Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

Solvent-free Mechanochemical Oxidation and Reduction of Biomass Derived 5-Hydroxymethyl Furfural

F. Chacón-Huete, ^aC. Messina, ^aF. Chen, ^aL. Cuccia, X^a, Ottaenwalder ^{a,b} and P. Forgione*^{a,b}

^aDepartment of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O. H4B 1R6, Montréal, QC, Canada. ^bCentre for Green Chemistry and Catalysis

Supporting Information

This document has 34 pages in total.

General Considerations-Materials-Instrumentation	S2
Table S1	S4
Table S2	S5
Spectroscopic data	S5

General Considerations: All glassware was flame dried under argon prior to reaction set up unless otherwise stated. Solids were weighed in open air and added to a septum sealed conical shaped 2 mL microwave vial, which was then purged with argon gas. Liquids were transferred using stainless steel needles and glass or plastic syringes to maintain the inert atmosphere. Flash chromatography was carried out using 40-63µm silica gel (Silicycle).

Materials: All solvents were purchased as ACS grade from Fisher Scientific or JT Baker and were stored under an inert atmosphere with activated 3Å molecular sieves. Distilled water was obtained from an in-house water distillery. All other reagents and chemicals were purchased from Sigma-Aldrich or Alfa Aesar and used without further purification.

Instrumentation: ¹H (500MHz) and ¹³C (125MHz) NMR spectra were recorded in CDCl₃ or d^{6} -DMSO using a Varian Inova 500MHz spectrometer. Spectra were referenced to the residual solvent signal or the TMS signal. Spectral features are tabulated in the following order (Note: Spectral features are reported in the following format): chemical shift (δ , ppm); multiplicity (*s*-singlet, *d*-doublet, *t*-triplet, *q*-quartet, *dd*-doublet of doublets, *m*-multiplet), *ddd*-doublet of doublets of doublets; coupling constants (*J*, Hz); number of protons. High resolution mass spectra (HRMS) were obtained using a LTQ Orbitrap Velos ETD (positive and negative mode) mass spectrometer. The reactions were per- formed using a Fritsch Planetary Micro Mill model "Pulverisette 7" housing two stainless steel cups containing eight stainless steel balls each, and sealed by a stainless steel lid fitted with a Teflon gasket.

Synthesis of DHMF and HMFA from HMF under solvent-free mill balling conditions:

100 mg of HMF were placed in a planetary milling jar (approximately 50 mL capacity), 89 mg of finely ground KOH (previously oven dried) are added and the vessel is tightly closed. The reaction is spun at a 60 Hz frequency for 5 min. The reaction mixture is washed with EtOAc (2x2mL), and this organic portion is dried over Na₂SO₄, filtered and the solvent removed under vacuum to afford a pale yellow oil (49.6 mg) of DHMF. The remaining solid (not soluble in EtOAc) can be purified by recrystallization with EtOH:EtOAc (2:98) to obtain the potassium salt of HMFA (66 mg). Crude HNMR analysis shows 100% conversion with >99% yield for the disproportionation using 1,3,5-trimethoxybenzene as internal standard in DMSO-d⁶, which suggests that the minor lost in yield comes from the separation/purification step.

Calculation of the E-factor:

Based on the >99% yield obtained analyzing the crude.

Total mass of reactants: 100 + 89 = 189 mg Product mass: 50.6 + 71.2 = 121.8 mg Waste: 189 – 121.8 = 67.2 mg E-factor = waste/product = 67.2/121.8 = 0.55

Calculation of E-factor for previous report: S. Subbiah, S. Simenon, J. Esperanca, L. P. Rebelo and C. Afonso, *Green Chem.*, 2013, **15**, 2849–2853.

Total mass of reactants: 100 + 21.12 + 355.6 = 476.72 mg (assuming 90% recovery of THF from distillation) **Product mass:** 45.6 + 71.2 = 103.4 mg

Waste: 476.72 – 103.4 = 373.32 mg E-factor = waste/product = 373.32/103.4 = **3.61**

These calculations were done according to the examples presented in:

- 1. M. J. Climent, A. Corma, S. Iborra, M. Mifsud and A. Velty, *Green Chem.*, 2010, **12**, 99–107.
- 2. V. Trombettoni, D. Sciosci, M. P. Bracciale, F. Campana, M. L. Santarelli, A. Marrocchi and L. Vaccaro, *Green Chem.*, 2018, **20**, 3222–3231.

