Supporting Information

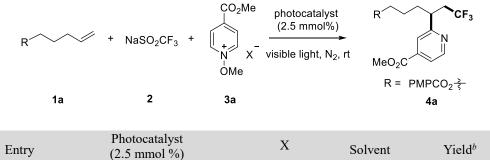
Metal-Free Photocatalytic Trifluoromethylative Pyridylation of Unactivated Alkenes

Yu-Tao He, Dahye Kang, Inwon Kim and Sungwoo Hong*

Center for Catalytic Hydrocarbon Functionalization Institute for Basic Science (IBS), Daejeon, 34141, Korea and Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), Daejeon, 34141, Korea

I. General Methods and Materials	S2
II. Optimization of the reaction conditions	S2
III. General experimental Procedure	S4
IV. Control Experiments	S4
V. Compound Characterizations	S13
VI. Crystallographic Data of 5e	S44
VII. Computational Details	S45
VIII. References	S47

Appendix I


Spectral Copies of ¹ H-, ¹³ C- and ¹⁹ F-NMR Data Obtained in this Study	S49
--	-----

I. General Methods and Materials.

Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F²⁵⁴ plates and visualization on TLC was achieved by UV light (254 and 365 nm). Flash column chromatography was undertaken on silica gel (400-630 mesh). ¹H NMR was recorded on 400 MHz or 600 MHz and chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, td = triplet of doublet, ddd = doublet of doublet of doublet. Coupling constants, J, were reported in hertz unit (Hz). ¹³C NMR was recorded on 100 MHz or 150 MHz and was fully decoupled by broad band proton decoupling. Chemical shifts of ¹³C NMR were reported in ppm referenced to the centerline of a triplet at 77.0 ppm of CDCl₃. ¹⁹F NMR was recorded on 376 MHz or 564 MHz and was fully coupled by broad band proton decoupling. Highresolution mass spectra were obtained by using EI or FAB method from Korea Basic Science Institute (Daegu), and ESI method from KAIST Basic Science Institute. Single crystal x-ray diffraction experiment with synchrotron radiation were performed at the BL2D-SMC in Pohang Accelerator Laboratory. Commercial grade reagents and solvents were used without further purification except as indicated below.

II. Optimization of the reaction conditions

Table S1^a

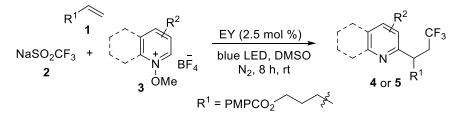
Entry	Photocatalyst (2.5 mmol %)	Х	Solvent	Yield ^b
1	Ru(bpy) ₃ PF ₆	BF_4^-	MeCN	30%
2	$Ir(dF(CF_3)ppy_2(bpy)PF_6$	BF_4^-	MeCN	35%
3	Ir(dF(CF ₃)ppy ₂ (dtbpy)PF ₆	BF_4^-	MeCN	39%
4	<i>fac</i> -Ir(ppy) ₃	BF_4^-	MeCN	44%
5	Ir(F-ppy) ₃	BF_4^-	MeCN	59%
6	Ir(F-ppy) ₃	BF_4^-	DMSO	79%
7	Mes-Acr+	BF_{4}	DMSO	10%

8	Eosin Y	BF_4^-	DMSO	84%
9	Eosin Y	BF_4^-	MeCN	40%
10	Eosin Y	BF4 ⁻	DMF	39%
11	Eosin Y	BF4 ⁻	DCM	29
12	Eosin Y	BF_4	toluene	trace
13	Eosin Y	BF4 ⁻	dioxane	30%
14	Eosin Y	BF_4^-	MeOH	30%
15 ^[c]	Eosin Y	BF_4	DMSO	74%
16 ^[d]	Eosin Y	BF4 ⁻	DMSO	11%
17 ^[e]	Eosin Y	BF4 ⁻	DMSO	68%
$18^{[f]}$	Eosin Y	BF_4	DMSO	78%
$19^{[f]}$	Eosin Y	CH ₃ OSO ₃ ⁻	DMSO	77%
20 ^[f]	Eosin Y	OTf	DMSO	79%
21	—	BF_4	DMSO	< 5%
22 ^[g]	Eosin Y	BF4 ⁻	DMSO	0%
23 ^[h]	Eosin Y	BF_4	DMSO	< 5%

[a] Unless otherwise noted, reactions were performed with mixtures of **1** (0.2 mmol), **2** (0.3 mmol), **3a** (0.4 mmol), photocatalyst (2.5 mol%) in solvent (2.0 mL) at rt under irradiation by blue LEDs for 4 h. [b] The isolated yields of products. [c] Under irradiation by white LED. [d] Under irradiation by red LEDs. [e] Under irradiation by 30 W CFL. [f] Under irradiation by green LED (7.5 W) for 8 h. [g] The reaction was carried out in the dark. [h] TEMPO (1.5 equiv) was added.

40W Kessil blue LED (25% intensity, 456nm): Eosin Y as a photocatalyst

time	15 min	30 min	60 min	2.0 h	4.0 h	6.0 h	8.0 h
yield	18%	32%	49%	68%	84%	85%	83%


7.5 w blue LED: Eosin Y as a photocatalyst:

time	15 min	30 min	60 min	2.0 h	4.0 h	6.0 h	8.0 h
yield	11%	21%	36%	56%	72%	77%	79%

7.5 w green LED: Eosin Y as a photocatalyst:

time	15 min	30 min	60 min	2.0 h	4.0 h	6.0 h	8.0 h
yield	4%	11%	21%	50%	62%	71%	78%

III. General experimental procedure

An oven-dried tube was charged with alkene 1 (0.2 mmol), N-methoxyheteroarenium salts 3 (0.4 mmol), CF_3SO_2Na (0.3 mmol), and Eosin Y (0.005 mmol). The tube was evacuated and backfilled with nitrogen (repeated three times). Then, dimethyl sulfoxide (2.0 mL) was added into the reaction via syringe. 7.5 W Green LEDs, or 40W Kessil blue LED with 25% intensity were used as light source. The reaction mixture was extracted by ethyl acetate, the combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in vacuumand purified by flash column chromatography on silica gel (hexanes/ethyl acetate or DCM/MeOH) to afford final the product **4**.

IV. Control Experiments

Quantum yield measurements (Green LED):

Determination of the light intensity at 515 nm

According to the procedure of Yoon^{S1} the photon flux of the LED ($\lambda_{max} = 515$ nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (5.0 mg) and sodium acetate (1.13 g) in H₂SO₄ (5.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the

photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 90 seconds at $\lambda_{max} = 515$ nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1.

	Non-irrad	Irrad 01	Irra	d 02	Irrad 03
A _{510 nm}	0.3	2.992	3.0)96	3.175
		Average A 510 nm of			3.088
		irradiation samples			5.000

mol of Fe²⁺ =
$$\frac{V \cdot \Delta A_{510 \ nm}}{l \cdot \epsilon} = \frac{(0.00235 \ L) \cdot (2.788)}{(1.00 \ cm) \cdot (11, 100 \frac{L}{mol} \cdot cm)} = 5.90 \times 10^{-7} \ mol$$
 (1)

V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path length (1.00 cm), and ϵ is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 Lmol⁻¹cm⁻¹).^{S2} The photon flux can be calculated using eq 2.

Photon flux =
$$\frac{mol \ of \ Fe^{2+}}{\emptyset \cdot t \cdot f} = \frac{5.90 \times 10^{-7} \ mol}{(0.93) \cdot (90 \ s) \cdot (0.489)} = 1.44 \times 10^{-8} \ einstein/s$$
 (2)

Where Φ is the quantum yield for the ferrioxalate actinometer (0.93 at $\lambda = 515 \text{ nm}$)^{S3} is the irradiation time (90 s), and f is the fraction of light absorbed at 515 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where $A_{515 \text{ nm}}$ is the absorbance of the ferrioxalate solution at 515 nm. An absorption spectrum gave an $A_{515 \text{ nm}}$ value of 0.489, indicating that the fraction of absorbed light (f) is 0.489.

$$f = 1 - 10^{-A_{515} nm}$$
(3)

The photon flux was thus calculated (average of three experiments) to be 1.44×10^{-8} einsteins s⁻¹

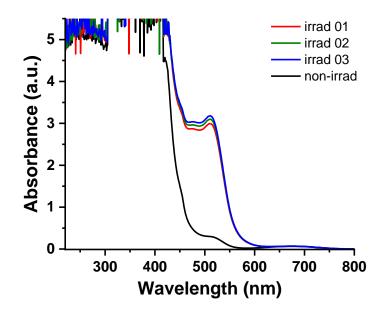
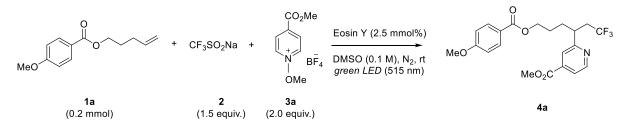



Figure S2. Absorption spectra of three irradiation experiments and non-irradiation experiment

Determination of the reaction quantum yield.

