Supporting Information for:

A versatile biobased continuous flow strategy for the production of 3-butene-1,2-diol and vinyl ethylene carbonate from erythritol

Nelly Ntumba Tshibalonza,^a Romaric Gérardy,^a Zouheir Alsafra,^b Gauthier Eppe^b and Jean-Christophe M. Monbaliu^{a,*}

^a Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège (Sart Tilman), Belgium

^b Laboratory of inorganic analytical chemistry, Research Unit MolSys, University of Liège, B-4000 Liège (Sart Tilman), Belgium

Table of Contents

1.	Cont	tinuou	us flow setups
1	l.1	Descr	ription of reactor elements3
	1.1.1	1	Pumps3
	1.1.2	2 3	SS coil reactors3
	1.1.3	3 9	SS packed-bed reactor3
	1.1.4	4	PEEK tubing3
	1.1.5	5	PFA tubing and coils3
	1.1.6	6	Connectors, ferrules and mixers3
	1.1.7	7 (Check-valves3
	1.1.8	8	Back-pressure regulators4
	1.1.9	9 -	Thermoregulatory devices4
	1.1.1	10 (On-line IR spectrometer4
1	L.2	Part r	numbers & vendors5
1	L.3	Detai	iled continuous flow setups7
	1.3.2	1 (Continuous flow setup for the DODH of erythritol7
	1.3.2	2 (Continuous flow setup for the homogeneous carbonation of 3-butene-1,2-diol7
	1.3.3	3 (Continuous flow setup for the heterogeneous carbonation of 3-butene-1,2-diol8
	1.3.4	4 (Concatenated continuous flow setup8
1	L.4.1	Ор	eration to steady state9
	1.4.2	2 9	Start-up procedure9
	1.4.3	3 9	Shut-down procedure9

	1.4.4	In case of clogging9
2.	Add	itional experimental details9
	2.1	Chemicals9
	2.2	Preparation and storage of the DODH feed solutions10
	2.3	Off-line Gas Chromatography quantitative analysis11
	2.3.1	Generalities11
	2.3.2	Headspace-Solid Phase Micro Extraction11
	2.3.3	Derivatization11
	2.3.4	Reference chromatograms12
	2.3.5	Representative results
	2.4	Off-line NMR quantitative analysis
	2.4.1	General procedure18
	2.4.2	2 Spectral libraries
	2.4.3	3 Representative examples19
	2.4.4	Representative results
	2.5 homog	Optimization of the preparation of 4-vinyl-1,3-dioxolan-2-one from 3-butene-1,2-diol under geneous conditions
	2.6	On-line IR qualitative analysis26
	2.6.1	L Spectral libraries
	2.6.2	2 On-line reaction monitoring for the carbonation of 3-butene-1,2-diol (7a)26
3.	Com	putations
	3.1	CO ₂ extrusion from dioxolidin-2-ylidene species27
	3.2	Cartesian coordinates
4.	Refe	rences

1. Continuous flow setups

1.1 Description of reactor elements

All continuous flow reactors were assembled with commercially available parts.

1.1.1 Pumps

Chemicals were pumped with ThalesNano microHPLC[®] pumps (wetted parts: SS 316, ruby and sapphire) or with Chemyx Fusion 6000[®] High Force syringe pumps equipped with stainless steel syringes with Dupont[™] Kalrez[®] Spectrum[™] AS-568 O-rings (0.549 x 0.103").

1.1.2 SS coil reactors

SS coil reactors were constructed with deburred-end, steam-cleaned and acid-passivated 316 SS tubing (1.58 mm outer diameter, 500 μ m internal diameter) of fixed internal volumes for both the DODH and the heating or cooling loops.

1.1.3 SS packed-bed reactor

A SS column (10 cm \times 7 mm o.d. \times 3.5 mm i.d.) was utilized for the packed-bed reactor (carbonation step).

1.1.4 PEEK tubing

The sections of the reactor that were not subjected to high temperatures were constructed from PEEK tubing (green striped, 1.58 mm outer diameter, 750 μ m internal diameter).

1.1.5 PFA tubing and coils

The sections of the reactor not subjected to high pressure and temperature were constructed from PFA tubing (high purity PFA; 1.58 mm outer diameter, 750 μ m internal diameter), including the section of tubing connecting the BPR to the collection flask, the inand outlets of the on-line IR spectrometer and the reaction coil utilized for the homogeneous carbonation trials.

