene **1a** (0.30 mmol, 1 eq) and freshly distilled MeCN (0.4 mL) and H₂O (0.2 mL) was injected by syringe. The reaction tube was heated to 80 °C and allowed to react for 15 h. The reaction mixture was trasfered to a round bottom flask and the solvents removed in vacuo, the reaction crude was purified with silica gel chromatography provide product **50** (10% yield) as a white solid.

2-Phenylpropae-1,2-diol (50) This compound is known.²⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.6 Hz, 2 H), 7.37 (t, *J* = 7.6 Hz, 2 H), 7.28 (t, *J* = 7.6 Hz, 1 H), 3.81 (d, *J* = 11.2 Hz, 1 H), 3.64 (m, 1 H), 2.61 (s, 1 H), 1.86 (s, 1 H), 1.54 (s, 3 H). HRMS: Calculated for $C_9H_{12}O_2$ (M+Na)⁺: 175.0729; Found: 175.0733.

To a 25 mL of Schlenk tube were added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv) under air. The mixture was then evacuated and backfilled with O_2 (3 times). 2-phenyl-1-propene **1a** (0.3 mmol), and fresh distilled MeCN (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C (oil bath). After stirring for 15 h, the reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. The yield was determined by ¹H NMR, and we found that **Fe5** was obtained as well.

Bis(2-(diphenylphosphoryl)cyclopenta-2,4-dien-1-yl)iron (Fe5) ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.55 (m, 8 H), 7.50-7.46 (m, 4 H), 7.41-7.39 (m, 8 H), 4.67 (s, 4 H), 4.26 (s, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 133.0, 131.7, 131.6, 131.3, 131.2, 128.3, 128.2, 74.7, 74.0, 73.9, 73.5, 73.4, 73.3. HRMS: Calculated for C₃₄H₂₉FeO₂P₂ (M+H)⁺: 587.0987; Found: 587.0986.

To dertmine the real catalysts in this reaction, we conducted the control experiments (as shown, below)

When we monitored this reaction by ¹H NMR, we found that a new iron species, Fe5 was generated, which was successfully isolated as well. The dppf analogue Fe5 could be synthesized

through the oxidation of dppf using H_2O_2 as oxidant. Furthermore, 81% yield of desired product was obtained when dppf analogue **Fe5** was used as catalyst. To rule out phosphine moieties on the dppf might promote this transformation, the control experiments were conducted. As shown, when DPPM, and DPPB were used as catalysts in the absence of thiols, this transformation was totally shut down. In addition, 23%-26% yiled were obtained using phospine and thiol as co-catalysts, which is similar with the thiol as sole catalyst. What's more, ferrocene **Fe1** without any phosphine moieties could also promote this transformation, providing ketone in 29% yield. These result demonstrats that phospine might not promote this transformation, so we still think that this reaction was promoted by iron species, not phosphine species.

Reference:

- 1) A. Jana, K. Misztal, A. Żak and K. Grela, J. Org. Chem., 2017, 82, 4226.
- 2) A. Gonzalez-de-Castro and J. Xiao, J. Am. Chem. Soc., 2015, 137, 8206.
- 3) R. Lin, F. Chen and N. Jiao, Org. Lett., 2012, 14, 4158.
- 4) X. Guo and C.-J. Li, Org. Lett., 2011, 13, 4977.
- 5) H. Song, B. Kang and S. H. Hong, ACS Catalysis., 2014, 4, 2889.
- 6) G. Zhang and S. K. Hanson, Org. Lett., 2013, 15, 650.
- 7) K. Moriyama, M. Takemura and H. Togo, Org. Lett., 2012, 14, 2414.
- 8) J. Schulz, I. Císařová, and P. Štěpnička, Organometallics., 2012, 31, 729.
- 9) K. Moriyama, M. Takemura and H. Togo, J. Org. Chem., 2014, 79, 6094.
- 10) T. Noël, T. J. Maimone and S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 8900.
- 11) G.-Z. Wang, X.-L. Li, J.-J. Dai and H.-J. Xu, J. Org. Chem., 2014, 79, 7220.
- 12) A. Vasseur, R. Membrat, D. Gatineau, A. Tenaglia, D. Nuel and L. Giordano, *ChemCatChem* 2017, 9, 728.
- 13) J. Genovino, S. Lütz, D. Sames and B. B. Touré, J. Am. Chem. Soc., 2013, 135, 12346.
- 14) B. Skillinghaug, C. Sköld, J. Rydfjord, F. Svensson, M. Behrends, J. Sävmarker, P. J. R. Sjöberg and M. Larhed, J. Org. Chem., 2014, 79, 12018.
- 15) M. Irfan, T. N. Glasnov, C. O. Kappe, Org. Lett., 2011, 13, 984.
- 16) Y. Zhu, B. Zhao and Y. Shi, Org. Lett., 2013, 15, 992.
- 17) J. E. Steves and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 15742.