The reaction mixture was stirred and irradiated by green LED ($\lambda_{max} = 515 \text{ nm}$) for 3600 s. The yield of product was determined by ¹⁹F NMR analysis using α, α, α -Trifluorotoluene as an internal standard. The yield of **4a** was determined to be 21% ($0.042 \times 10^{-3} \text{ mol of } 4a$). The reaction quantum yield (Φ) was determined using eq 4 where the photon flux is 1.44×10^{-8} einsteins s⁻¹ (determined by actinometry as described above), t is the reaction time (3600 s) and f is the fraction of incident light absorbed by the catalyst, determined using eq 3. An absorption spectrum of the catalyst (0.0025 M) gave an absorbance value of 3.817 at 515 nm (figure 3), indicating that the fraction of light absorbed by the photocatalyst (f) is 0.999.

$$\Phi = \frac{mol \ of \ product}{flux \cdot t \cdot f}$$
(4)
60 min :
$$\Phi = \frac{0.042 \times 10^{-3} \ mol}{1.44 \times 10^{-8} \ einstein \ s^{-1} \cdot 3600 \ s \cdot 0.999} = 0.81$$

The reaction quantum yield (Φ) was calculated to be 0.81

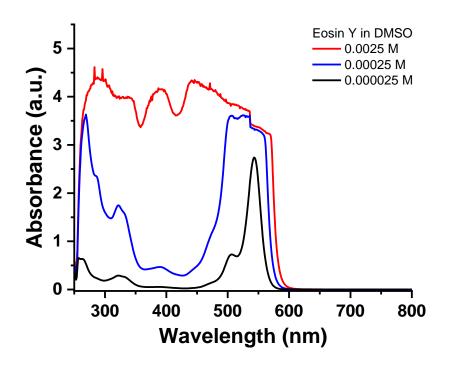


Figure S3. Absorption spectra of solution of eosin Y in DMSO

Quantum yield measurements (Blue LED):

Determination of the light intensity at 456 nm

Kessil LED ($\lambda_{max} = 456$ nm) was used with 25% intensity for measurement of quantum yield.

According to the procedure of Yoon ^{S1} the photon flux of the LED ($\lambda_{max} = 456$ nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (5.0 mg) and sodium acetate (1.13 g) in H₂SO₄ (5.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 90 seconds at $\lambda_{max} = 456$ nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1.

	Non-irrad	Irrad 01	Irrad 02	Irrad 03
A 510 nm	1.195	2.494	2.500	2.476

Average A 510 nm of	2.40
irradiation samples	2.49

mol of Fe²⁺ =
$$\frac{V \cdot \Delta A_{510 \ nm}}{l \cdot \epsilon} = \frac{(0.00235 \ L) \cdot (1.295)}{(1.00 \ cm) \cdot (11, 100 \frac{L}{mol} \cdot cm)} = 2.74 \times 10^{-7} \ mol$$
 (1)

V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.00 cm), and ϵ is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 Lmol⁻¹cm⁻¹).^{S2} The photon flux can be calculated using eq 2.

Photon flux =
$$\frac{mol \ of \ Fe^{2+}}{\emptyset \cdot t \cdot f} = \frac{2.74 \times 10^{-7} \ mol}{(0.84) \cdot (90 \ s) \cdot (0.998)} = 3.63 \times 10^{-9} \ einstein/s$$
 (2)

Where Φ is the quantum yield for the ferrioxalate actinometer (0.84 at $\lambda = 456 \text{ nm}$)^{S3} is the irradiation time (90 s), and f is the fraction of light absorbed at 456 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where A_{456 nm} is the absorbance of the ferrioxalate solution at 456 nm. An absorption spectrum gave an A_{456 nm} value of 2.742, indicating that the fraction of absorbed light (f) is 0.998.

$$f = 1 - 10^{-A_{456} nm}$$
(3)

The photon flux was thus calculated (average of three experiments) to be 3.63×10^{-9} einsteins s⁻¹

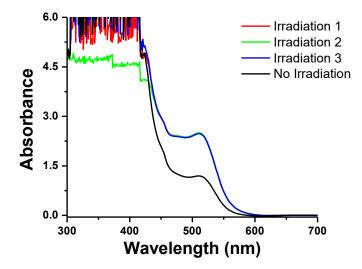
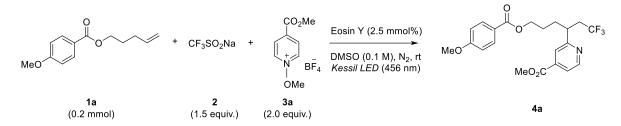



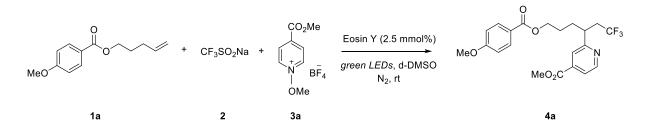
Figure S4. Absorption spectra of three irradiation experiments and non-irradiation experiment

Determination of the reaction quantum yield.

The reaction mixture was stirred and irradiated by 40W Kessil blue LED with 25% intensity ($\lambda_{max} = 456 \text{ nm}$) for 3600 s. The yield of product was determined by ¹⁹F NMR analysis using α,α,α -Trifluorotoluene as an internal standard. The yield of **4a** was determined to be 49% (0.098 × 10⁻³ mol of **4a**). The reaction quantum yield (Φ) was determined using eq 4 where the photon flux is 3.63×10^{-9} einsteins s⁻¹ (determined by actinometry as described above), t is the reaction time (3600 s) and f is the fraction of incident light absorbed by the catalyst, determined using eq 3. An absorption spectrum of the catalyst (0.0025 M) gave an absorbance value of 4.219 at 456 nm (figure 3), indicating that the fraction of light absorbed by the photocatalyst (f) is 0.9999.

$$\Phi = \frac{mol \ of \ product}{flux \cdot t \cdot f}$$

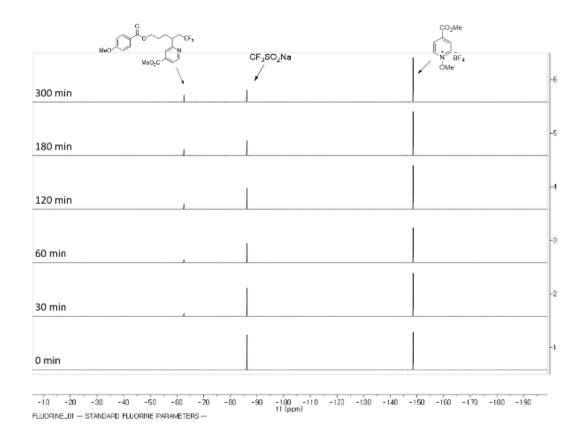
$$60 \text{min:} \ \Phi = \frac{0.098 \times 10^{-3} \ mol}{3.63 \times 10^{-9} \ einstein \ s^{-1} \cdot 3600 \ s \cdot 0.9999} = 7.51$$


The reaction quantum yield (Φ) was calculated to be 7.5

Pyridine 5 was used in the reaction

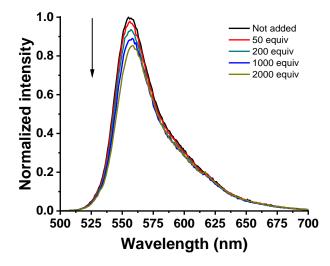
An oven-dried tube was charged with alkene **1a** (0.2 mmol), CF_3SO_2Na (0.3 mmol), and Eosin Y (0.005 mmol). The tube was evacuated and backfilled with nitrogen (repeated three times). Then, pyridine **5** (0.4 mmol), and dimethyl sulfoxide (2.0 mL) was added into the reaction via syringe. The reaction mixture was stirring at room temperature under green LEDs for 8 h. After checked by TLC and NMR, no desired product was observed and starting material **1a** and **5** were fully remained.

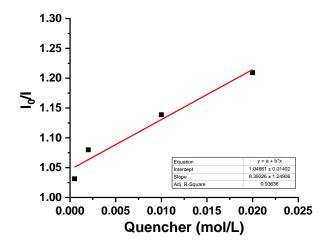
Transformation of 4a monitored by NMR spectroscopy



To gain insight into the fate of the methoxy radical in the OMe cleavage pathway, the transformation of **4a** was monitored by NMR spectroscopy. A NMR tube was charged with 22.0 mg (0.1 mmol) alkene **1a**, 51.0 mg (0.2 mmol) N-methoxyheteroarenium salts **3a**, 23.4 mg (0.15 mmol) CF₃SO₂Na, 1.62 mg (0.005 mmol) Eosin Y. The NMR tube was evacuated and backfilled with nitrogen. Then, d-DMSO were added into the tube. The reaction mixture was stirring at room temperature under green LEDs and checked by ¹H NMR and ¹⁹H NMR. As shown in Figure 2 and Figure 3, signals of MeOH was observed by ¹H NMR, which indicated that the methoxy radical was not oxidized to formaldehyde by the action of related oxidant. No other F-containing byproduct was observed from ¹⁹F NMR (Figure 3).