$HO \longrightarrow H \xrightarrow{O} H \xrightarrow{Base} HO \longrightarrow O \xrightarrow{O} O \longrightarrow{O} O \longrightarrow{O} O \xrightarrow{O} O \longrightarrow{O} O \to O \to O \to O O \to $					
Entry	Sacrifi	ce Reagent (equiv.)	Base (equiv.)	%yield (A:B)	
1	(CH ₂ O) _n	1.2 equiv.	КОН (2)	44% (only A)	
2	(CH ₂ O) _n	1.2 equiv.	КОН (4)	90% (only A)	
3	D-Glucose	1.2 equiv.	КОН (4)	95% (1:1)	
4	H ₃ CO	1.2 equiv.	КОН (4)	88% (1.2:1)	
5	Benzaldehyde	1.2 equiv.	КОН (4)	93% (1:1)	
6	N-K H	1.2 equiv.	КОН (4)	87% (1:1)	
7	0=	1.2 equiv.	КОН (4)	45% (1:1)	
8		1.2 equiv.	КОН (4)	31% (2:1)	
9		1.2 equiv.	КОН (4)	52% (4:1)	
10	CI, CI	1.2 equiv.	КОН (4)	20% (1:2)	
11		1.5 equiv.	КОН (6)	45% (1:2)	
12		2.0 equiv.	КОН (4)	20% (1:2.5)	
13		2.0 equiv.	кон (8)	52% (1:2)	

Table S1.	Sacrificial	reagents	tested t	for the	selective	cross-0	Cannizzaro	reaction	of HMF.
		F 2							

			₩ ЮН	∽ `ок		
	Mass of HMF (g)	Frequency of Milling (Hz)	Reaction Time (min)	Disproportionation % yield (HNMR)		
_	0.100	15	5	88		
	0.100	30	5	96		
	0.100	60	5	>99		
	12.800	60	5	92		
	12.800	60	7	>99		

Table S2. Effect of milling frequency and reaction time in the disproportionation of HMF.

HO-

HO-

Conditions

Conditions: 1 equiv. of HMF, 2.0 equiv. of KOH.

HO

Spectroscopic Data

Compound 1 : 5-hydroxymethylfuran-2-oic acid

Compound 1 was prepared following the optimized conditions for the Cannizzaro disproportionation of HMF on solvent-free planetary ball milling. It is highly important to use oven dried grinded KOH as humidity could affect the outcome of the reaction greatly. Compound 1 was isolated as described in the experimental section, and converted to the carboxylic with HCl/acid-base extraction treatment, to yield a white solid. This compound has proven to be sensitive to long-term exposure to air and light. So it was properly stored in an amber vial at 4 °C under inert atmosphere.

¹**H NMR** (500 MHz, DMSO-d⁶) δ ppm 12.94 (bs, 1H), 7.15 (d, J = 3.4 Hz, 1H), 6.46 (d, J = 3.4 Hz, 1H), 5.45 (bs, 1H), 4.44 (s, 2H).

¹³**C NMR** (125 MHz, DMSO-d⁶) δ ppm 160.1 (1C), 159.8 (1C), 144.4 (1C), 119.0 (1C), 109.4 (1C), 56.2 (1C).

HRMS (EI): Exact mass calculated for C₅H₃O₃⁻ [M-1]⁻⁻: 141.1021 found 141.0196 (-1.6 ppm).

Compound 2: 2,5-bishydroxymethyl furan

¹H NMR (500 MHz, CDCl₃) δ ppm 6.19 (s, 2H), 5.18 (bs, 2H), 4.36 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ ppm 155.0 (2C), 107.9 (2C), 56.2 (2C).

HRMS (EI): Exact mass calculated for C₆H₇O₃⁻ [M-1]⁻⁻: 127.1191 found 127.1186 (3.5 ppm).

Compound 3.1a : 5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-carboxylic acid

¹H NMR (500 MHz, CDCl₃) δ ppm 8.88 (bs, 1H), 7.26 (d, J = 3.5 Hz, 1H), 6.40 (d, J = 3.5 Hz, 1H), 4.72 (s, 2H), 0.91 (s, 9H), 0.10 (s, 6H).

