Supplementary Information

Green Synthesis of High-Performance LiFePO₄ Nanocrystals in Pure Water

Jinxing Yang,^{a,b} Zhaojin Li,^{a,c} Tianjia Guang,^{a,b} Minmin Hu,^{a,b} Renfei Cheng,^{a,b} Ruoyu

Wang,^{a,b} Chao Shi,^a Jixin Chen,^a Pengxiang Hou,^a Kongjun Zhu,^d and Xiaohui Wang*^a

^aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

^bSchool of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

^dState Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

1. Supporting Notes

1.1 Discussion on crystal orientation

To determine the crystal orientation of LiFePO₄, the particles were first ultrasonically dispersed in ethanol and then dried on an amorphous silicon substrate. In contrast to the as-synthesized LiFePO₄ powder with random orientation, the dispersed sample exhibits a strong [100] and [010] texture (Fig. S8a), which is apparently indicated by the decrease of $I_{(020)}/I_{(200)}$ from 2.9 in the as-synthesized powder to 1.5 in the dispersed sample. The degree of [100] and [010] texture was quantified using the Lotgering factor, *f*, which is defined by:¹

$$f = (p - p_0) / (1 - p_0)$$
⁽¹⁾

Where, an oriented sample (value *p*) and for the non-oriented material (value p_0), $p = \sum I_{h00}/\sum I_{hkl}$ or $p = \sum I_{0k0}/\sum I_{hkl}$ for the dispersed sample and $p_0 = \sum I_{h00}/\sum I_{hkl}$ or $p_0 = \sum I_{0k0}/\sum I_{hkl}$ for the as-synthesized powder. The Lotgering factor value for the dispersed sample is $f_{100} = 20.8\%$ and $f_{010} = 27.1\%$ respectively. The strong [100] and [010] texture in the dispersed sample implies that the O-LiFePO₄ nanocrystals have both [100] and [010] orientations, which is further confirmed by selected-area electron diffraction (SAED), as shown in Fig. S8b and c. The LiFePO₄ nanocrystals have both [100] and [010] orientations. It can be seen from TEM morphology that the LiFePO₄ nanocrystals present two different morphologies, i.e., hexagons and rectangles. The rectangular shape of LiFePO₄ particles show [100] orientation. This is because the nanocrystals are projected in different directions as shown in Fig. S8d–f. According to Islam and coworkers,² the relaxed surface energies of LiFePO₄ (100), (010), and (001) are 0.87, 0.72 and 1.11 J m⁻², respectively. Since the surfaces of (100) and (010) are small and close, it is easier to form [100] and [010] orientations. Thus, the size in both orientations is similar.

1.2 Discussion on EIS

Having firmly established the relevance of excellent electrochemical performance of O-LiFePO₄/C and R-LiFePO₄/C to lithium ion diffusion coefficient, electrochemical impedance spectroscopy (EIS) is adopted to gain insight into the electrochemical kinetic behavior and the interfacial properties between electrode and electrolyte. The Nyquist plots of LiFePO₄ nanomaterials show two different parts, a loop at high-frequency regions followed by a sloping line at low-frequency regions (Fig. S14a). The high frequency semicircle corresponds to the charge transfer resistance R_{ct} between the electrode and electrolyte, while the low-frequency oblique line indicates the Warburg impedance (Z_W), which is attributed to the Li⁺ diffusion in the electrode materials. According to the equivalent circuit (Fig. S15a), the values of above indicators are displayed in Table S2, from which we can see that the indicators for electrochemical kinetic behavior and the interfacial properties between electrode and electrolyte are comparable for O-LiFePO₄/C and R-LiFePO₄/C. Additionally, the D_{Li}^+ of the LiFePO₄/C samples can be calculated according to the equation³

$$D_{Li^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C_0^2 \sigma^2}$$
(2)

where R is the gas constant, *T* the absolute temperature (298 K), F the Faraday constant and σ the Warburg factor associated with Z_{re} by the equation³

$$Z_{re} = K + \sigma \omega^{-1/2} \tag{3}$$

According to the above equations, the D_{Li^+} were calculated to be 6.6×10^{-15} and 6.3×10^{-15} cm² s⁻¹ for O-LiFePO₄/C and R-LiFePO₄/C samples, respectively.