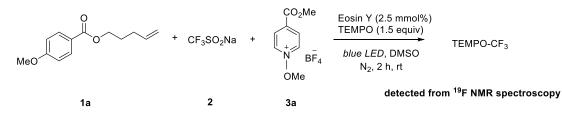
Figure S6. ¹H NMR spectroscopies.




6.0 5.5 f1 (pom) 5.0 4.5 40 10.5 10.0 9.5 9,0 B.5 8.0 7.5 7.0 6,5 3.5 3.0 25 2.0 1.5 1.0 0.5 FFIOTON_01 - - hyt20180804-0

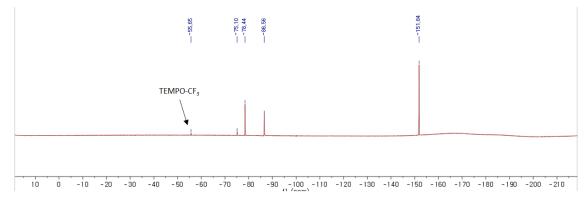
Stern–Volmer quenching experiment

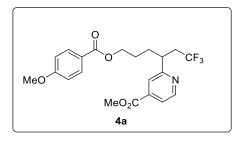
Figure S7. Quenching of the Eosin Y emission $(2 \times 10^{-5} \text{ M in DMSO})$ in the presence of increasing amount of Langlois reagent. (Excitation wavelength: 400 nm, Ex bandwidth: 3.0 nm, Em bandwidth: 3.0 nm)



TEMPO experiment

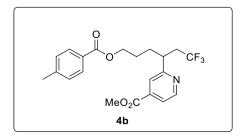
An oven-dried tube was charged with alkene **1a** (0.2 mmol), N-methoxypyridinium salt **3a** (0.4 mmol), CF_3SO_2Na (0.3 mmol), TEMPO (0.3 mmol) and Eosin Y (0.005 mmol). The tube was evacuated and backfilled with nitrogen (repeated three times). Then, dimethyl sulfoxide (2.0 mL) was added into the reaction via syringe. The reaction mixture was stirring at room temperature under blue LEDs for 2 h. The desired product was observed in less than 5% yield determined by ¹⁹F NMR based on benzotrifluoride as an internal standard.


Observation of TEMPO-CF3

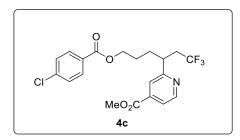

An oven-dried tube was charged with alkene **1a** (0.2 mmol), N-methoxypyridinium salt **3a** (0.4 S12

mmol), CF₃SO₂Na (0.3 mmol), TEMPO (0.3 mmol) and Eosin Y (0.005 mmol). The tube was evacuated and backfilled with nitrogen (repeated three times). Then, deuterated dimethyl sulfoxide (2.0 mL) was added into the reaction via syringe. The reaction mixture was stirring at room temperature under 40W Kessil blue LED (25% intensity, 456nm) for 2 h. The crude mixture (0.04 mL) was diluted with CDCl₃ and TEMPO-CF₃ was detected in ¹⁹F NMR spectroscopy. The chemical shift was well-matched with the reported literature.^{S4}

Figure S8. ¹⁹F NMR spectroscopry for TEMPO-CF₃

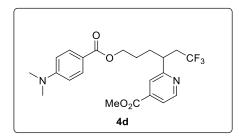


V. Compound Characterizations

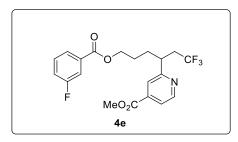


6,6,6-trifluoro-4-(4-methylpyridin-2-yl)hexyl 4-methoxybenzoate (4a). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **4a** (68.8 mg, 81%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-d) δ 8.74 (d, *J* = 4.9 Hz, 1H), 7.96 (d, *J* = 8.9 Hz, 2H), 7.72 (d, *J* = 5.0 Hz, 1H), 7.70 (s, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 4.22 (t, *J* = 6.5 Hz, 2H), 3.96 (s, 3H), 3.86 (s, 3H), 3.24 – 3.21 (m, 1H), 2.85 – 2.82 (m, 1H), 2.47 – 2.45 (m, 1H), 1.98 – 1.96 (m, 1H), 1.91 – 1.89 (m, 1H), 1.69 – 1.66 (m, 1H), 1.50 – 1.48 (m, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 166.2, 165.5, 163.3, 162.9, 150.6, 137.8, 131.5, 126.6 (q, *J* = 277.3 Hz), 122.6, 122.4, 121.2, 113.6, 64.0, 55.4, 52.7, 41.3 (d, *J* = 2.6 Hz),

38.7 (q, J = 27.6 Hz), 32.1, 26.4. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 11.0 Hz). HRMS (ESI) Calcd for C₂₁H₂₂F₃NO₅: [M] + Na⁺ = 448.1342. Found: 448.1364.

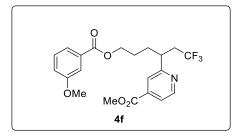


methyl 2-(1,1,1-trifluoro-6-((4-methylbenzoyl)oxy)hexan-3-yl)isonicotinate (4b). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From pent-4-en-1-yl 4-methylbenzoate (40.8 mg, 0.2 mmol), compound **4b** (67.9 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, J = 4.7 Hz, 1H), 7.89 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 5.0 Hz, 1H), 7.71 (s, 1H), 7.23 (d, J = 7.9 Hz, 2H), 4.23 (t, J = 6.5 Hz, 2H), 3.96 (s, 3H), 3.24 – 3.21 (m, 1H), 2.85 – 2.83 (m, 1H), 2.48 – 2.45 (m, 1H), 2.41 (s, 3H), 1.99 – 1.96 (m, 1H), 1.92 – 1.90 (m, 1H), 1.70 – 1.66 (m, 1H), 1.51 – 1.48 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.5, 165.5, 162.8, 150.5, 143.6, 137.9, 129.5, 129.0, 127.5, 126.6 (d, J = 277.8 Hz), 122.4, 121.2, 64.1, 52.7, 41.3 (d, J = 2.7 Hz), 38.7 (q, J = 27.6 Hz), 32.1, 26.3, 21.6. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 11.0 Hz). HRMS (EI) Calcd for C₂₁H₂₂F₃NO₄: [M] = 409.1501. Found: 409.1504.

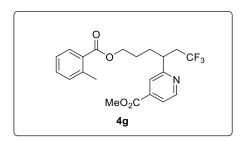


methyl 2-(6-((4-chlorobenzoyl)oxy)-1,1,1-trifluorohexan-3-yl)isonicotinate (4c). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From pent-4-en-1-yl 4-chlorobenzoate (44.8 mg, 0.2 mmol), compound 4c (71.2 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.73 (d, *J* = 5.0 Hz, 1H), 7.93 (d, *J* = 8.6 Hz, 2H), 7.72 (dd, *J* = 5.0, 1.5 Hz, 1H), 7.70 (s, 1H), 7.40 (d, *J* = 8.6 Hz, 2H), 4.24 (t, *J* = 6.5 Hz, 2H), 3.96 (s, 3H), 3.23 – 3.21 (m, 1H), 2.84 – 2.81 (m, 1H), 2.48 – 2.44 (m, 1H), 1.98 – 1.96 (m, 1H), 1.90 – 1.88 (m, 1H), 1.70 – 1.66 (m, 1H), 1.50 – 1.48 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 165.5, 162.7, 150.6, 139.4, 137.9, 130.9, 128.7, 128.6, 126.5 (q, *J* = 277.3 Hz), 122.4, 121.2, 64.6, 52.7, 41.3 (q, *J* = 2.4 Hz),

38.7 (q, *J* = 27.7 Hz), 32.0, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₂₀H₁₉ClF₃NO₄: [M] = 429.0955. Found: 429.0951.

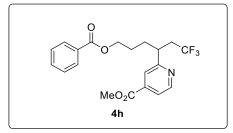


methyl 2-(6-((4-(dimethylamino)benzoyl)oxy)-1,1,1-trifluorohexan-3-yl)isonicotinate (4d). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 3 : 1). From pent-4-en-1-yl 4-(dimethylamino)benzoate (46.6 mg, 0.2 mmol), compound 4d (52.6 mg, 60%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, J = 4.9 Hz, 1H), 7.87 (d, J = 9.1Hz, 2H), 7.72 (d, J = 9.8 Hz, 2H), 6.65 (d, J = 9.1 Hz, 2H), 4.20 (t, J = 6.0 Hz, 2H), 3.96 (s, 3H), 3.24 – 3.21 (m, 1H), 3.04 (s, 6H), 2.86 – 2.83 (m, 1H), 2.48 – 2.44 (m, 1H), 1.98 – 1.95 (m, 1H), 1.92 – 1.90 (m, 1H), 1.68 – 1.65 (m, 1H), 1.49 – 1.47 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 165.5, 162.9, 153.3, 150.5, 137.9, 131.2, 126.6 (q, J = 277.1 Hz), 122.4, 121.2, 117.1, 110.8, 63.5, 52.7, 41.3, 40.1, 38.7 (q, J = 27.6 Hz), 32.2, 26.5. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₂₂H₂₅F₃N₂O₄: [M] = 438.1766. Found: 438.1770.