 ^{13}C NMR (125 MHz, CDCl_3) δ ppm 163.4 (1C), 160.3 (1C), 121.0 (1C), 109.1 (2C), 58.6 (1C), 25.8 (3C), 18.3 (1C), -5.4 (2C).

HRMS (EI): Exact mass calculated for C₁₂H₁₉O₄Si⁻ [M-1]⁻⁻: 255.1059 found 255.1059 (2.4 ppm).

Compound 3.1b: (5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)methanol

¹H NMR (500 MHz, CDCl₃) δ ppm 6.20 (d, J = 3.1 Hz, 1H), 6.16 (d, J = 3.1 Hz, 1H), 4.60 (s, 2H), 4.54 (s, 2H), 2.62(bs, 1H), 0.89 (s, 9H), 0.07 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ ppm 154.2 (1C), 153.6 (1C), 108.4 (1C), 108.0 (1C), 58.2 (1C), 57.4 (1C), 25.9 (3C), 18.4 (1C), -5.3 (2C).

HRMS (EI): Exact mass calculated for C₁₂H₂₁O₃Si⁻ [M-1]⁻⁻: 241.1260 found 241.1267 (2.4 ppm).

Compound 3.2a : furan-2-carboxylic acid

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 13.06 (bs, 1H), 7.92 (dd, J = 1.7, 0.8 Hz, 1H), 7.22 (dd, J = 3.5, 0.8 Hz, 1H), 6.66 (dd, J = 3.5, 1.7 Hz, 1H).

 ^{13}C NMR (125 MHz, DMSO-d^6) δ ppm 159.7 (1C), 147.5 (1C), 145.3 (1C), 118.1 (1C), 112.5 (1C).

HRMS (EI): Exact mass calculated for C₅H₃O₃⁻ [M-1]⁻⁻: 111.0082found 111.0085 (2.6 ppm).

¹**H NMR** (500 MHz, DMSO-d⁶) δ ppm 7.57 (dd, *J* = 1.8, 0.8 Hz, 1H), 6.38 (dd, *J* = 3.1, 1.9 Hz, 1H), 6.27 (dd, *J* =3.1, 0.8, 1H), 5.16 (bs, 1H), 4.37 (s, 2H).

HRMS (EI): Exact mass calculated for $C_5H_5O_2^-$ [M-1]^{-:}: 97.0931 found 97.0927 (3.7 ppm). Spectral data in agreement with reported data from R. Ambre, C. Y. Yu, S. B. Mane, C. F. Yao and C. H. Hung, *Tetrahedron*, 2011, **67**, 4680–4688.

Compound 3.3a : 5-methylfuran-2-carboxylic acid

¹**H NMR** (500 MHz, DMSO-d⁶) δ ppm 12.77 (bs, 1H), 7.10 (dd, J = 3.3, 0.5 Hz, 1H), 6.28 (dd, J = 3.3, 0.9 Hz, 1H), 2.33 (dd, J = 0.9, 0.5 Hz, 3H).

HRMS (EI): Exact mass calculated for $C_6H_6O_3^-$ [M-1]⁻: 125.0239 found 125.0245 (4.7 ppm). Spectral data in agreement with reported data from E. Grovenstein and P. C. Lu, *J. Org. Chem.*, 1982, **47**, 2928–2939.

Compound 3.3b: (5-methylfuran-2-yl)methanol

¹**H NMR** (500 MHz, CDCl₃) δ ppm 6.16 (d, J = 3.1 Hz, 1H), 5.91 (d, J = 3.1 Hz, 1H), 4.54 (s, 2H), 2.29 (s, 3H).

HRMS (EI): Exact mass calculated for $C_6H_7O_2^-$ [M-1]^{-:}: 111.1201 found 111.1205 (3.9 ppm). Spectral data in agreement with reported data from B. Martín-Matute, C. Nevado, D. J. Cárdenas and A. M. Echavarren, *J. Am. Chem. Soc.*, 2003, **125**, 5757–5766.

Compound 3.4a : Thiophene-2-carboxylic acid

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 13.02 (bs, 1H), 7.85 (dd, J = 5.0, 1.3 Hz, 1H), 7.71 (dd, J = 3.7, 1.3 Hz, 1H), 7.16 (dd, J = 5.0, 3.7 Hz, 1H).