1.1.6 Connectors, ferrules and mixers

Sections of the reactor that were not subjected to high temperature were equipped with coned PEEK fittings and micromixers. Sections of the reactor that were subjected to high temperature were equipped Valco SS fittings, ferrules and unions. Connectors, ferrules and unions were purchased from IDEX/Upchurch (details in Table S1).

1.1.7 Check-valves

The check-valves inserted between the pumps and the reactors were purchased from IDEX/Upchurch Scientific, and were installed in a SS check-valve holder (IDEX/Upchurch Scientific).

1.1.8 Back-pressure regulators

A standard spring-loaded BPR (IDEX/Upchurch Scientific) set at 100 psi was installed in a SS BPR holder (IDEX/Upchurch Scientific). Dome-type BPRs were purchased from Zaiput Flow Technologies. The dome-type BPR was connected to a compressed gas cylinder (nitrogen or argon) to set the working pressure (150 psi).

1.1.9 Thermoregulatory devices

The DODH SS coil was hosted in a modified Thermo Finnigan[©] (Intersciences) thermoregulated oven. Additional thermocouples and temperature sensors were inserted in the setup. PFA coils, low temperature SS coils (carbonation) and packed-bed reactors were operated in thermoregulated oil baths (Heidolph[™] MR Hei-Tec[®] equipped with a Pt-1000 temperature sensors).

1.1.10 On-line IR spectrometer

On-line reaction monitoring was carried out with a FlowIRTM (SN# 2964) from Mettler-Toledo equipped with a DTGS detector using HappGenzel apodization, a Silicon probe connected via a FlowIRTM sensor and a high pressure heated 10 μ L cell. Sampling was performed from 4000 to 650 cm⁻¹ at 8 wavenumber resolution with 128 scans.

1.2 Part numbers & vendors

The reactor coils were constructed from standard fluidic elements purchased from IDEX/Upchurch Scientific and Valco Instruments Co. Inc (Table S1).

ltem	Details	Picture	Vendor	Reference
	One-Piece Fingertight, PEEK, 10-32 Coned, for 1/16" OD		IDEX/ Upchurch Scientific	F-120X
	Super Flangeless Nuts, natural PEEK 1/4-28 thread for 1/16" OD tubing		IDEX/ Upchurch Scientific	P-255X
Connectors	Super Flangeless Ferrule Tefzel (ETFE) and SS ring 1/4-28 thread for 1/16" OD tubing		IDEX/ Upchurch Scientific	P-259X
	SS Nut, standard, for 1/16" OD tubing	•	VICI (Valco Ins. Co. Inc.)	ZN1-10
	SS ferrule, 303, for 1/16" OD tubing		VICI (Valco Ins. Co. Inc.)	ZF1-10
Unions	Natural polypropylene standard low pressure union 1/4- 28		IDEX/ Upchurch Scientific	P-620
	SS ZDV union Valco type for 1/16" OD, tubing		IDEX/ Upchurch Scientific	U-322
Mixers	T-mixer, natural PEEK 1/4-28 thread for 1/16" o.d. tubing, 0.02" through hole		IDEX/ Upchurch Scientific	P-712
Check-valve	Check-valve inline cartridge 1.5 psi		IDEX/ Upchurch Scientific	CV-3001
Spring- loaded BPR	BPR cartridge 100 psi with gold coating	0	IDEX/ Upchurch	P-763

Table S1. Connectors, ferules and unions

			Scientific	
Cartridge holder	BPR and check-valve cartridge holder, SS		IDEX/ Upchurch Scientific	U-469
Dome-type BPR	Dome-type BPR, metal-free, with adjustable set point	-	Zaiput Flow Techn.	BPR-10
	316 SS tubing (1.58 mm outer diameter, 500 μm internal diameter)		VICI (Valco Ins. Co. Inc.)	TSS120
Tubing	PEEK tubing (green striped, 1.58mm outer diameter, 750 μm internal diameter).		VICI (Valco Ins. Co. Inc.)	JR-T-6003- M3
	High-purity PFA tubing, 1.58mm outer diameter, 750 μm internal diameter		VICI (Valco Ins. Co. Inc.)	JR-T-4002- M25

1.3 Detailed continuous flow setups

1.3.1 Continuous flow setup for the DODH of erythritol

The reader is referred to the main manuscript for experimental details (Feed concentrations, flow rates, counter-pressures).