2. Supporting Figures

Fig. S1. As-synthesized suspension sample and the filtrate separated from the suspension. Photograph of (a) as-synthesized sample and (b) the filtrate. (c) SEM image of $BaSO_4$ precipitate. Inset shows the photograph of filter cake containing most of $BaSO_4$ precipitate. (d) EDS spectra of $BaSO_4$ precipitate, indicating that the presence of minor iron species.

Fig. S2. Illustration of two different heating methods. (a) Microwave heating and (b) oil bath heating. (c) Photograph of microwave workstation. The reaction vessel is 100 mL-capacity Teflon autoclave whose top and bottom are reinforced with microwave-transparent ceramic components. Moreover, a stirring function was supplemented at the bottom of microwave workstation.

Fig. S3. XRD patterns of LiFePO₄ synthesized by (a) microwave heating and (b) oil bath heating.

Fig. S4. Adsorption isotherms of LiFePO₄ samples by two different heating methods. The adsorption isotherms were analyzed and used to calculate the specific surface area (SSA) using the BET equation. P/P_0 values between 0.05 and 0.2 were used to calculate the SSA via multi-point BET. The slight hysteresis loop ($0.8 < P/P_0 < 1$) indicates the presence of macro-pores. The calculated SSA of (a) O-LiFePO₄ is 18.0 m² g⁻¹, (b) Oil-LiFePO₄ is 12.2 m² g⁻¹.

Fig. S5. Selected TEM images of O-LiFePO₄ nanocrystals synthesized by microwave heating for sizes statistics.

Fig. S6. Selected TEM images of LiFePO₄ nanocrystals synthesized by oil bath heating for sizes statistics.

Fig. S7. Adsorption isotherms of O-LiFePO₄ and R-LiFePO₄ samples. The adsorption isotherms were analyzed and used to calculate the SSA using the BET equation. P/P_0 values between 0.05 and 0.2 were used to calculate the SSA via multi-point BET. The slight hysteresis loop (0.4 < P/P_0 < 1) indicates the presence of meso- and macro-pores for (b) O-LiFePO₄/C and (d) R-LiFePO₄/C. The calculated SSA of (a) O-LiFePO₄ is 18.0 m² g⁻¹, (b) O-LiFePO₄/C is 37.8 m² g⁻¹, (c) R-LiFePO₄ is 17.6 m² g⁻¹and (d) R-LiFePO₄/C is 36 .1 m² g⁻¹.

Fig. S8. Crystal orientation determination of O-LiFePO₄. (a) XRD patterns of the as-synthesized O-LiFePO₄ crystals and those first dispersed in ethanol and then slowly dried on an amorphous silicon substrate. (b) TEM morphology of the O-LiFePO₄ with rectangular geometry and the corresponding SAED pattern, indicating that the predominantly exposed facet is (100). (c) TEM morphology of the O-LiFePO₄ with hexagonal geometry and the corresponding SAED pattern, indicating that the predominantly exposed facet is (100). (c) TEM morphology of the O-LiFePO₄ with hexagonal geometry and the corresponding SAED pattern, indicating that the predominantly exposed facet is (100). (d) Diagrammatic drawing of LiFePO₄ and its projections along (e) the [010] and (f) the [100] direction.

Fig. S9. TEM images of O-LiFePO₄/C. Inset shows carbon film coated on O-LiFePO₄/C.

Fig. S10. FTIR spectra of the samples for (a): O-LiFePO₄, O-LiFePO₄/C and (b): R-LiFePO₄, R-LiFePO₄/C.

Fig. S11. Typical charge/discharge profiles of (a) O-LiFePO₄/C and (b) R-LiFePO₄/C.