 ^{13}C NMR (125 MHz, DMSO-d^6) δ ppm 163.3 (1C), 135.1 (1C), 133.7 (1C), 133.6 (1C), 128.6 (1C).

HRMS (EI): Exact mass calculated for C₅H₃O₂S⁻ [M-1]⁻⁻: 126.9853 found 128.9847 (4.4 ppm).

Compound 3.4b : Thiophene-2-ylmethanol

¹**H NMR** (500 MHz, CDCl₃) δ ppm 7.28 (dd, J = 5.0, 1.3 Hz, 1H), 7.02 (ddt, J = 3.5, 1.3, 0.8 Hz, 1H), 6.98 (dd, J = 5.0, 3.5 Hz, 1H), 4.83 (s, 2H), 1.85 (bs, 1H).

 ^{13}C NMR (125 MHz, CDCl₃) δ ppm 143.9 (1C), 126.8 (1C), 125.6 (1C), 125.5 (1C), 60.0 (1C).

HRMS (EI): Exact mass calculated for C₅H₅OS⁻ [M-1]^{-:}: 113.0060 found 113.0063 (3.0 ppm).

Compound 3.5a : 2-bromo-4-methylbenzoic acid

¹**H NMR** (500 MHz, DMSO-d⁶) δ ppm 13.18 (bs, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.54 (dd, J = 1.7, 0.8 Hz, 1H), 7.25 (ddd, J = 7.8, 1.7, 0.8 Hz, 1H), 2.32 (s, 3H).

HRMS (EI): Exact mass calculated for C8H6O2Br- [M-1]-·: 212.9550 found 212.9544 (-2.6ppm). Spectral data in agreement with reported data from T. S. Mei, R. Giri, N. Maugel and J. Q. Yu, *Angew. Chemie - Int. Ed.*, 2008, **47**, 5215–5219.

Compound 3.5b : 2-bromo-4-methylbenzoic acid

¹H NMR (500 MHz,CDCl₃) δ ppm 7.33 (m, 2H), 7.10 (d, J = 7.8Hz, 1), 4.68 (s, 2H), 2.31 (s, 3H), 2.24 (bs, 1H).

HRMS (EI): Exact mass calculated for C₈H₈OBr⁻ [M-1]⁻: 198.9758 found 198.9764 (3.2 ppm). Spectral data in agreement with reported data from Spectral data in agreement with reported data from G. Giorgi, S. Maiti, P. López-Alvarado and J. C. Menéndez, *Org. Biomol. Chem.*, 2011, **9**, 2722–2730.

Compound 3.6a : 2-bromobenzoic acid

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 13.37 (bs, 1H), 7.70 (ddd, J = 12.9, 7.6, 1.7 Hz, 2H), 7.42 (ddd, J = 12.9, 7.6, 1.7 Hz, 2H).

¹³C NMR (125 MHz, DMSO-d⁶) δ ppm 167.8 (1C), 134.3 (1C), 134.2 (1C), 132.9 (1C), 131.0 (1C), 128.1 (1C), 120.4 (1C).

HRMS (EI): Exact mass calculated for C₇H₄O₂Br⁻ [M-1]⁻⁻: 198.9394 found 198.9389 (-2.3 ppm).

S - 21

Compound 3.6b : 2-bromobenzyl alcohol

¹**H NMR** (500 MHz, DMSO-d⁶) δ ppm 7.55 (dd, *J* = 7.6, 1.3 Hz, 2H), 7.40 (td, *J* = 7.6, 1.3 Hz, 1H), 7.20 (td, *J* = 7.5, 1.3 Hz, 1H), 5.41 (bs, 1H), 4.51, (s, 2H).

 ^{13}C NMR (125 MHz, DMSO-d^6) δ ppm 141.4 (1C), 132.4 (1C), 129.0 (1C), 128.6 (1C), 128.0 (1C), 121.5 (1C), 63.0 (1C).

HRMS (EI): Exact mass calculated for $C_7H_6OBr^-$ [M-1]^{-:}: 184.9601 found 184.9594 (-3.6 ppm).