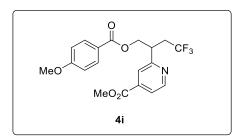


methyl 2-(1,1,1-trifluoro-6-((3-fluorobenzoyl)oxy)hexan-3-yl)isonicotinate (4e). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From pent-4-en-1-yl 3-fluorobenzoate (41.6 mg, 0.2 mmol), compound 4e (68.5 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-d) δ 8.73 (d, J = 4.9 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.72 – 7.70 (m, 2H), 7.66 – 7.64 (m, 1H), 7.41 – 7.38 (m, 1H), 7.25 – 7.24 (m, 1H), 4.24 (t, J = 6.5 Hz, 2H), 3.94 (s, 3H), 3.22 – 3.19 (m, 1H), 2.83 – 2.81 (m, 1H), 2.47 – 2.43 (m, 1H), 1.98 – 1.95 (m, 1H), 1.90 – 1.88 (m, 1H), 1.69 – 1.67 (m, 1H), 1.50 – 1.47 (m, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 165.5, 165.3 (d, J = 2.9 Hz), 162.7, 162.5 (d, J = 246.9 Hz), 150.6, 137.9, 132.3 (d, J = 7.4 Hz), 123.0 (d, J = 7.9

Hz), 126.5 (q, J = 277.3 Hz), 125.2 (d, J = 3.1 Hz), 122.4, 121.3, 120.0 (d, J = 21.2 Hz), 116.4 (d, J = 22.9 Hz), 64.7, 52.7, 41.3 (d, J = 2.4 Hz), 38.7 (q, J = 27.7 Hz), 31.9, 26.2. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 10.9 Hz), -112.4 (td, J = 8.9, 5.5 Hz). HRMS (ESI) Calcd for C₂₀H₁₉F₄NO₄: [M] + Na⁺ = 436.1142. Found: 436.1142.

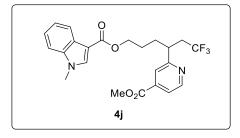


methyl 2-(1,1,1-trifluoro-6-((3-methoxybenzoyl)oxy)hexan-3-yl)isonicotinate (4f). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 4 : 1). From pent-4-en-1-yl 3-methoxybenzoate (44.0 mg, 0.2 mmol), compound **4f** (62.1 mg, 73%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, J = 4.8 Hz, 1H), 7.73 – 7.71 (m, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.52 (s, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.11 – 7.09 (m, 1H), 4.25 (t, J = 6.6 Hz, 2H), 3.96 (s, 3H), 3.85 (s, 3H), 3.23 – 3.21 (m, 1H), 2.85 – 2.82 (m, 1H), 2.48 – 2.45 (m, 1H), 1.99 – 1.96 (m, 1H), 1.92 – 1.90 (m, 1H), 1.70 – 1.67 (m, 1H), 1.51 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.3, 165.5, 162.8, 159.5, 150.6, 137.9, 131.5, 129.3, 126.6 (d, J = 2.5 Hz), 122.4, 121.9, 121.2, 119.3, 114.1, 64.4, 55.4, 52.7, 41.3 (d, J = 2.5 Hz), 38.7 (q, J = 277.8 Hz), 32.0, 26.3.¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, J = 11.0 Hz). HRMS (EI) Calcd for C₂₁H₂₂F₃NO₅: [M] = 425.1450. Found: 425.1447.

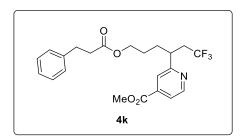


methyl 2-(1,1,1-trifluoro-6-((2-methylbenzoyl)oxy)hexan-3-yl)isonicotinate (4g). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From pent-4-en-1-yl 2-methylbenzoate (40.8 mg, 0.2 mmol), compound 4g (68.7 mg, 84%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, *J* = 4.9 Hz, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.73 – 7.71 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.25 – 7.22 (m, 2H), 4.23 (t, *J* = 6.5 Hz, 2H), 3.96 (s, 3H), 3.25 – 3.22 (m,

1H), 2.85 - 2.83 (m, 1H), 2.57 (s, 3H), 2.48 - 2.45 (m, 1H), 2.00 - 1.98 (m, 1H), 1.93 - 1.90 (m, 1H), 1.70 - 1.67 (m, 1H), 1.51 - 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.5, 165.5, 162.8, 150.5, 140.1, 137.9, 131.9, 131.6, 130.5, 129.6, 126.6 (q, *J* = 277.8 Hz), 125.7, 122.4, 121.2, 64.1, 52.7, 41.3, 38.7 (q, *J* = 27.7 Hz), 32.1, 26.3, 21.7. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₂₁H₂₂F₃NO₄: [M] = 409.1501. Found: 409.1499.

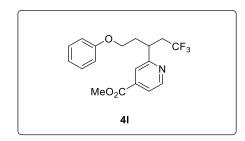


methyl 2-(6-(benzoyloxy)-1,1,1-trifluorohexan-3-yl)isonicotinate (**4h**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From pent-4-en-1-yl benzoate (38.0 mg, 0.2 mmol), compound **4h** (67.9 mg, 86%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, J = 4.9 Hz, 1H), 8.00 (d, J = 7.1 Hz, 2H), 7.73 – 7.71 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 4.25 (t, J = 6.5 Hz, 2H), 3.96 (s, 3H), 3.24 – 3.22 (m, 1H), 2.86 – 2.83 (m, 1H), 2.49 – 2.45 (m, 1H), 2.00 – 1.96 (m, 1H), 1.93 – 1.90 (m, 1H), 1.71 – 1.68 (m, 1H), 1.52 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.4, 165.5, 162.8, 150.5, 137.9, 132.9, 130.2, 129.5, 128.3, 126.6 (q, J = 277.8 Hz), 122.4, 121.2, 64.3, 52.7, 41.3 (d, J = 2.8 Hz), 38.7 (q, J = 27.7 Hz), 32.0, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₂₀H₂₀F₃NO₄: [M] = 395.1344. Found: 395.1347.

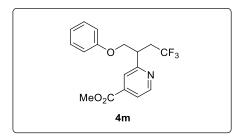


methyl 2-(4,4,4-trifluoro-1-((4-methoxybenzoyl)oxy)butan-2-yl)isonicotinate (4i). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 3 : 1). From allyl 4-methoxybenzoate (38.4 mg, 0.2 mmol), compound 4i (49.2 mg, 62%) was obtained. White solid. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.75 (d, *J* = 5.0 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 2H), 7.83 (s, 1H), 7.76 (dd, *J* = 5.0, 1.5 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 2H), 4.53 (d, *J* = 7.0 Hz, 2H), 3.96 (s, 3H), 3.86 (s, 3H), 3.69 – 3.67 (m,

1H), 3.01 - 2.97 (m, 1H), 2.69 - 2.64 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.7, 165.4, 163.6, 160.0, 150.5, 138.0, 131.6, 126.5 (q, *J* = 276.8 Hz), 122.8, 122.0, 121.7, 113.7, 66.5, 55.4, 52.7, 41.1 (d, *J* = 2.8 Hz), 35.1 (q, *J* = 28.8 Hz). ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₁₉H₁₈F₃NO₅: [M] = 397.1137. Found: 397.1138.

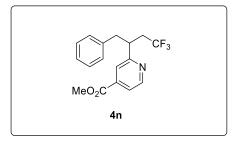


6,6,6-trifluoro-4-(4-(methoxycarbonyl)pyridin-2-yl)hexyl 1-methyl-1H-indole-3-carboxylate (4j). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 2 : 1). From pent-4-en-1-yl 1-methyl-1H-indole-3-carboxylate (48.6 mg, 0.2 mmol), compound **4j** (58.2 mg, 65%) was obtained. White solid. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.75 (d, *J* = 5.7 Hz, 1H), 8.12 (d, *J* = 6.7 Hz, 1H), 7.77 (s, 1H), 7.72 – 7.72 (m, 2H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.32 – 7.27 (m, 2H), 4.27 – 4.26 (m, 2H), 3.95 (s, 3H), 3.84 (s, 3H), 3.27 – 3.24 (m, 1H), 2.86 – 2.84 (m, 1H), 2.49 – 2.46 (m, 1H), 2.03 – 1.99 (m, 1H), 1.96 – 1.94 (m, 1H), 1.73 – 1.70 (m, 1H), 1.55 – 1.53 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 164.9, 163.0, 150.5, 137.8, 137.2, 135.2, 126.6 (q, *J* = 277.1 Hz), 126.6, 122.8, 122.4, 121.9, 121.6, 121.2, 109.7, 106.9, 63.1, 52.7, 41.4 (d, *J* = 2.8 Hz), 38.7 (q, *J* = 27.6 Hz), 33.4, 32.3, 26.6. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₂₃H₂₃F₃N₂O₄: [M] = 448.1610. Found: 448.1611.