Fig. S12. Fitting results of the PITT experimental data of O-LiFePO₄/C and R-LiFePO₄/C. The coefficients of determination for O-LiFePO₄/C is $R^2 = 0.9928$ at a step of 150 mV, while for R-LiFePO₄/C is $R^2 = 0.9507$ at a step of 150 mV.

Fig. S13. CV profiles of the (a) O-LiFePO₄/C and (b) R-LiFePO₄/C at various sweeping rates of 0.05, 0.1, 0.3, 0.5, and 0.7 mV s⁻¹. (c) Peak current density as a function of the square root of the scanning rate derived from the sweeping-rate-dependent CV profiles.

Fig. S14. EIS spectra of O-LiFePO₄/C and R-LiFePO₄/C. (a) Nyquist impedance spectra of O-LiFePO₄/C and R-LiFePO₄/C at room temperature and (b) Linear fittings between Z_{re} and the reciprocal of the square root of the angular frequency in the low frequency region. The real part of the Warburg impedance (Z_{re}) versus the square root of frequency ($\omega^{-1/2}$) at open circuit voltage for the O-LiFePO₄/C and R-LiFePO₄/C.

Fig. S15. Equivalent circuit of EIS spectra. Equivalent circuit adopted in the simulation of EIS spectra for (a) O-LiFePO₄/C and R-LiFePO₄/C electrodes. R_s : electrolyte resistance; CPE_{dl}: electrical double layer capacitor; R_{ct} : charge transfer resistance; CPE₁: constant phase angle element and Z_w : Warburg impedance. (b) and (c) O-LiFePO₄/C at redox voltages. R_{eei} : the interface resistance between electrode and electrolyte; R_m : the migration of Li⁺ ions in the electrode.

3. Supporting Tables

Table S1. Compare the volume specific yield of LiFePO₄ that was prepared by hydro(solvo)thermal synthesis. H: hydrothermal, S: solvothermal.

Year	Method	I Raw materials	Morphology	Size	Yield (mol/L)	Ref.
2010	Н	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Platelike	1–2 µm	0.56	4
2011	S	LiOH FeSO ₄ H ₃ PO ₄	Quasi-	2–5 µm	0.10	5
			spherical			
2012	Η	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanoplates	width: 50 nm, <i>b</i> :	0.38	6
		SDBS	Nanorods	20 nm;		
				<i>b</i> : 90 nm		
				length: 200 nm-1		
				μm		
2012	S	$Li_2SO_4Fe(NO_3)_3 \cdot 9H_2OP_2O_5$	Microspheres	1.6 µm	0.17	7
2013	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Agglomeratio	300–500 nm	0.15	8
			n			
2013	Η	LiOH·H ₂ O FeSO ₄ ·7H ₂ O	Ellipsoid	300–500 nm	0.08	9
		NH ₄ H ₂ PO ₄ PVP	Spindle	500 nm–2 μm,		
		$Na_4P_2O_7 \cdot 10H_2O$	Sheet	width: 100 nm		
			Plate	300 nm		
			Nanoparticle	100 nm		
2013	Η	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Hexahedron	200 nm	0.33	10
2013	Η	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Particles	150 nm	0.33	11
2013	S	LiH ₂ PO ₄ FeSO ₄ ·7H ₂ O DMAC	Flower-like	10 µm	1.00	12
2013	S	LiOH·H ₂ O FeSO ₄ ·6H ₂ O H ₃ PO ₄	Nano-	80 nm, 30 nm	0.20	13
			particles			
2013	S	LiOH FeCl ₂ ·4H ₂ O H ₃ PO ₄	hollow	1 µm	0.40	14
			spheres			
2014	Н	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Plate	350 nm	0.11	15
			Spheroidal	100–150 nm		
2014	Н	CH ₃ COOLi·2H ₂ O	Spherical	2–4 µm	0.67	16
		Fe(NO ₃) ₃ ·9H ₂ O NH ₄ H ₂ PO ₄				
2014	Н	LiOH FeSO ₄ ·7H ₂ O H ₃ PO ₄	(001)	11.8 μm	1.00	17
			Microplate,	2.3 μm		
			(010)			
			Microplate			
2014	Н	LiOH FeSO ₄ ·7H ₂ O H ₃ PO ₄	Particles	50–200 nm	0.80	18
2014	Н	LiOH FeSO ₄ H ₃ PO ₄	Nanoparticles	50–150 nm	0.20	19
2014	S	LiH ₂ PO ₄ FeCl ₂ ·4H ₂ O	Nanowires	5 µm, 40 nm	0.15	20