Figure S1. Continuous flow setup for the DODH of erythritol

1.3.2 Continuous flow setup for the homogeneous carbonation of 3-butene-1,2-diol The reader is referred to the main manuscript for experimental details (Feed concentrations, flow rates, counter-pressures).

Figure S2. Continuous flow setup for the homogeneous carbonation of 3-butene-1,2-diol

1.3.3 Continuous flow setup for the heterogeneous carbonation of 3-butene-1,2-diol The reader is referred to the main manuscript for experimental details (Feed concentrations, flow rates, counter-pressures).

Figure S3. Continuous flow setup for the heterogeneous carbonation of 3-butene-1,2-diol

1.3.4 Concatenated continuous flow setup

The reader is referred to the main manuscript for experimental details (Feed concentrations, flow rates, counter-pressures).

Figure S4. Concatenated continuous flow setup

1.4 DODH standard operating procedures

1.4.1 Operation to steady state

The reactor was stabilized for 3 residence times before collection. Steady state was experimentally determined by collecting and analyzing successive fractions.

1.4.2 Start-up procedure

The reactor was thoroughly flushed with DMSO or [EMIM][ES] at room temperature for 5 min. Then, the feed was connected to the HPLC pump, and the erythritol dynamic mixture was fed into the reactor at room temperature. The temperature was next set to the desired process temperature, and system was equilibrated for 3 residence times.

1.4.3 Shut-down procedure

The reactor was flushed with DMSO, and then the temperature was progressively decreased to room temperature.

1.4.4 In case of clogging

Formation of solid material was noticed at high temperature (> 300 °C), eventually leading to reactor clogging. The SS coil was removed from the setup and left at 500 °C for 10 hours, and next thoroughly flushed with DMSO and isopropanol.

2. Additional experimental details

2.1 Chemicals

Chemicals, purity, CAS numbers and suppliers are listed in Table S2.

Table S2. Chemicals and suppliers

Products	Purity (%)	CAS Number	Supplier
DMSO	>99	67-68-5	Merck/Sigma-Aldrich
[EMIM][ES]			
1-Ethyl-3-methylimidazolium	99	342573-75-5	ABCR
ethyl sulfate			
meso-Erythritol	> 99	149-32-6	TCI
Formic acid	97	64-18-6	ABCR
Triethyl orthoformate (TEOF)	> 98	122-51-0	TCI
Glycerol	99	56-81-5	ABCR
1,3-Butadiene	99	106-99-0	TCI
2,5-Dihydrofuran	> 98	1708-29-8	TCI
Furan	> 99	110-00-9	TCI
3-Butene-1,2-diol	≥ 99	497-06-3	Merck/Sigma-Aldrich
cis-2-Butene-1,4-diol	> 94	6117-80-2	TCI

trans-2-Butene-1,4-diol	95	821-11-4	ABCR
1,4-Anhydro-Erythritol	98	4358-64-9	ABCR
trans-1,2-Cyclohexanediol	>99	1460-57-7	TCI
cis-1,2-Cyclohexanediol	>98	1792-81-0	TCI
trans-But-2-enal	>99	123-73-9	Merck/Sigma-Aldrich
1,8-Diazabicyclo[5.4.0]undec- 7-ene (DBU)	>99	6674-22-2	Merck/Sigma-Aldrich
DBU, polystyrene-bound, 100-200 mesh, 1 % cross- linked with DVB, 1.5-2.5 mmol g ⁻¹ loading	/	/	Merck/Sigma-Aldrich
4-Vinyl-1,3-dioxolan-2-one (vinyl ethylene carbonate)	99	4427-96-7	Merck/Sigma-Aldrich
3,4-Epoxy-1-butene	98	930-22-3	Merck/Sigma-Aldrich

2.2 Preparation and storage of the DODH feed solutions

In a typical procedure, a feed solution (500 mL total volume) of erythritol was prepared by mixing dissolving erythritol in DMSO (2.4 M in DMSO), then by adding 1 equiv. of triethyl orthoformate and 0.1 equiv. of formic acid. No particular precautions were taken to keep the solution from air and moisture. The feed solution was utilized over 19 days without any alteration of the results.