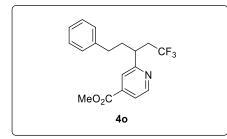


methyl 2-(1,1,1-trifluoro-6-((3-phenylpropanoyl)oxy)hexan-3-yl)isonicotinate (4k). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From pent-4-en-1-yl 3-phenylpropanoate (43.6 mg, 0.2 mmol), compound 4k (70.2 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.72 (d, *J* = 4.9 Hz, 1H), 7.71 (dd, *J* = 4.9, 1.7 Hz, 1H), 7.67 (s, 1H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 8.1 Hz, 3H), 3.99 – 3.95 (m, 2H), 3.95 (s, 3H), 3.15 – 3.12 (m, 1H),

2.92 (t, J = 7.8 Hz, 2H), 2.81 – 2.76 (m, 1H), 2.60 (t, J = 7.8 Hz, 2H), 2.41 – 2.39 (m, 1H), 1.82 – 1.80 (m, 1H), 1.73 – 1.72 (m, 1H), 1.50 – 1.48 (m, 1H), 1.33 – 1.30 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.8, 165.5, 162.8, 150.5, 140.4, 137.8, 128.4, 128.2, 126.6 (q, J = 277.3 Hz), 126.2, 122.4, 121.2, 63.9, 52.7, 41.2 (d, J = 2.5 Hz), 38.7 (q, J = 27.7 Hz), 35.8, 32.0, 30.9, 26.2. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₂₂H₂₄F₃NO₄: [M] = 423.1657. Found: 423.1660.

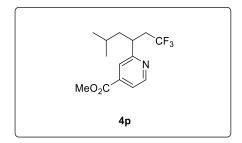


methyl 2-(1,1,1-trifluoro-5-phenoxypentan-3-yl)isonicotinate (4l). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From (but-3-en-1-yloxy)benzene (29.6 mg, 0.2 mmol), compound **4l** (41.1 mg, 58%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.75 (d, J = 6.0 Hz, 1H), 7.72 – 7.72 (m, 2H), 7.25 (t, J = 8.0 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 7.7 Hz, 2H), 3.92 (s, 3H), 3.89 – 3.88 (m, 1H), 3.67 – 3.66 (m, 1H), 3.55 – 3.53 (m, 1H), 2.90 – 2.88 (m, 1H), 2.54 – 2.51(m, 1H), 2.28 – 2.26 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.5, 162.5, 158.6, 150.5, 137.9, 129.4, 126.6 (q, J = 277.3 Hz), 122.8, 121.2, 120.8, 114.5, 64.8, 52.6, 38.7 (q, J = 27.8 Hz), 38.4 (d, J = 2.7 Hz), 35.0. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₁₈H₁₈F₃NO₃: [M] = 353.1239. Found: 4353.1241.

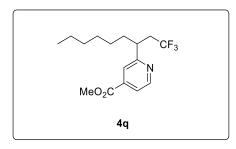


methyl 2-(4,4,4-trifluoro-1-phenoxybutan-2-yl)isonicotinate (4m). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From (allyloxy)benzene (26.8 mg, 0.2 mmol), compound 4m (37.2 mg, 55%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.73 (d, *J* = 5.1 Hz, 1H), 7.85 (s, 1H), 7.75 (d, *J* = 3.8 Hz, 1H), 7.27 – 7.24 (m, 2H), 6.95 (t, *J* = 7.3 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 2H), 4.21 (d, *J* = 6.8 Hz, 2H), 3.97 (s, 3H), 3.69 – 3.67 (m, 1H), 2.94 –

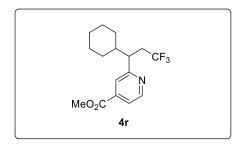
2.90 (m, 1H), 2.80 – 2.76 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.5, 160.4, 158.3, 150.3, 138.0, 129.5, 126.7 (q, *J* = 277.3 Hz), 123.0, 121.6, 121.3, 114.6, 70.1, 52.7, 41.7, 35.0 (*J* = 28.4 Hz). ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₁₇H₁₆F₃NO₃: [M] = 339.1082. Found: 339.1084.

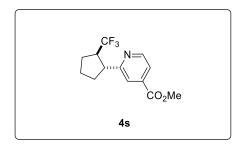


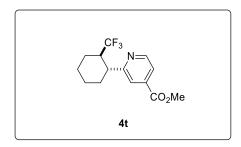
methyl 2-(4,4,4-trifluoro-1-phenylbutan-2-yl)isonicotinate (**4n**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From allylbenzene (23.6 mg, 0.2 mmol), compound **4n** (42.6 mg, 66%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.75 (d, J = 5.0 Hz, 1H), 7.69 (dd, J = 5.0, 1.4 Hz, 1H), 7.51 (s, 1H), 7.22 (t, J = 7.2 Hz, 2H), 7.17 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 7.0 Hz, 2H), 3.92 (s, 3H), 3.46 – 3.44 (m, 1H), 3.08 (dd, J = 13.6, 8.0 Hz, 1H), 3.01 (dd, J = 13.6, 7.5 Hz, 1H), 2.90 – 2.88 (m, 1H), 2.48 – 2.44 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.5, 162.7, 150.2, 138.4, 137.6, 129.0, 128.5, 126.7 (q, J = 277.2 Hz), 126.5, 122.6, 121.1, 52.6, 43.5 (d, J = 2.4 Hz), 42.0, 37.5 (q, J = 27.7 Hz). ¹⁹F NMR (564 MHz, Chloroform-d) δ - 63.9 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₁₇H₁₆F₃NO₂: [M] = 323.1133. Found: 323.1136.

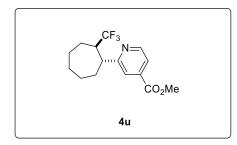


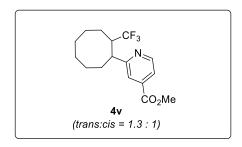
methyl 2-(1,1,1-trifluoro-5-phenylpentan-3-yl)isonicotinate (4o). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From but-3-en-1-ylbenzene (26.4 mg, 0.2 mmol), compound 4o (51.2 mg, 76%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.77 (d, J = 5.0 Hz, 1H), 7.74 (dd, J = 5.0, 1.6 Hz, 1H), 7.69 (s, 1H), 7.26 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 6.7 Hz, 2H), 3.98 (s, 3H), 3.22 – 3.20 (m, 1H), 2.86 – 2.84 (m, 1H), 2.48 – 2.45 (m, 2H), 2.42 – 2.39 (m, 1H), 2.19 – 2.17 (m, 1H), 2.09 – 2.07 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 163.0, 150.5, 141.1, 137.8, 128.4, 128.2, 126.6 (q, J = 277.3 Hz), 126.0, 122.6,

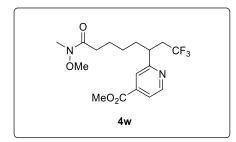

121.1, 52.7, 41.2 (d, J = 2.8 Hz), 38.7 (q, J = 27.6 Hz), 37.2, 33.2. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₁₈H₁₈F₃NO₂: [M] = 337.1290. Found: 337.1286.


methyl 2-(1,1,1-trifluoro-5-methylhexan-3-yl)isonicotinate (4p). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From 4-methylpent-1-ene (16.8 mg, 0.2 mmol), compound 4p (47.9 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.73 (d, *J* = 4.9 Hz, 1H), 7.71 – 7.69 (m, 2H), 3.97 (s, 3H), 3.27 – 3.25 (m, 1H), 2.81 – 2.75 (m, 1H), 2.40 – 2.37 (m, 1H), 1.78 – 1.74 (m, 1H), 1.53 – 1.49 (m, 1H), 1.28 – 1.23 (m, 1H), 0.92 (d, *J* = 6.6 Hz, 3H), 0.84 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 163.7, 150.3, 137.9, 126.7 (q, *J* = 277.4 Hz), 122.3, 121.0, 52.7, 45.0, 39.4 (d, *J* = 2.8 Hz), 38.9 (q, *J* = 27.5 Hz), 25.3, 23.0, 21.8. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₁₄H₁₈F₃NO₂: [M] = 289.1290. Found: 289.1286.