2014	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanoplates Nanorods	100–150 nm, 100 nm	0.30	21
				250 nm, 40 nm		
2014	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanoplates	<100 nm	0.38	22
		2 7 2 5 7	Rectangular	<i>a</i> : 100 nm		
			prism	100 nm		
			Hexagonal	100		
			prism			
2014	S	LiCl·H2O FeCl2·6H2O	Microplates	length: 2.5 µm	0.21	23
2011	~	NH ₄ H ₂ PO ₄ N ₂ H ₄ :H ₂ O	Microflowers	width: 1.5 um	0.21	
				thickness		
				:200–500 nm		
2014	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanoplates	90–250 nm	0.20	24
2015	S	CH ₃ COOLi 2H ₂ O	Starfish-like	10 µm	0.27	25
		Fe(NO ₃) ₃ ·9H ₂ O		·		
		$NH_4H_2PO_4$				
2015	Н	LiOH·H ₂ O Fe(NO ₃)·9H ₂ O	Spherical	4 μm	0.25	26
		NH ₄ H ₂ PO ₄				
2015	Н	Li ₂ CO ₃ (NH ₄) ₂ Fe(SO ₄) ₂ ·6H ₂ O	Spherical-like	200–500 nm	0.13	27
		$(NH_4)_2HPO_4$	Cubic	200–500 nm		
2015	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanoplates	50–100 nm	0.30	28
2015	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Ellipsoidal	230 nm, 160 nm.	0.11	29
			Platelet	length and width		
				3 µm		
2015	S	LiOH FeSO ₄ H ₃ PO ₄	Nanorods	length: 50-100	0.03	30
				nm, width: 30-50		
				nm		
2015	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Hollow	150–300 nm	0.14	31
			nanoparticles			
2015	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Rod-like	830 nm	0.50	32
		Tween-80				
2015	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Spindle-like	long axis: 650 nm	0.80	33
				short axis: 300		
				nm		
2015	S	$LiOH \cdot H_2O FeSO_4 \cdot 7H_2O H_3PO_4$	Plates	thickness: 25 nm	0.38	34
2015	S	L1OH·H2O FeSO4·7H2O H3PO4	Nanoplates	<i>a</i> , <i>b</i> , <i>c</i> : 60–80	0.25	35
				nm,		
				~30 nm, 80–100		
0011	~			nm	<u> </u>	
2016	S	$L_1OH \cdot H_2O FeSO_4 \cdot 7H_2O H_3PO_4$	Nanotlakes	<i>a</i> , <i>b</i> , <i>c</i> : 12, 134,	0.99	36