2.3 Off-line Gas Chromatography quantitative analysis

2.3.1 Generalities

Gas Chromatography (GC) was performed for the analysis of the volatile fraction (b.p. < 70 °C) of the reactor effluent. GC was performed with a Trace-GC 2000 (Thermo-Scientific, Waltham, MA, USA) oven equipped with a Programmable Temperature Vaporization (PTV) injector used in split mode (volatile fraction) or in splitless mode (liquid fraction) and kept at 250 °C. Chromatographic separation was achieved on a PoraBond-Q (25 m x 0.32 mm x 5 μ m) capillary column (Varian, Palo Alto, CA, USA) for the volatile fraction and on a VF-5ms (50 m x 0.20 mm x 0.33 μ m) capillary column (Varian, Palo Alto, CA, USA) for the liquid fraction after derivatization (see below) with He as carrier (Alpha gas 2, Air Liquide, Belgium). Mass spectrometric detection was performed with a PolarisQ ion-trap (Thermo-Scientific, Waltham, MA, USA). Ions were produced by a 70 eV positive Electronic Ionisation (EI), with the ion source kept at 200 °C. The acquisition was recorded in full scan mode with a 30-200 (volatiles) or 50-600 (liquid fraction) m/z mass range. The quantification was achieved using external calibration curves prepared daily using pure commercial standards. Gas chromatography coupled with flame ionization detection (GC/FID) was performed to monitor the carbonation reaction of 3-butene-1,2-diol.

2.3.2 Headspace-Solid Phase Micro Extraction

Headspace-Solid Phase Micro Extraction technique (HS-SPME) with Carboxen-PDMS fibers was carried out for the analysis of the volatile fraction and the quantification of 2,5dihydrofuran, furan and butadiene. HS-SPME is an appropriate method to extract Volatiles and Very Volatiles Organic Compounds (VOC, VVOC),¹ and consists in adsorbing volatiles from the headspace onto a thin polymeric fiber. In a typical procedure, a sample of the reactor effluent (~10 mg) was collected in a 20 mL SPME air-tight sealed vial. The vials were then weighted, 1 mL of Milli-Q[®] water was added and the samples was homogenized at 750 rpm for 1 min and sent to the analysis in HS. The extraction of molecules in the headspace was performed at low temperature (15 °C) for 10 min with Carboxen-PDMS fiber.² Carboxen-PDMS fibers were used as they exhibit a high selectivity toward furan family.³ Volatiles were then thermally desorbed from the fiber in the GC injection port for 1 min with a split ratio of 29. After each extraction-desorption cycle, the fiber was cleaned in a conditioning station for 15 min at 275 °C. Fiber blanks were run daily to insure the absence of carryover.

2.3.3 Derivatization

Some compounds in the liquid fractions (b.p. > 70 °C) not directly quantifiable by ¹H NMR were derivatized for GC analysis (residual erythritol and anhydroerythritol, see Figures S7 and S8). In a typical derivatization procedure, a sample of reactor effluent (80 mg) was diluted in 1 mL of methanol (picograde, LGC-Promochem, Wesel). Next, 10 μ L of the solution were weighted and concentrated under Nitrogen flow in a 1 mL GC-vial. Pyridine (50 μ L) was added as a solvent, and the resulting homogeneous solution was treated with 50 μ L of *N*,*O*-bis(trimethylsilyl)trifluoroacetamide as a derivatization agent (Sigma-Aldrich) at 60 °C (1 h) in a sealed GC-vial.

2.3.4 Reference chromatograms

Figure S5. Retention times of commercial pure samples: butadiene (5, 7.39 min), furan (6c, 9.56 min), 2,3-dihydrofuran (not detected in this study, 14 min) and 2,5-dihydrofuran (6a, 15.37 min).

Figure S6. Mass spectrograms for commercial pure samples: butadiene (**5**), furan (**6c**), 2,3-dihydrofuran (not detected in this study) and 2,5-dihydrofuran (**6a**)

Figure S7. Retention times of commercial pure samples after derivatization: 3-butene-1,2-diol (**7a**, 11.59 min), *cis*-2-butene-1,4-diol ((*Z*)-**7b**, 12.61 min), 1,4-anhydroerythritol (**anh-4**, 13.58 min) and erythritol (**4**, 16.19 min).