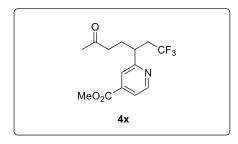

methyl 2-(1,1,1-trifluorononan-3-yl)isonicotinate (4q). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From oct-1-ene (22.4 mg, 0.2 mmol), compound 4q (50.7 mg, 80%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.72 (d, J = 5.0 Hz, 1H), 7.70 (d, J = 4.9 Hz, 1H), 7.68 (s, 1H), 3.96 (s, 3H), 3.16 – 3.13 (m, 1H), 2.84 – 2.78 (m, 1H), 2.44 – 2.40 (m, 1H), 1.79 – 1.77 (m, 1H), 1.72 – 1.70 (m, 1H), 1.24 – 1.19 (m, 7H), 1.03 – 1.00 (m, 1H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.7, 163.7, 150.3, 137.7, 126.7 (q, J = 277.2 Hz), 122.3, 120.9, 52.7, 41.6 (d, J = 2.7 Hz), 38.6 (q, J = 27.3 Hz), 35.8, 31.6, 29.0, 27.0, 22.5, 14.0. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 11.0 Hz). HRMS (EI) Calcd for C₁₆H₂₂F₃NO₂: [M] = 317.1603. Found: 317.1604.


methyl 2-(1-cyclohexyl-3,3,3-trifluoropropyl)isonicotinate (**4r**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From vinylcyclohexane (22.0 mg, 0.2 mmol), compound **4r** (43.0 mg, 68%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.73 (d, *J* = 4.9 Hz, 1H), 7.69 (d, *J* = 4.7 Hz, 1H), 7.65 (s, 1H), 3.96 (s, 3H), 2.95 – 2.90 (m, 2H), 2.57 – 2.49 (m, 1H), 1.89 (d, *J* = 12.8 Hz, 1H), 1.76 (d, *J* = 13.2 Hz, 1H), 1.67 – 1.63 (m, 3H), 1.30 – 1.21 (m, 2H), 1.14 – 1.07 (m, 2H), 0.96 – 0.86 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.8, 162.9, 150.0, 137.4, 127.1 (q, *J* = 277.5 Hz), 123.2, 120.8, 52.7, 47.2, 42.4, 35.4 (q, *J* = 27.3 Hz), 30.7 (d, *J* = 14.8 Hz), 26.2, 26.1. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.2 (t, *J* = 10.4 Hz). HRMS (EI) Calcd for C₁₆H₂₀F₃NO₂: [M] = 315.1446. Found: 315.1449.

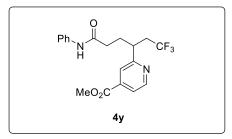

methyl 2-(*trans*-2-(trifluoromethyl)cyclopentyl)isonicotinate (4s). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From cyclopentene (13.6 mg, 0.2 mmol), compound 4s (48.0 mg, 88%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.71 (d, J = 4.6 Hz, 1H), 7.73 (s, 1H), 7.69 (dd, J = 5.0, 1.7 Hz, 1H), 3.96 (s, 3H), 3.41 (q, J = 8.2 Hz, 1H), 3.28 – 3.22 (m, 1H), 2.18 – 2.11 (m, 2H), 1.95 – 1.88 (m, 3H), 1.82 – 1.79 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.7, 163.9, 150.4, 137.8, 128.5 (q, J = 277.8 Hz), 122.0, 120.8, 52.6, 48.5 (q, J = 27.2 Hz), 48.2 (d, J = 2.2 Hz), 35.6, 27.0 (d, J = 2.4 Hz), 25.7. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -70.4 (d, J = 9.7 Hz). HRMS (EI) Calcd for C₁₃H₁₄F₃NO₂: [M] = 273.0977. Found: 273.0981.


methyl 2-(*trans*-2-(trifluoromethyl)cyclohexyl)isonicotinate (4t). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From cyclohexene (16.4 mg, 0.2 mmol), compound 4t (48.8 mg, 85%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.68 (d, J = 4.9 Hz, 1H), 7.70 – 7.64 (m, 2H), 3.94 (s, 3H), 2.90 – 2.87 (m, 1H), 2.77 – 2.75 (m, 1H), 2.13 – 2.11 (m, 1H), 1.88 – 1.85 (m, 3H), 1.71 – 1.68 (m, 1H), 1.44 – 1.38 (m, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.7, 164.7, 150.0, 137.8, 127.5 (q, J = 280.9 Hz), 121.6, 120.7, 52.6, 45.6, 45.0 (q, J = 24.2 Hz), 33.6, 25.5, 25.2 (q, J = 2.8 Hz), 24.5. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -69.5 (d, J = 8.3 Hz). HRMS (EI) Calcd for C₁₄H₁₆F₃NO₂: [M] = 287.1133. Found: 287.1131.

methyl 2-(*trans*-2-(trifluoromethyl)cycloheptyl)isonicotinate (4u). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From cycloheptene (19.2 mg, 0.2 mmol), compound 4u (50.0 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.68 (d, J = 5.0 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 5.0 Hz, 1H), 3.95 (s, 3H), 3.39 – 3.35 (m, 1H), 3.30 – 3.28 (m, 1H), 2.04 – 2.01 (m, 1H), 1.89 – 1.85 (m, 4H), 1.75 – 1.73 (m, 1H), 1.66 – 1.62 (m, 2H), 1.57 – 1.53 (m, 1H), 1.50 – 1.47 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 165.8, 149.6, 138.0, 128.7 (q, J = 281.1 Hz), 121.8, 120.4, 52.6, 46.3, 46.0 (q, J = 23.3 Hz), 34.5, 30.2, 26.8, 25.8 (d, J = 2.8 Hz), 25.6. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -70.0 (d, J = 9.6 Hz). HRMS (EI) Calcd for C₁₅H₁₈F₃NO₂: [M] = 301.1290. Found: 301.1287.

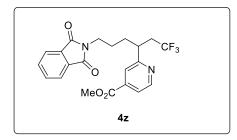


methyl 2-(2-(trifluoromethyl)cyclooctyl)isonicotinate (4v). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From (Z)-cyclooctene (22.0 mg, 0.2 mmol), compound 4v (56.7 mg, 90%) was obtained (*trans* : cis = 1.3 : 1). Colorless oil. *trans*: ¹H NMR (599 MHz, Chloroform-*d*) δ 8.67 (d, J = 4.7 Hz, 1H), 7.68 (s, 1H), 7.65 (d, J = 5.0 Hz, 1H), 3.95 (s, 3H), 3.08 - 3.05 (m, 1H), 2.41 - 2.32 (m, 1H), 2.13 - 2.09 (m, 1H), 2.02 - 2.00 (m, 2H), 1.91 - 1.82 (m, 5H), 1.67 – 1.60 (m, 4H). ¹³C NMR (151 MHz, Chloroform-d) δ 168.5, 165.8, 149.8, 137.9, 128.8 (q, *J* = 279.4 Hz), 120.7, 120.5, 52.6, 46.7, 42.6 (q, *J* = 24.7 Hz), 32.8, 31.8, 25.6, 25.5, 25.4 (d, *J* = 2.4 Hz), 24.9. ¹⁹F NMR (564 MHz, Chloroform-d) δ -73.1 (d, J = 9.8 Hz). cis: ¹H NMR (599 MHz, Chloroform-d) δ 8.66 (d, J = 4.5 Hz, 1H), 7.70 (s, 1H), 7.65 (d, J = 5.0 Hz, 1H), 3.95 (s, 3H), 3.02 -3.01 (m, 1H), 2.35 - 2.32 (m, 1H), 2.13 - 2.09 (m, 1H), 1.98 - 1.96 (m, 2H), 1.91 - 1.82 (m, 5H), 1.67 -1.60 (m, 4H). ¹³C NMR (151 MHz, Chloroform-d) δ 168.4, 165.8, 149.8, 137.9, 128.7 (q, J = 280.9) Hz), 120.3, 120.2, 52.6, 45.5, 41.5 (q, J = 24.3 Hz), 32.6, 30.4, 25.5, 25.2 (d, J = 2.7 Hz), 25.1, 24.1 (d, J = 2.4 Hz). ¹⁹F NMR (564 MHz, Chloroform-d) δ -73.2 (d, J = 9.7 Hz). HRMS (EI) Calcd for $C_{16}H_{20}F_{3}NO_{2}$: [M] = 315.1446. Found: 315.1445.

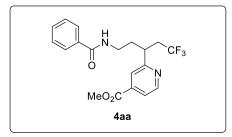


methyl 2-(1,1,1-trifluoro-8-(methoxy(methyl)amino)-8-oxooctan-3-yl)isonicotinate (4w). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From N-methoxy-Nmethylhept-6-enamide (34.2 mg, 0.2 mmol), compound 4w (47.4 mg, 63%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.72 (d, J = 4.9 Hz, 1H), 7.69 (dd, J = 5.0, 1.6 Hz, 1H), 7.67 (s, 1H), 3.95 (s, 3H), 3.63 (s, 3H), 3.14 (s, 4H), 2.81 – 2.79 (m, 1H), 2.43 – 2.41 (m, 1H), 2.35 – 2.32 (m, 2H), 1.82 – 1.80 (m, 1H), 1.76 – 1.73 (m, 1H), 1.62 – 1.61 (m, 1H), 1.57 – 1.55 (m, 1H), 1.26 – 1.24 (m, 1H), 1.08 – 1.06 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 174.3, 165.6, 163.4, 150.4, 137.7,

126.7 (q, J = 277.3 Hz), 122.3, 121.0, 61.1, 52.6, 41.5 (d, J = 2.6 Hz), 38.6 (q, J = 27.5 Hz), 35.5, 32.1, 31.5, 26.8, 24.3. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.1 (t, J = 10.9 Hz). HRMS (FAB) Calcd for C₁₇H₂₃F₃N₂O₄: [M] + H⁺ = 377.1688. Found: 377.1689.