				280 nm		
2016	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanosheets	thickness: 50 nm	0.05	37
2016	Н	LiOH·H ₂ O	Plat-form	0.5–1 μm	0.17	38
		$(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$				
		NH ₄ H ₂ PO ₄				
2016	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Plate-like	300 nm	0.13	39
2016	Н	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Rectangular	width: 100-150	0.33	40
			particles	nm, length:		
				300–600 nm		
2016	Н	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Hexagonal	1–2 µm	0.40	41
			hollow			
			crystal			
2016	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Plates	thickness: 200	0.40	42
				nm		
2016	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanoflakes	150 nm	0.11	43
2016	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanorods	length: 90-150	0.13	44
				nm, diameter: 70		
				nm		
2016	S	CH ₃ COOLi·2H ₂ O	Nanoparticles	diameter: 200 nm	0.25	45
		Fe(NO ₃) ₃ ·9H ₂ O NH ₄ H ₂ PO ₄	Nanoplates	thickness: <100	1	
				nm		
2017	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Particles	80 nm	0.20	46
2017	S	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Rectangular	180 nm	0.30	47
			shape			
2018	Н	LiOH·H ₂ O FeSO ₄ ·7H ₂ O H ₃ PO ₄	Nanorods	<i>a</i> , <i>b</i> , <i>c</i> : 65, 62,	1.32	this
				134 nm		work

Elamon4a	O-LiFePO ₄ /C		R-LiFePO ₄ /C	
Elements	Values	Error/%	Values	Error/%
R _s (ohm)	3.1	1.2	3.9	1.3
R _{ct} (ohm)	102.4	0.8	105.8	0.7
CPE _{dl} (F)	2.3×10 ⁻⁵	3.0	1.5×10 ⁻⁵	3.3
CPE ₁ (F)	3.1×10 ⁻³	1.8	3.5×10 ⁻³	1.8
$Z_{ m w}$ (ohm)	1.2×10 ⁻⁴	7.6	1.3×10 ⁻⁴	7.5

 Table S2. Simulation results of the equivalent circuit in Fig. S15(a).

Flore on to	Charge: 3.50 V		Charge: 3.55 V	
Elements -	Values	Error/%	Values	Error/%
R _s (ohm)	3.6	6.5	6.1	3.7
R _{eei} (ohm)	37.4	8.2	17.6	7.7
C _{eei} (F)	1.7×10 ⁻⁶	4.7	5.6×10 ⁻⁴	18.2
R _{ct} (ohm)	173.2	2.3	17.6	3.4
C _{dl} /CPE _{dl} (F)	5.1×10 ⁻⁴	13.6	2.8×10 ⁻⁶	8.5
R _m (ohm)	93.0	4.4	10.2	10.5
C _m (F)	4.0×10 ⁻⁶	7.8	1.1×10 ⁻⁶	6.8
$Z_{ m w}$ (ohm)	2.0×10 ⁻²	6.8	1.3×10 ⁻⁴	7.5
Flomonts -	Discharge: 3.30 V		Discharge: 3.40 V	
Liements	Values	Error/%	Values	Error/%
R _s (ohm)	5.9	5.3	4.8	2.1
R _{eei} (ohm)	24.8	6.9	4.0	5.7
C _{eei} (F)	5.0×10 ⁻⁶	17.8	2.1×10 ⁻³	13.3
R _{ct} (ohm)	37.1	8.0	29.1	1.5
C _{dl} /CPE _{dl} (F)	2.1×10 ⁻³	17.8	1.6×10 ⁻⁵	8.9
R _m (ohm)	12.4	12.8	1.6	15.2
\mathbf{C} (F)				
$C_{m}(\mathbf{r})$	1.1×10 ⁻⁶	8.4	2.2×10^{-6}	12.6

 Table S3. Simulation results of the equivalent circuit in Fig. S15(b) and (c).

