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1. Characterization data of H2L and catalysts 

Materials and Methods. The infrared spectra were recorded on a Burker VERTEX 70 FTIR 
spectrometer using KBr pellets in the 400-4000cm-1 region. The steadystate luminescence 
spectra, were determined on a FLSP 920 fluorescence spectrometer (Edinburgh Instruments, 
UK) at room temperature on solid-state samples. 

Figure S1. IR of H2L, complexes 1 and 2

Figure S2. Normalized excitation and emission spectra of the recycled catalyst 1 in the solid 
state
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2. Crystallography data

Crystal data were collected on a Bruker FRAMBO diffractometer (Mo Kα radiation, λ = 0.71073 
Å) at 290 K. Data reduction was accomplished by the Bruker SAINT program. Multi-scan 
absorption corrections were applied by using the program SADABS. Structures were solved by 
direct methods and refined by a full matrix least-squares technique based on F2 using the Olex2 
1.2 program. (CCDC number: 1841341 and 1841342 for 1 and 2, respectively)

Table S1. Crystal data and structure refinement parameters for complexes 1 and 2

1 2

Empirical formula Zn3Nd4C114H126N24O42 Zn3Eu4C114H126N24O42

Formula weight 3277.45 3308.33

T/K 290.83(10) 290.83(10)

Crystal system trigonal trigonal

Space group R-3c R-3c

a/Å 17.8928(5) 17.8497(5)

b/Å 17.8928(5) 17.8497(5)

c/Å 69.099(2) 68.762(2)

α /˚ 90 90

β/ ˚ 90 90

γ/˚ 120 120

V/Å3 19158.4(12) 18973.1(12)

Z 6 6

Dcalc/Mg m-3 1.704 1.737

F(000) 9864.0 9936.0 

θ range for data collection 6.982 to 57.712 ˚ 6.992 to 51.986˚

Data/restraints/parameters 5402/18/285 4145/18/285

Goodness-of-fit on F2  1.007 1.033

Final R indices [I>2sigma (I)]a R1=0.0489, wR2=0.0974 R1=0.0420, wR2=0.0826

R indices (all data)b R1=0.1179, wR2=0.1244 R1=0.0825, wR2=0.1018

Largest diff. peak/hole/e. Å-3 1.97/-0.81 1.80/-0.99

aR1 = Σ||Fo| -|Fc||/Σ|Fo|; bwR2 = Σ[w(Fo
2-Fc

2)2]/Σ[w(Fo
2)2]1/2 
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Table S2. Selected bond lengths (Å) for complex 1

1

Nd1-O4 2.364(4) Nd1-O22 2.520(4) Nd2-O52 2.494(4)

Nd1-O41 2.364(3) Nd1-O2 2.519(4) Nd2-O6 2.502(4)

Nd1-O42 2.364(3) Nd1-O21 2.520(4) Nd2-O62 2.501(4)

Nd1-O12 2.573(4) Nd2-O42 2.458(4) Nd2-O61 2.501(4)

Nd1-O1 2.573(4) Nd2-O4 2.458(4) Zn1-N33 1.998(5)

Nd1-O11 2.573(4) Nd2-O41 2.458(4) Zn1-N3 1.998(5)

Nd1-N11 2.976(5) Nd2-O5 2.494(4) Zn1-O73 1.905(4)

Nd1-N12 2.976(5) Nd2-O51 2.494(3) Zn1-O7 1.905(4)

Nd1-N1 2.976(5)
11-Y,1+X-Y,+Z; 2+Y-X,1-X,+Z; 32/3-Y+X,4/3-Y,-1/6-Z

Table S3. Selected bond lengths (Å) for complex 2

2

Eu1-O1 2.476(4) Eu1-O32 2.330(4) Eu2-O4 2.472(4)

Eu1-O11 2.477(5) Eu1-O3 2.330(4) Eu2-O32 2.418(4)

Eu1-O12 2.477(5) Eu1-O31 2.330(4) Eu2-O3 2.418(4)

Eu1-O22 2.545(4) Eu2-O51 2.457(4) Eu2-O31 2.418(4)