Figure S8. Mass spectrograms for commercial pure samples: 3-butene-1,2-diol (**7a**), *cis*-2-butene-1,4-diol ((*Z*)-**7b**), 1,4-anhydroerythritol (**anh-4**) and erythritol (**4**).

2.3.5 Representative results

GC/MS conversion - Erythritol, DMSO 2.4 M

Figure S10. Conversion of erythritol **(4)** in [EMIM][ES] determined by GC/MS after derivatization

Figure S11. Yield of butadiene (5) in DMSO determined by GC/MS after HS-SPME

Figure S12. Yield of butadiene (5) in [EMIM][ES] determined by GC/MS after HS-SPME

Figure S13. Yield of 2,5-dihydrofuran (6a) in DMSO determined by GC/MS after HS-SPME

Figure S14. Yield of 2,5-dihydrofuran (6a) in [EMIM][ES] determined by GC/MS after HS-SPME

Figure S14. Yield of furan (6c) in DMSO determined by GC/MS after HS-SPME

Figure S16. Yield of furan (6c) in [EMIM][ES] determined by GC/MS after HS-SPME

2.4 Off-line NMR quantitative analysis

2.4.1 General procedure

The samples were prepared by adding 600 μ L of stock solution of mesitylene (0.04 M) in d_{6^-} acetone to 10 μ L of untreated crude reactor effluent. The reactor effluents were collected in closed vials under an inert atmosphere (argon), and kept at 4 °C before analysis. Analytical ¹H NMR spectra were recorded at 400 MHz on a Bruker Avance III HD spectrometer (9.4 Tesla) equipped with a high-resolution multinuclear probe that operated in the range of 40-400 MHz. Spectra were recorded in 5 mm NMR tube (Norell). Free induction decays were acquired at 298 K using a standard pulse sequence (Bruker, zg30). The spectral width was 20 ppm (8012.820 Hz). A 30 ° excitation pulse and a 4 s relaxation delay were used to collect 64 scans.

2.4.2 Spectral libraries

The chemical shifts are reported in ppm relative to TMS as internal standard or to solvent residual peak. Figure S17 regroups ¹H NMR spectra (400 MHz, d_6 -acetone) of the main reagents and products reported in this study.

Figure S17. ¹H NMR (400 MHz) spectral library in d_{6} -acetone (from 2 to 10 ppm)

2.4.3 Representative examples

Figure S18.¹H NMR of a crude reactor effluent in CD_3COCD_3 : deoxydehydration of erythritol (2.4 M in DMSO) in the presence of triethyl orthoformate (1 equiv.) and formic acid (10 mol%) at 225 °C (6 min residence time, 6.9 bar) (46% yield for 3-butene-1,2-diol)

Figure S19.¹H NMR of a crude reactor effluent in CD_3COCD_3 : deoxydehydration of erythritol (2.4 M in DMSO) in the presence of triethyl orthoformate (1 equiv.) and formic acid (10 mol%) at 250 °C (1 min residence time, 6.9 bar) (56% yield for 3-butene-1,2-diol).

Figure S20.¹H NMR of a crude reactor effluent in CD_3COCD_3/CD_3OD , 4/1 and: deoxydehydration of erythritol (3.1 M in [EMIM][ES]) in the presence of triethyl orthoformate (2 equiv.) and formic acid (10 mol%) at 275 °C (15 min residence time, 6.9 bar) (35% yield for *cis* or *trans*-but-2-enal).

NMR yield - 3-Butene-1,2-diol, DMSO 2.4 M

Figure S21. Yield of 3-butene-1,2-diol (7a) in DMSO determined by ¹H NMR

Figure S22. Yield of 3-butene-1,2-diol (7a) in [EMIM]ES] determined by ¹H NMR

Figure S23. Yield of (*Z*)-2-butene-1,4 diol, ((*Z*)-**7b**) in DMSO determined by ¹H NMR

Figure S24. Yield of (Z)-2-butene-1,4 diol, ((Z)-7b) in [EMIM][ES] determined by ¹H NMR

Figure S24. Yield of (E)-2-butene-1,4 diol, ((E)-7b) in DMSO determined by ¹H NMR

Figure S26. Yield of (E)-2-butene-1,4 diol, ((E)-7b) in [EMIM][ES] determined by ¹H NMR