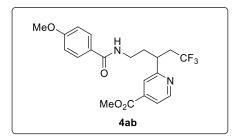


methyl 2-(1,1,1-trifluoro-6-oxoheptan-3-yl)isonicotinate (4x). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From hex-5-en-2-one (19.6 mg, 0.2 mmol), compound 4x (49.7 mg, 82%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.73 (d, J = 5.0 Hz, 1H), 7.72 (dd, J = 5.0, 1.5 Hz, 1H), 7.67 (s, 1H), 3.96 (s, 3H), 3.19 – 3.18 (m, 1H), 2.82 – 2.80 (m, 1H), 2.44 – 2.41 (m, 1H), 2.29 – 2.26 (m, 1H), 2.22 – 2.20 (m, 1H), 2.06 – 2.03 (s, 5H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 207.4, 165.5, 162.6, 150.6, 137.9, 126.5 (q, J = 277.4 Hz), 122.3, 121.3, 52.7, 40.7 (d, J = 2.6 Hz), 40.6, 38.7 (q, J = 27.7 Hz), 29.9, 29.3. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.1 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₁₄H₁₆F₃NO₃: [M] = 303.1082. Found: 303.1080.

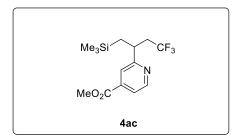


methyl 2-(1,1,1-trifluoro-6-oxo-6-(phenylamino)hexan-3-yl)isonicotinate (4y). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From N-phenylpent-4-enamide (35.0 mg, 0.2 mmol), compound 4y (66.1 mg, 87%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, J = 5.5 Hz, 1H), 7.73 – 7.72 (m, 2H), 7.52 (s, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 3.94 (s, 3H), 3.32 – 3.29 (m, 1H), 2.84 – 2.80 (m, 1H), 2.47 – 2.43 (m, 1H), 2.20 – 2.14 (m, 4H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.0, 165.4, 162.4, 150.5, 138.0, 137.7, 128.9, 126.4 (q, J = 277.4 Hz), 124.3, 122.4, 121.4, 119.8, 52.71, 40.7 (d, J = 2.8

Hz), 38.7 (q, J = 27.8 Hz), 34.6, 31.1. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.0 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₁₉H₁₉F₃N₂O₃: [M] = 380.1348. Found: 380.1351.

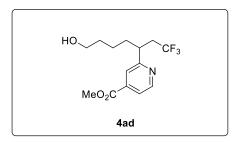


methyl 2-(6-(1,3-dioxoisoindolin-2-yl)-1,1,1-trifluorohexan-3-yl)isonicotinate (4z). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 4 : 1). From 2-(pent-4-en-1-yl)isoindoline-1,3-dione (43.0 mg, 0.2 mmol), compound **4z** (68.9 mg, 82%) was obtained. White solid. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.68 (d, J = 5.0 Hz, 1H), 7.81 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 – 7.69 (m, 3H), 7.67 (s, 1H), 3.94 (s, 3H), 3.62 (t, J = 7.2 Hz, 2H), 3.20 – 3.17 (m, 1H), 2.83 – 2.80 (m, 1H), 2.42 – 2.39 (m, 1H), 1.88 – 1.85 (m, 1H), 1.78 – 1.76 (m, 1H), 1.61 – 1.58 (m, 1H), 1.40 – 1.38 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.2, 165.5, 162.6, 150.5, 137.8, 133.9, 132.0, 126.5 (q, J = 277.3 Hz), 123.2, 122.4, 121.2, 52.6, 41.2 (d, J = 2.8 Hz), 38.6 (q, J = 27.6 Hz), 37.5, 32.8, 26.1. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.1 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₂₁H₁₉F₃N₂O₄: [M] = 420.1297. Found: 420.1299.

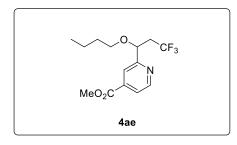


methyl 2-(5-benzamido-1,1,1-trifluoropentan-3-yl)isonicotinate (4aa). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 3 : 1). From N-(but-3-en-1-yl)benzamide (35.0 mg, 0.2 mmol), compound 4aa (63.0 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.70 (d, J = 5.0 Hz, 1H), 7.75 (s, 1H), 7.71 – 7.68 (m, 3H), 7.47 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 6.54 (s, 1H), 3.94 (s, 3H), 3.34 – 3.28 (m, 3H), 2.80 – 2.78 (m, 1H), 2.50 – 2.46 (m, 1H), 2.14 – 2.10 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.4, 165.2, 162.4, 150.2, 138.3, 134.3, 131.4, 128.4, 126.8, 126.4 (q, J = 277.4 Hz), 122.3, 121.5, 52.7, 39.5 (d, J = 2.5 Hz), 38.7

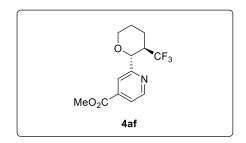
 $(q, J = 27.9 \text{ Hz}), 37.6, 35.0.^{19}\text{F} \text{ NMR} (564 \text{ MHz}, \text{Chloroform-}d) \delta -63.9 (t, J = 10.7 \text{ Hz}). \text{ HRMS (ESI)}$ Calcd for C₁₉H₁₉F₃N₂O₃: [M] + Na⁺ = 403.1240. Found: 403.1231.

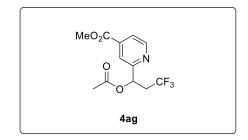


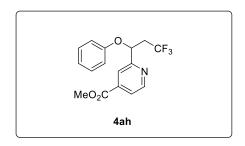
methyl 2-(1,1,1-trifluoro-5-(4-methoxybenzamido)pentan-3-yl)isonicotinate (4ab). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 3 : 1). From N-(but-3-en-1-yl)-4-methoxybenzamide (41.0 mg, 0.2 mmol), compound **4ab** (75.4 mg, 92%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.71 (d, J = 4.9 Hz, 1H), 7.73 (s, 1H), 7.70 (d, J = 4.9 Hz, 1H), 7.65 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 6.32 (s, 1H), 3.94 (s, 3H), 3.83 (s, 3H), 3.31 – 3.25 (m, 3H), 2.82 – 2.76 (m, 1H), 2.49 – 2.45 (m, 1H), 2.12 – 2.09 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.9, 165.4, 162.6, 162.1, 150.5, 138.1, 128.6, 126.6, 126.4 (q, J = 277.4 Hz), 122.2, 121.3, 113.7, 55.3, 52.7, 39.6 (d, J = 2.5 Hz), 38.7 (q, J = 27.7 Hz), 37.6, 35.1. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -63.9 (t, J = 10.8 Hz). HRMS (ESI) Calcd for C₂₀H₂₁F₃N₂O₄: [M] = 410.1453. Found: 410.1451.

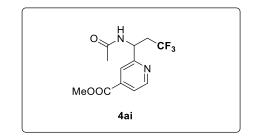


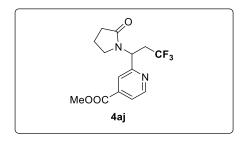
methyl 2-(4,4,4-trifluoro-1-(trimethylsilyl)butan-2-yl)isonicotinate (4ac). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 8 : 1). From allyltrimethylsilane (22.8 mg, 0.2 mmol), compound 4ac (56.1 mg, 88%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.71 (d, J = 4.8 Hz, 1H), 7.69 (d, J = 4.6 Hz, 2H), 3.96 (s, 3H), 3.33 – 3.30 (m, 1H), 2.82 – 2.79 (m, 1H), 2.42 – 2.38 (m, 1H), 1.21 (dd, J = 14.6, 10.0 Hz, 1H), 1.01 (dd, J = 14.7, 5.3 Hz, 1H), -0.19 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 164.8, 150.3, 137.8, 126.4 (q, J = 277.7 Hz), 121.8, 121.0, 52.7, 42.0 (q, J = 26.8 Hz), 38.1 (q, J = 2.5 Hz), 24.4, -1.4. ¹⁹F NMR (564 MHz,

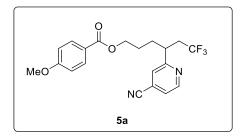

Chloroform-*d*) δ -64.1 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₁₄H₂₀F₃NO₂Si: [M] = 319.1215. Found: 319.1212.