4. References

- 1. F. K. Lotgering, J. Inorg. Nucl. Chem., 1959, 9, 113-123.
- 2. C. A. J. Fisher and M. S. Islam, J. Mater. Chem., 2008, 18, 1209–1215.
- L. L. Peng, X. Zhang, Z. W. Fang, Y. Zhu, Y. J. Xie, J. J. Cha and G. H. Yu, *Chem. Mater.*, 2017, 29, 10526–10533.
- X. Qin, X. Wang, H. Xiang, J. Xie, J. Li and Y. Zhou, J. Phys. Chem. C, 2010, 114, 16806–16812.
- 5. X. Zhou, F. Wang, Y. Zhu and Z. Liu, J. Mater. Chem., 2011, 21, 3353–3358.
- 6. B. Pei, H. Yao, W. Zhang and Z. Yang, J. Power Sources, 2012, 220, 317–323.
- H. Deng, S. Jin, L. Zhan, Y. Wang, W. Qiao and L. Ling, *J. Power Sources*, 2012, 220, 342–347.
- D. Zhao, Y. L. Feng, Y. G. Wang and Y. Y. Xia, *Electrochim. Acta*, 2013, 88, 632–638.
- Y. Yu, Q. Li, Y. Ma, X. Zhang, Y. Zhu and Y. Qian, J. Nanosci. Nanotechnol., 2013, 13, 1515–1519.
- J. Li, Q. Qu, L. Zhang, L. Zhang and H. Zheng, J. Alloys Compd., 2013, 579, 377–383.
- Z. Chen, B. Du, M. Xu, H. Zhu, L. Li and W. Wang, *Electrochim. Acta*, 2013, 109, 262–268.
- N. Zhou, E. Uchaker, H. Y. Wang, M. Zhang, S. Q. Liu, Y. N. Liu, X. Wu, G. Cao and H. Li, *RSC Advances*, 2013, 3, 19366–19374.
- L. Wang, W. Sun, X. Tang, X. Huang, X. He, J. Li, Q. Zhang, J. Gao, G. Tian and S. Fan, *J. Power Sources*, 2013, 244, 94–100.
- S. Yang, M. Hu, L. Xi, R. Ma, Y. Dong and C. Y. Chung, ACS Appl. Mater. Interfaces, 2013, 5, 8961–8967.
- 15. Z. Y. Chen, M. Xu, B. L. Du, H. L. Zhu, T. Xie and W. H. Wang, J. Power Sources, 2014, 272, 837–844.
- L. Y. Tan, Q. L. Tang, X. H. Chen, A. P. Hu, W. N. Deng, Y. S. Yang and L. S. Xu, *Electrochim. Acta*, 2014, **137**, 344–351.
- Y. Q. Wang, D. Y. Zhang, C. K. Chang, L. Deng and K. J. Huang, *Mater. Chem. Phys.*, 2014, **148**, 933–939.
- 18. Y. Zhang, L. Wu, J. Zhao and W. Yu, J. Electroanal. Chem., 2014, 719, 1-6.
- Y. Ma, X. L. Li, Z. Xie, Z. L. Xiu, Y. Z. Wu and X. P. Hao, J. Mater. Sci.: Mater. Electron., 2014, 25, 2716–2723.
- 20. L. Peng, Y. Zhao, Y. Ding and G. Yu, Chem. Commun. 2014, 50, 9569–9572.