Compound 3.7a : Benzoic acid

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 12.92 (bs, 1H), 7.92 (m, 2H), 7.60 (m, 1H), 7.48 (m, 2H). ¹³C NMR (125 MHz, DMSO-d⁶) δ ppm 167.7 (1C), 133.3 (1C), 131.2 (1C), 129.7 (2C), 129.0 (2C)

HRMS (EI): Exact mass calculated for C₇H₅O₂⁻ [M-1]⁻⁻: 121.0290 found 121.0293 (2.9 ppm).

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 7.30 (d, J = 4.4 Hz, 4H), 7.21 (m, 1H), 5.14 (m, 1H), 4.49 (d, J = 5.7 Hz, 1H)

 ^{13}C NMR (125 MHz, DMSO-d⁶) δ ppm 143.0 (1C), 128.5 (2C), 127.0 (1C), 126.8 (2C), 63.3 (1C).

HRMS (EI): Exact mass calculated for Tropylium $C_7H_7^+$ [M-OH]⁺: 91.0542 found 91.0541 (1.4 ppm).

Compound 3.8a : 4-methoxy benzoic acid

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 12.57 (bs, 1H), 7.87 (d, J = 8.9Hz, 2H), 7.00 (d, J = 8.9Hz, 2H), 3.80 (s, 3H).

 ^{13}C NMR (125 MHz, DMSO-d^6) δ ppm 167.4 (1C), 163.3 (1C), 131.8 (2C), 123.4 (1C), 114.2 (2C), 55.9 (1C).

HRMS (EI): Exact mass calculated for C₈H₇O₃⁻ [M-H]⁻⁻: 151.0395 found 151.0401 (3.9 ppm).

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 7.20 (d, J = 8.5Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.01 (t, J = 5.7Hz, 1H), 4.40 (d, J = 5.7Hz, 2H), 3.71 (s, 3H).

 ^{13}C NMR (125 MHz, DMSO-d^6) δ ppm 158.6 (1C), 134.9 (1C), 128.3 (2C), 113.9 (2C), 63.0 (1C), 55.5 (1C).

HRMS (EI): Exact mass calculated for C₈H₉O₂⁻ [M-H]⁻⁻: 137.0602 found 137.0606 (3.2 ppm).

Compound 3.9a : 4-chlorobenzoic acid

¹H NMR (500 MHz, DMSO-d⁶) δ ppm 13.5 (bs, 1H), 7.93 (d, J = 8.7Hz, 2H), 7.52 (d, J = 8.7Hz, 2H). ¹³C NMR (125 MHz, DMSO-d⁶) δ ppm 166.9 (1C), 138.2 (1C), 131.5 (2C), 130.1 (1C), 129.1 (2C).

HRMS (EI): Exact mass calculated for C₇H₄O₂Cl⁻ [M-H]⁻⁻: 154.9899 found 154.9903 (2.8 ppm).

Compound 3.9a : 4-chlorobenzyl alcohol

¹H NMR (500 MHz, CDCl₃) δ ppm 7.26 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 4.51 (s, 2H), 3.16 (bs, 1H).

¹³C NMR (125 MHz, CDCl₃) δ ppm 139.2 (1C), 133.2 (1C), 128.6 (2C), 128.2 (2C), 64.2 (1C).

HRMS (EI): Exact mass calculated for C₇H₆OCl⁻ [M-H]⁻⁻: 141.0206 found 141.0210 (3.1 ppm).

Compound 3.10a : 4-bromobenzoic acid

¹**H NMR** (500 MHz, DMSO-d⁶) δ ppm 13.14 (bs, 1H), 7.85 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H). 2H).

¹³C NMR (125 MHz, DMSO-d⁶) δ ppm 167.0 (1C), 132.0 (2C), 131.7 (2C), 130.4 (1C), 127.8 (1C).

HRMS (EI): Exact mass calculated for C₇H₄O₂Br⁻ [M-H]⁻⁻: 198.9394 found 198.9399 (2.7 ppm).

Compound 3.10b : 4-bromobenzyl alcohol

¹H NMR (500 MHz, CDCl₃) δ ppm 7.45 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 4.56 (d, J = 3.9Hz, 2H), 2.70 (t, J = 3.9 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ ppm 139.7 (1C), 131.6 (2C), 128.6 (2C), 121.4 (1C), 64.3 (1C).

HRMS (EI): Exact mass calculated for C₇H₆OBr⁻ [M-H]⁻⁻: 184.9601 found 184.9596 (-2.5 ppm).