Eu1-O21 2.545(4) Eu2-O52 2.457(4) Zn1-O63 1.910(4)

Eu1-O2 2.545(4) Eu2-O5 2.457(4) Zn1-O6 1.910(4)

Eu1-N12 2.940(6) Eu2-O42 2.472(4) Zn1-N33 1.994(5)

Eu1-N11 2.940(6) Eu2-O41 2.472(4) Zn1-N3 1.994(5)

Eu1-N1 2.940(6)

11-Y, +X-Y,+Z; 21+Y-X,1-X,+Z; 34/3-X,2/3-X+Y,7/6-Z
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Supplementary Structural Figures.

Figure S3 M and P enantiomers extracted from the structure of complex 1 (H atoms, coordinated 

nitrates, solvent molecules and phenyl were omitted for clarity.)

Figure S4. Complex 1: a. single strand of helicate; b. Coordination polyhedron of Nd3+; c. 

Coordination polyhedron of Zn2+. ( 11-Y, +X-Y,+Z; 21+Y-X,1-X,+Z; 34/3-X,2/3-X+Y,7/6-Z)
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Figure S5. Complex 2: a. single strand of helicate; b. Coordination polyhedron of Eu3+; c. 

Coordination polyhedron of Zn2+. ( 11-Y, +X-Y,+Z; 21+Y-X,1-X,+Z; 34/3-X,2/3-X+Y,7/6-Z)
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3. Catalysis Details

Table S4. Representative homogeneous and heterogeneous catalysts with high TOF used for the 

synthesis of cyclic carbonates.

Cat. Co-cat. Catalyst/Epoxide

(Mole ratio)

P

(MPa)

T

(oC)

Tim

e

(h)

Conversions

(%)

TOF

(h-1)

Ref

Zn(OPO)2 TBAB

(0.9)

(propylene epoxide)

1:40000

3 120 1 46 18400 1

Zn-CMP TBAB

(0.9)

(propylene epoxide)

1:40000

3 120 1 29 11600 2

Zn-porphyrin - (1,2-Epoxyhexane)

1:33333

1.7 160 1 79 26333 3

Al-aminotriphenolate PPN-Br (1,2-Epoxyhexane) 

1:200000

1 90 2 36 36000 4

Mg-porphyrin - (1,2-Epoxyhexane)

1:33333

1.7 120 1 36 12000 5

1 TBAB

(0.5)

(styrene oxide)

1:40000

1 120 1 61 24400

- TBAB

(0.5)

(styrene oxide)

1:40000

1 120 1 19 -

This 

work

This 

work

Table S5. Synthesis of cyclic carbonate via insertion of CO2 to epichlorohydrin catalysed 

by catalyst 1 under ambient condition.

Entry Cat. (%) Co-cat. (%) T(oC) P(bar) Time(h) Conversions(%)

1 - TBAB(1) r.t 10 24 9

2 - TBAB(2) r.t 10 24 12

3 - TBAB(3.6) r.t 10 24 18

4 1 TBAB(3.6) r.t 1 24 83

Reaction conditions: 10 mmol epoxide, 0.125 mol % catalyst, 1-3.6 mol % TBAB, r,t, 24 h, 1-10 

atm; Conversions were determined by 1H NMR analysis. Selectivity of cyclic carbonates were all 

>99%.
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Table S6. Time-course studies of catalysts 1 of cycloaddition reaction started with 
excessive styrene oxide (50 mmol), catalyst (0.001 mmol), TBAB (0.08 mmol), 120 oC 
and 1 MPa CO2. After a time interval, the small aliquot of the supernatant reaction 
mixture was taken out when the pressure of CO2 decreased to 0.7 MPa, then purged CO2 
to 1 MPa again and heated to 120 oC. The conversions were calculated by 1H NMR.

Round Total time Conversion/%

1 1 21

2 2.5 45

3 4.5 67

4 7.5 79

5 12 88

6 18 99

Figure S6. Histogram of the conversions of excessive styrene oxide using complex 1 
under standard conditions. 
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4. Characterization data and NMR Spectra
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