- J. J. Song, L. Wang, G. J. Shao, M. W. Shi, Z. P. Ma, G. L. Wang, W. Song, S. Liu and C. X. Wang, *Phys. Chem. Chem. Phys.*, 2014, 16, 7728–7733.
- Z. P. Ma, G. J. Shao, Y. Q. Fan, G. L. Wang, J. J. Song and T. T. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 9236–9244.
- J. Zhang, J. B. Lu, D. C. Bian, Z. H. Yang, Q. Wu and W. X. Zhang, *Ind. Eng. Chem. Res.*, 2014, 53, 12209–12215.
- M. M. Chen, Q. Q. Ma, C. Y. Wang, X. Sun, L. Q. Wang and C. Zhang, J. Power Sources, 2014, 263, 268–275.
- 25. M. F. Chen, X. Y. Wang, H. B. Shu, R. Z. Yu, X. K. Yang and W. H. Huang, *J. Alloys Compd.*, 2015, **652**, 213–219.
- W. Wei, L. Guo, X. Qiu, P. Qu, M. Xu and L. Guo, *RSC Advances*, 2015, 5, 37830–37836.
- 27. X. F. Li, D. M. Luo, X. Zhang and Z. Zhang, J. Power Sources, 2015, 291, 75-84.
- J. J. Song, G. J. Shao, Z. P. Ma, G. L. Wang and J. Yang, *Electrochim. Acta*, 2015, 178, 504–510.
- Y. Li, J. N. Weker, W. E. Gent, D. N. Mueller, J. Lim, D. A. Cogswell, T. Tyliszczak and W. C. Chueh, *Adv. Funct. Mater.*, 2015, 25, 3677–3687.
- R. Y. Tian, H. Q. Liu, Y. Jiang, J. K. Chen, X. H. Tan, G. G. Liu, L. Zhang, X. H. Gu, Y. J. Guo, H. F. Wang, L. F. Sun and W. G. Chu, *ACS Appl. Mater. Interfaces*, 2015, 7, 11377–11386.
- Z. M. Zheng, W. K. Pang, X. C. Tang, D. Z. Jia, Y. D. Huang and Z. P. Guo, J. Alloys Compd., 2015, 640, 95–100.
- 32. Y. Y. Liu, J. J. Gu, J. L. Zhang, F. Yu, J. Wang, N. Nie and W. Li, *RSC Advances*, 2015, **5**, 9745–9751.
- Y. P. Zhang, L. L. Wu, J. B. Zhao and W. Y. Yu, *Mater. Chem. Phys.*, 2015, 166, 182–189.
- 34. Z. P. Ma, Y. Q. Fan, G. J. Shao, G. L. Wang, J. J. Song and T. L. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 2937–2943.
- B. Wang, A. Liu, W. A. Abdulla, D. Wang and X. S. Zhao, *Nanoscale*, 2015, 7, 8819–8828.
- Z. Li, Z. Peng, H. Zhang, T. Hu, M. Hu, K. Zhu and X. Wang, *Nano Lett.*, 2016, 16, 795–799.
- 37. S. Lin, Q. Ge, Y. Cao, W. Qin and X. Wen, Mater. Express, 2016, 6, 351-356.
- 38. L. Yang, J. Chen, L. Chen, P. Yang, J. Zhang, A. Li, Y. Wang, Y. Wang and R. Wang, J. Mater. Sci. Mater. Electron., 2016, 27, 12258–12263.

- 39. L. Bao, L. L. Li, G. Xu, J. W. Wang, R. Y. Zhao, G. Shen, G. R. Han and S. X. Zhou, *Electrochim. Acta*, 2016, **222**, 685–692.
- 40. A. Milev, L. George, S. Khan, P. Selvam and G. S. Kamali Kannangara, *Electrochim. Acta*, 2016, **209**, 565–573.
- A. Paolella, S. Turner, G. Bertoni, P. Hovington, R. Flacau, C. Boyer, Z. Feng, M. Colombo, S. Marras, M. Prato, L. Manna, A. Guerfi, G. P. Demopoulos, M. Armand and K. Zaghib, *Nano Lett.*, 2016, 16, 2692–2697.
- 42. G. Liu, S. Zhang, X. Wei, S. Wang and Y. Yu, *Int. J. Electrochem. Sci.*, 2016, **11**, 6799–6807.
- L. Hu, T. W. Zhang, J. W. Liang, Y. C. Zhu, K. L. Zhang and Y. T. Qian, *RSC Advances*, 2016, 6, 456–463.
- 44. Y. J. Wang, B. Zhu, Y. M. Wang and F. Wang, *Ceram. Int.*, 2016, **42**, 10297–10303.
- 45. Y. Zhou, J. Lu, C. Deng, H. Zhu, G. Z. Chen, S. Zhang and X. Tian, *J. Mater. Chem. A*, 2016, **4**, 12065–12072.
- 46. X. Huang, X. He, C. Jiang, G. Tian and Y. Liu, *Ind. Eng. Chem. Res.*, 2017, **56**, 10648–10657.
- 47. X. Huang, K. Zhang, F. Liang, Y. Dai and Y. Yao, *Electrochim. Acta*, 2017, **258**, 1149–1159.