Figure S27. Yield of (E/Z)-but-2-enal, ((E/Z)-6b) in DMSO determined by ¹H NMR

Figure S28. Yield of (E/Z)-but-2-enal, ((E/Z)-6b) in [EMIM][ES] determined by ¹H NMR

2.5 Optimization of the preparation of 4-vinyl-1,3-dioxolan-2-one from 3-butene-1,2-diol under homogeneous conditions

Entry	Residence time (min)	т (°С)	DMC (equiv.)	DBU ª (mol%)	Conv. ^b (%)	Selec. ^b (%)
1 ^c	3	100	2	2	23	84
2 ^c	3	120	2	2	31	83
3c	3	140	2	2	44	81
4 ^c	3	160	2	2	70	80
5 ^c	4	160	2	2	77	81
6 ^c	5	160	2	2	83	74
7 ^c	6	160	2	2	83	76
8 ^c	4	160	2	1	52	78
9 c	4	160	2	3	80	80
10 ^c	4	160	2	4	80	73
11 ^c	4	160	2.5	2	85	75
12 ^c	4	160	3	2	86	80
13 ^c	4	160	3.5	2	87	79
14 ^c	4	150	3	3	84	78
15 ^c	4	170	3	2	85	76
16 ^d	4	160	3	2	95	80
17 ^d	4	160	3	0	9	0

Table S3 Process optimization for the homogeneous continuous flow carbonation of purified3-butene-1,2-diol.

P = 11 bar. ^a The loading of organocatalyst is relative to the number of moles of 3-butene-1,2-diol. ^b Conversion and yield were determined by GC-FID. ^c 3-Butene-1,2-diol was pumped as a neat solution. ^d 3-Butene-1,2-diol was pumped as a 1.5 M solution in DMSO.

2.6 On-line IR qualitative analysis

2.6.1 Spectral libraries

2.6.2 On-line reaction monitoring for the carbonation of 3-butene-1,2-diol (**7a**)

On-line reaction monitoring was recorded with the iC IR^{*} software (version 4.3). The outcome of the reaction was monitored in real time by following the decrease of the characteristic vibration bands of DMC ($\nu_{C=0}$ at 1750 cm⁻¹) and the increase of the characteristic vibration bands of vinyl ethylene carbonate (**8**, $\nu_{C=0}$ at 1810 cm⁻¹). Figure S30

shows the evolution of the conversion to **8** as a function of the temperature, using homogeneous DBU.

Figure S30. On-line IR reaction monitoring for the carbonation of neat 3-butene-1,2-diol (**7a**) in the presence of 2 equiv. of dimethyl carbonate and 2 mol% DBU (homogeneous conditions) showing the impact of the temperature on the conversion of **7a** toward **8** ($\nu_{C=0}$ at 1810 cm⁻¹, green series).

3. Computations

3.1 CO₂ extrusion from dioxolidin-2-ylidene species

The most representative results are summarized in Table S4 (MP2/6-31+G^{**}, kcal mol⁻¹). $\Delta\Delta G^{\neq}$ values are calculated for isomeric TS and given as indicative values. The reader is redirected to reference⁴ for more details.

HO,,, HO ^{VV} cis- 9	:	10	11.1
HO,,, HO trans-9	:	10	(30.5)
HO HO anh-4	: «)	6a	11.6
HO HO ^{'''} anhydrothreitol	No TS structure compatible with a DODH process	/	/
HO OH OH 4	HO OH	OH Juri OH 7a	10.2
HO OH 4	OH OH	HOOH (Z)- 7b	(3.1)
OH OH 7a		5	7.8

3.2 Cartesian coordinates

Cartesian coordinates and absolute energies for representative stationary points are listed below (Table S5).

