Supporting Information (SI)

Aluminium-Biochar Composites as Sustainable Heterogeneous Catalysts for

Glucose Isomerisation in a Biorefinery

Iris K.M. Yu^a, Xinni Xiong^a, Daniel C.W. Tsang^{a,*}, Lei Wang^a, Andrew J. Hunt^b, Hocheol Song^c,

Jin Shang^d, Yong Sik Ok^e, Chi Sun Poon^a

^aDepartment of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

^bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

^cDepartment of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea

^dSchool of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

^eKorea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea

*Corresponding author: <u>dan.tsang@polyu.edu.hk</u>

XPS	Components	Symbols	Binding energies (eV)	References
O 1s	Chemisorbed H ₂ O or O ₂		535.3	[1]
	Anhydride, lactone, carboxylic acids	O-C=O	533.3	[1]
	Hydroxyl, ethers	С-ОН, С-О-С	532.1	[1]
	Al-OH hydroxyl	Al-OH	531.4	[2, 3]
	Carbonyl, quinone	C=O	530.7	[1]
	Al oxide	Al-O	530.4	[2]
C 1s	Carboxylic groups, esters, and lactones	O-C=O	288.4	[4]
	Ketone, aldehyde	C=O	287	[5]
	Ether,epoxy	C-O-C	286.3	[5]
	Alcohol	С-ОН	285.6	[5]
	Carbon-carbon	C-C	284.6	[6]
	Graphitic	C sp2	284.4	[5]
Al 2p	Tetrahedrally or octahedrally coordinated Al	Al[4], Al[6]	76.8	[7]
	Alumina	Al_2O_3	75.8-76	[7,8]
	Bayerite	β-Al(OH) ₃	75	[3]
	Gibbsite, Al-O-C	γ-Al(OH) ₃ , Al-O-C	74.4	[3, 9]
	Boehmite	γ-AlO(OH)	73.9	[3]
	Metallic Al	Al	72.2-72.8	[7, 9]

Table S1. Binding energies reported in the literature.

References

- H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla and C.A. Zaror, *Langmuir*, 2002, 18, 2111-2116.
- [2].I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga and V. Smyntyna, *Vacuum*, 2015, 113, 52-58.
- [3].J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost, J. Colloid Interface Sci., 2006, 296, 572-576.
- [4]. L., Qian and B. Chen, J. Agr. Food Chem., 2014, 62, 373-380.
- [5].K. Ganesan, S. Ghosh, N.G. Krishna, S. Ilango, M. Kamruddin and A.K. Tyagi, *Phys. Chem. Chem. Phys.*, 2016, 18, 22160-22167.
- [6]. M. Lawrinenko, D. Jing, C. Banik and D.A. Laird. Carbon, 2017, 118, 422-430.
- [7].R. Bicker, H. Deger, W. Herzog, K. Rieser, H. Pulm, G. Hohlneicher and H.J. Freund, J. Catal., 1985, 94, 69-78.
- [8].C. Xu, T. Sritharan, S.G. Mhaisalkar, M. Srinivasan and S. Zhang, *Appl. Surf. Sci.*, 2007, 253, 6217-6221.
- [9]. M. Bou, J.M. Martin, T. Le Mogne and L. Vovelle, *Appl. Surf. Sci.*, 1991, 47, 149-161.

	Atomic (%)		
Sample	Al 2p	O 1s	C 1s
0%Al-500N2	0.5	12	87.5
10%Al-500N2	10.6	31.7	57.7
10%Al-600N2	11.2	31.5	57.3
10%Al-700N2	10.6	27.4	62
20%Al-500N2	15.8	40.1	44
20%Al-500N2-Reused	18.3	27.1	54.7

Table S2. XPS results of elemental composition of selected Al biochars.

Figure S1. SEM images (1000 x) of (a) 10%Al-500N₂, (b) 10%Al-600N₂, (c) 10%Al-700N₂, (d) 10%Al-500CO₂, (e) 10%Al-600CO₂, (f) 10%Al-750CO₂, and SEM images (2000 x) of (g) 20%Al-500N₂ and (h) 20%Al-500N₂-Reused.

Figure S2. TG and DTG of 0%Al-500N₂, sawdust samples, and standard Al compounds.

Figure S3. TEM-EDX mappings of 0%Al-500N₂.

Figure S4. C 1s XPS spectra of (a) N_2 biochars as well as curve fitting for (b) 0%Al-500 N_2 , (c) 10%Al-500 N_2 , (d) 10%Al-600 N_2 , (e) 10%Al-700 N_2 , and (f) 20%Al-500 N_2 .

Figure S5. O 1s XPS spectra of (a) N_2 biochars as well as curve fitting for (b) 0%Al-500 N_2 , (c) 10%Al-500 N_2 , (d) 10%Al-600 N_2 , (e) 10%Al-700 N_2 , and (f) 20%Al-500 N_2 .

Figure S6. XRD patterns of Al biochars produced via pyrolysis in (a) N_2 and (b) CO_2 .

Figure S7. SEM-EDX mappings of 10%Al-750CO₂.

Figure S8. Yield and selectivity of (a, c, e) HMF and (b, d, f) other products (i.e., disaccharide (DS), levoglucosan (LG), levulinic acid (LA), and formic acid (FA)) resulted from the catalytic conversion of glucose over 20%Al-500N₂ (conditions: 0.5 g glucose and 0.25 g Al biochar in 10 ml (a&b) water at 160 °C, (c&d) in different media at 160 °C for 20 min, and (e&f) in acetone/H₂O at 160 °C for different reaction time; yield = product_{Cmol}/glucose_{Cmol} × 100%; selectivity = product_{Cmol}/(initial glucose_{Cmol} – final glucose_{Cmol}) × 100%).

Figure S9. (a) O 1s and (b) C 1s XPS spectra and curve fitting for 20%Al-500N₂-reused.