- 18) Q. Zhou, S. Wei and W. Han, J. Org. Chem., 2014, 79, 1454.
- 19) S. Sangeetha and G. Sekar, Org. Lett., 2017, 19, 1670.
- 20) J. Mo, L. Xu and J. Xiao, J. Am. Chem. Soc., 2005, 127, 751.
- 21) J. R. Herron and Z. T. Ball, J. Am. Chem. Soc., 2008, 130, 116486.
- 22) Y. Oh, Y. J. Jang, M. Jeon, H. S. Kim, J. H. Kwak, K. H. Chung, S. Pyo, Y. H. Jung and I. S. Kim, J. Org. Chem., 2017, 82, 11566.
- 23) P. J.Wagner and M.Sakamoto, J. Am. Chem. Soc., 1989, 111, 8723.
- 24) E. A. Leo, J. Delgado, L. R. Domingo, A. Espinós, M. A. Miranda and R. Tormos, *J. Org. Chem.*, 2003, 68, 9643.
- 25) T. Narender, K. Venkateswarlu, G. Madhur and K. P. Reddy, Synthetic Commun., 2013, 43, 26.
- 26) K. T. Tarantino, P. Liu and R. R. Knowles, J. Am. Chem. Soc., 2013, 135, 10022.
- 27) K. M. Bjerglund, T. Skrydstrup and G. A. Molander, Org. Lett., 2014, 16, 1888.

1-(Allyloxy)-4-((3-methylbut-2-en-1-yl)oxy)benzene (29a)

Trimethyl(3-(4-(prop-1-en-2-yl)phenoxy)prop-1-yn-1-yl)silane (42a)

cyclopenta[a]phenanthren-17-one (46a)

Isopropyl 2-(4-(1-(4-chlorophenyl)vinyl)phenoxy)-2-methylpropanoate (47a)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Acetophenone (1)

1-(4-Cyclohexylphenyl)ethan-1-one (2)

1-(3-Methoxyphenyl)ethan-1-one (5)

1-(2-Methoxyphenyl)ethan-1-one (6)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 $\dot{70}$ 60 50 40 30 $\dot{20}$ 10 0 fl (ppm)

1-(4-(Trifluoromethyl)phenyl)ethan-1-one (8)

1-(4-Nitrophenyl)ethan-1-one (10)

1-(4-Bromophenyl)ethan-1-one (12)

1-(4-Chlorophenyl)ethan-1-one (13)

1-(Naphthalen-2-yl)ethan-1-one (15)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm)

Benzophenone (18)

(4-Bromophenyl)(phenyl)methanone (19)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 $\dot{70}$ 60 50 $\frac{1}{40}$ 30 20 10 0 fl (ppm)

S79

3,4-Dimethoxybenzaldehyde (28)

1-(4-Allylphenyl)ethan-1-one (30)

1-(4-(Allyloxy)phenyl)ethan-1-one (31)

1-(4-(But-3-en-1-yloxy)phenyl)ethan-1-one (32)

1-(3-((3-Methylbut-2-en-1-yl)oxy)phenyl)ethan-1-one (34)

1-(5-Chloro-2-(pent-4-en-1-yloxy)phenyl)ethan-1-one (35)

1-(3,5-Dibromo-4-(pent-4-en-1-yloxy)phenyl)ethan-1-one (36)

S89

3-Acetylphenyl allyl carbonate (38)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

4-Acetylphenyl undec-10-enoate (39)

1-(3-Fluoro-4-(prop-2-yn-1-yloxy)phenyl)ethan-1-one (41)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

1-(4-((6,6-Dimethylhept-2-en-4-yn-1-yl)oxy)phenyl)ethan-1-one (43)

1-Phenylhex-5-en-1-one (44)

(8R,9S,13S,14S)-3-Acetyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (46)

Isopropyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (47)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

2-Phenylpropane-1,2-diol (50)