Table S5. Cartesian coordinates and absolute energies for representative stationary points

: (<u></u>			MP2/6-31+G** (Hartree)
Č) ⁻			
	ΗÓ			
fror	n 1			
1	3			H = -380.469545
sct	done: -380.	5//2/1	0 007747	G = -380.508573
C	0.030220	-0.028248	0.037717	
0	0.073603	0.023082	1.292799	
C	1.796402	0.014469	1.762058	
C	2.443512	0.005133	0.481417	
0	1.083975	-0.056282	-0.649642	
H	1.804460	0.950418	2.310798	
H	2.905764	0.923083	0.144223	T.
H	2.954679	-0.901702	0.179735	a
C	1.894535	-1.212604	2.621278	
H	2.922616	-1.305206	2.984210	
Н	1.654489	-2.100174	2.029186	
0	0.990293	-1.063730	3.720424	
Н	1.148439	-1.793739	4.335496	
:«				MP2/6-31+G** (Hartree)
:«	n <i>cis-</i> 9			MP2/6-31+G ** (Hartree)
fror	n <i>cis-</i> 9			MP2/6-31+G** (Hartree)
fror 19 scf	m <i>cis-</i> 9 9 done: -421.	909854		MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C	m <i>cis-</i> 9 9 done: -421. 0.000000	909854 0.000000	0.00000	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C 0	m <i>cis-</i> 9 done: -421. 0.000000 0.000000	909854 0.000000 0.000000	0.000000 1.242899	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C O C	m <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194	909854 0.000000 0.000000 0.000000	0.000000 1.242899 1.793045	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C O C C	n <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828	909854 0.000000 0.000000 0.000000 -0.122698	0.000000 1.242899 1.793045 0.537553	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C O C C C	m <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779	909854 0.000000 0.000000 0.000000 -0.122698 -0.013998	0.000000 1.242899 1.793045 0.537553 -0.685851	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C	m <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070	909854 0.000000 0.000000 0.000000 -0.122698 -0.013998 -1.117012	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
(fror 19 scf C C C C C C C C C C C	m <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118	909854 0.000000 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
() fror 19 scf C C C C C C C C C C C C C C	m <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C C C C	n <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C C C C C	m <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167 2.934895	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174 0.790834	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053 0.157974	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C H H	m <i>cis</i> - 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167 2.934895 1.750922	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174 0.790834 1.003429	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053 0.157974 2.207005	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C H H H	n <i>cis</i> - 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167 2.934895 1.750922 0.884534	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174 0.790834 1.003429 -1.134543	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053 0.157974 2.207005 3.368840	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C H H H H	m cis-9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167 2.934895 1.750922 0.884534 2.607203	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174 0.790834 1.003429 -1.134543 -0.861410	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053 0.157974 2.207005 3.368840 3.545995	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C C H H H H H	n <i>cis-</i> 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167 2.934895 1.750922 0.884534 2.607203 1.297050	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174 0.790834 1.003429 -1.134543 -0.861410 -2.834982	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053 0.157974 2.207005 3.368840 3.545995 1.595970	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795
fror 19 scf C C C C C C C C C C C H H H H H H	n <i>cis</i> - 9 done: -421. 0.000000 0.000000 1.796194 2.488828 1.034779 1.828070 2.147118 3.399961 3.174167 2.934895 1.750922 0.884534 2.607203 1.297050 2.294966	909854 0.000000 0.000000 -0.122698 -0.013998 -1.117012 -2.484210 -2.384118 -1.422174 0.790834 1.003429 -1.134543 -0.861410 -2.834982 -3.218255	0.000000 1.242899 1.793045 0.537553 -0.685851 2.813085 2.196642 1.317487 0.136053 0.157974 2.207005 3.368840 3.545995 1.595970 2.996248	MP2/6-31+G** (Hartree) H = -421.738948 G = -421.779795

Н	4.239592	-2.030157	1.930857	
н	4.126336	-1.183087	-0.349002	
н	2.564095	-1.925901	-0.622646	
	0 1			MP2/6-31+G** (Hartree)
: «	°° [⊫] _/			
fror	m anh-4			
14	4			H = -418.443111
scf	done: -418.	558176		G = -418.481474
С	-0.024342	0.000000	-0.013759	
0	0.041276	0.000000	1.276830	
C	1.647523	-0.004233	1.777265	
C	2.373101	0.011556	0.494157	
0	1.113889	0.018723	-0.624005	
C	1.941860	-1.358122	2.417524	
0	3.093297	-1.876066	1.725477	
C	3.091498	-1.330828	0.391773	
н	1.679626	0.878833	2.406770	
н	2.916901	0.907648	0.213509	•
н	4.126418	-1.238867	0.071836	
н	2.551851	-1.988103	-0.293784	
н	2.195544	-1.286695	3.472017	
н	1.082704	-2.022894	2.290347	
	HO OH			MP2/6-31+G** (Hartree)
0	**0			
fror	 m 4 to 7a			
1	7			H = -494.664498
scf	done: -494.	808218		G = -494.709271
С	0.036150	-0.002214	-0.011974	
0	0.050543	0.026646	1.245976	
С	1.759608	0.001150	1.749616	
С	2.436140	-0.000894	0.483528	
0	1.106380	-0.026028	-0.671791	
н	1.778254	0.930059	2.312188	
н	2.939382	-0.913656	0.188045	
н	2.921791	0.913144	0.168114	
C	1.819578	-1.250731	2.586324	
0	3.171467	-1.345905	3.064123	

O 1.160117 -2.413949 4.520288 H 1.588965 -2.120017 1.957950 H 3.145198 -1.995463 3.787683 H 1.055421 -0.333287 4.369925 H -0.168925 -1.225997 3.425127 H 0.769568 -2.326321 5.400662 OH OH MP2/6-31+G** (Hartree)
H 1.588965 -2.120017 1.957950 H 3.145198 -1.995463 3.787683 H 1.055421 -0.333287 4.369925 H -0.168925 -1.225997 3.425127 H 0.769568 -2.326321 5.400662 OH V OH MP2/6-31+G** (Hartree)
H 3.145198 -1.995463 3.787683 H 1.055421 -0.333287 4.369925 H -0.168925 -1.225997 3.425127 H 0.769568 -2.326321 5.400662 OH OH MP2/6-31+G** (Hartree)
H 1.055421 -0.333287 4.369925 H -0.168925 -1.225997 3.425127 H 0.769568 -2.326321 5.400662 Image: Provide the state of the st
H -0.168925 -1.225997 3.425127 H 0.769568 -2.326321 5.400662
H 0.769568 -2.326321 5.400662
ОН _{ОН} МР2/6-31+G** (Hartree)
 он _{он} МР2/6-31+G** (Hartree)
 он _{он} МР2/6-31+G** (Hartree)
ОН _{ОН} МР2/6-31+G** (Hartree)
ОН ОН МР2/6-31+G** (Hartree)
ОН ОН МР2/6-31+G** (Hartree)
₩=0 ··
from 4 to (<i>Z</i>)- 7b
17 H = -494.658881
scf done: -494.802527 G = -494.704254
C 0.003592 -0.002081 0.024304
O -0.035201 -0.012758 1.281876
C 1.645766 0.001278 1.864272
C 2.393961 0.008700 0.632720
O 1.101332 0.004100 -0.590419
Н 1.623764 -0.946055 2.393436
Н 2.856220 -0.934580 0.359755
C 1.656615 1.192992 2.779024
O 0.747623 0.914628 3.848862
C 3.208183 1.206620 0.233428
O 3.746491 0.940255 -1.065777
H 1.360246 2.097095 2.241589
H 2.670466 1.335564 3.167538
H 0.806647 1.641392 4.485026
H 2.591379 2.108651 0.221801
H 4.016345 1.346514 0.959122
H 4.335738 1.671851 -1.298170
MP2/6-31+G ** (Hartree)
from 7a to 5

13	3			H = -343.4008320
scf	done: -343.	508330		G = -343.4392340
С	0.034849	-0.014231	-0.038578	
0	0.020796	0.034075	1.215009	
С	1.754773	0.001813	1.763166	
С	2.413925	0.007695	0.478882	
0	1.134597	-0.045940	-0.667252	
н	1.736689	0.942827	2.303981	
Н	2.952168	-0.889764	0.198566	
Н	2.890424	0.930294	0.173729	
С	1.820501	-1.204033	2.596829	
С	1.757396	-1.167637	3.940790	
Н	1.919470	-2.153484	2.079591	
Н	1.661735	-0.228868	4.472065	
Н	1.808748	-2.073616	4.528114	

4. References

- 1 G. Ouyang and R. Jiang, *Solid phase microextraction: recent developments and applications*, Springer, 2016.
- 2 M. S. Altaki, F. J. Santos and M. T. Galceran, *Talanta*, 2009, **78**, 1315–1320.
- 3 M. S. Altaki, F. J. Santos and M. T. Galceran, *J. Chromatogr. A*, 2007, **1146**, 103–109.
- 4 N. N. Tshibalonza and J.-C. M. Monbaliu, *Green Chem.*, 2017, **19**, 3006–3013.