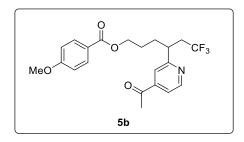

methyl 2-(1,1,1-trifluoro-7-hydroxyheptan-3-yl)isonicotinate (**4ad**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 1 : 1). From hex-5-en-1-ol (20.0 mg, 0.2 mmol), compound **4ad** (41.5 mg, 68%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.72 (d, J = 4.9 Hz, 1H), 7.70 (dd, J = 5.1, 1.6 Hz, 1H), 7.68 (s, 1H), 3.96 (s, 3H), 3.58 – 3.56 (m, 2H), 3.17 – 3.14 (m, 1H), 2.80 – 2.78 (m, 1H), 2.44 – 2.41 (m, 1H), 1.85 – 1.82 (m, 1H), 1.76 – 1.74 (m, 1H), 1.55 – 1.49 (m, 2H), 1.29 – 1.26 (m, 1H), 1.11 – 1.10 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 163.3, 150.4, 137.8, 126.6 (q, J = 277.4 Hz), 122.4, 121.0, 62.5, 52.7, 41.6 (d, J = 2.5 Hz), 38.7 (q, J = 27.6 Hz), 35.5, 32.4, 23.3. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.1 (t, J = 11.0 Hz). HRMS (EI) Calcd for C₁₄H₁₈F₃NO₃: [M] = 305.1239 Found: 305.1240.

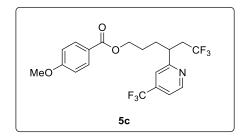

methyl 2-(1-butoxy-3,3,3-trifluoropropyl)isonicotinate (4ae). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From 1-(vinyloxy)butane (20.0 mg, 0.2 mmol), compound 4ae (50.6 mg, 83%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, J = 4.8 Hz, 1H), 8.00 (s, 1H), 7.79 (d, J = 5.0 Hz, 1H), 4.76 (dd, J = 8.2, 4.5 Hz, 1H), 3.98 (s, 3H), 3.44 (t, J = 6.5 Hz, 2H), 2.64 – 2.62 (m, 2H), 1.60 – 1.58 (m, 2H), 1.42 – 1.38 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.5, 161.5, 150.3, 138.4, 125.8 (q, J = 277.4 Hz), 122.2, 119.9, 77.1 (q, J = 3.1 Hz), 69.9, 52.8, 40.3 (q, J = 28.0 Hz), 31.7, 19.1, 13.7. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -63.5 (t, J = 10.5 Hz). HRMS (FAB) Calcd for C₁₄H₁₈F₃NO₃: [M] + H⁺ = 306.1317. Found: 306.1320.

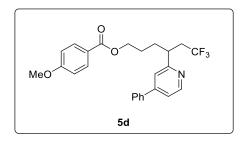

methyl 2-((2R,3R)-3-(trifluoromethyl)tetrahydro-2H-pyran-2-yl)isonicotinate (4af). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From 3,4-dihydro-2H-pyran (16.8 mg, 0.2 mmol), compound 4af (46.8 mg, 81%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.78 (d, J = 5.0 Hz, 1H), 7.89 (s, 1H), 7.80 (d, J = 5.0 Hz, 1H), 4.57 (d, J = 9.5 Hz, 1H), 4.12 (d, J = 11.2 Hz, 1H), 3.96 (s, 3H), 3.60 (t, J = 11.5 Hz, 1H), 2.91 – 2.88 (m, 1H), 2.25 – 2.23 (m, 1H), 1.89 – 1.86 (m, 1H), 1.82 – 1.79 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.4, 159.4, 150.3, 138.1, 126.1 (q, J = 279.9 Hz), 122.6, 122.0, 79.7, 68.2, 52.7, 44.1 (q, J = 24.7 Hz), 24.1, 22.9 (q, J = 2.9 Hz). ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -68.4 (d, J = 8.2 Hz). HRMS (EI) Calcd for C₁₃H₁₄F₃NO₃: [M] = 289.0926. Found: 289.0929.

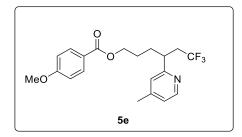

methyl 2-(1-acetoxy-3,3,3-trifluoropropyl)isonicotinate (**4ag**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From vinyl acetate (17.2 mg, 0.2 mmol), compound **4ag** (41.9 mg, 72%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.76 (d, J = 4.9 Hz, 1H), 7.91 (s, 1H), 7.82 (d, J = 4.8 Hz, 1H), 6.24 (dd, J = 8.3, 4.4 Hz, 1H), 3.97 (s, 3H), 2.92 – 2.87 (m, 2H), 2.17 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 169.7, 165.1, 158.1, 150.4, 138.5, 125.4 (q, J = 277.8 Hz), 122.7, 120.6, 69.7 (q, J = 3.2 Hz), 52.8, 38.1 (q, J = 28.8 Hz), 20.8. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -63.8 (d, J = 10.3 Hz). HRMS (ESI) Calcd for C₁₂H₁₂F₃NO₄: [M] + Na⁺ = 314.0611. Found: 314.0606.

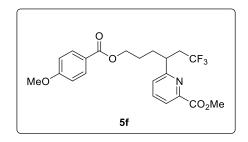

methyl 2-(3,3,3-trifluoro-1-phenoxypropyl)isonicotinate (4ah). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From (vinyloxy)benzene (24.0 mg, 0.2 mmol), compound **4ah** (49.4 mg, 76%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.76 (d, J = 4.9 Hz, 1H), 7.91 (s, 1H), 7.82 (d, J = 4.8 Hz, 1H), 6.24 (dd, J = 8.3, 4.4 Hz, 1H), 3.97 (s, 3H), 2.92 – 2.87 (m, 2H), 2.17 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 169.7, 165.1, 158.1, 150.4, 138.5, 125.4 (q, J = 277.8 Hz), 122.7, 120.6, 69.7 (q, J = 3.2 Hz), 52.8, 38.1 (q, J = 28.8 Hz), 20.8. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -63.8 (d, J = 10.3 Hz). HRMS (ESI) Calcd for C₁₆H₁₄F₃NO₃: [M] + Na⁺ = 348.0818. Found: 348.0822.

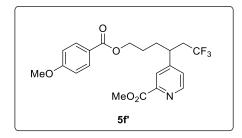

methyl 2-(1-acetamido-3,3,3-trifluoropropyl)isonicotinate (4ai). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 4 : 1). From N-vinylacetamide (17.0 mg, 0.2 mmol), compound **4ai** (41.2mg, 71%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.72 (d, J = 4.8 Hz, 1H), 7.86 (s, 1H), 7.80 (d, J = 4.9 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 5.50 (q, J = 7.2 Hz, 1H), 3.96 (s, 3H), 2.79 – 2.74 (m, 2H), 2.03 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 169.3, 165.1, 158.9, 150.3, 138.5, 125.5 (q, J = 277.5 Hz), 122.4, 121.6, 52.8, 48.9 (q, J = 3.0 Hz), 38.8 (q, J = 27.6 Hz), 23.2. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -63.1 (t, J = 10.5 Hz). HRMS (EI) Calcd for C₁₂H₁₃F₃N₂O₃: [M] = 290.0878. Found: 290.0877.

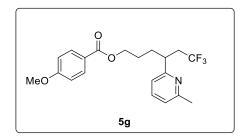

methyl 2-(3,3,3-trifluoro-1-(2-oxopyrrolidin-1-yl)propyl)isonicotinatee (4aj). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 4 : 1). From 1-vinylpyrrolidin-2-one (22.2 mg, 0.2 mmol), compound **4aj** (51.8 mg, 82%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-d) δ 8.69 (d, J = 5.1 Hz, 1H), 7.85 (s, 1H), 7.79 (d, J = 4.6 Hz, 1H), 5.81 – 5.78 (m, 1H), 3.94 (s, 3H), 3.47 – 3.45 (m, 1H), 3.17 – 3.14 (m, 1H), 3.08 – 3.05 (m, 1H), 2.95 – 2.91 (m, 1H), 2.44 – 2.38 (m, 2H), 2.04 – 2.02 (m, 1H), 1.95 – 1.93 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 174.9, 165.2, 157.7, 149.8, 138.7, 126.1 (q, J = 277.0 Hz), 122.3, 122.0, 52.8, 50.2 (d, J = 3.3 Hz), 43.1, 33.3 (q, J = 28.5 Hz), 30.9, 18.2. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.5 (t, J = 10.4 Hz). HRMS (EI) Calcd for C₁₄H₁₅F₃N₂O₃: [M] = 316.1035. Found: 316.1034.

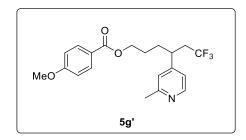

4-(4-cyanopyridin-2-yl)-6,6,6-trifluorohexyl 4-methoxybenzoate (5a). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5a** (66.6 mg, 85%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.77 (d, J = 4.9 Hz, 1H), 7.96 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 4.9 Hz, 1H), 7.38 (s, 1H), 6.92 (d, J = 8.5 Hz, 2H), 4.24 (t, J = 6.5 Hz, 2H), 3.87 (s, 3H), 3.21 – 3.18 (m, 1H), 2.86 – 2.80 (m, 1H), 2.48 – 2.44 (m, 1H), 1.97 – 1.94 (m, 1H), 1.90 – 1.88 (m, 1H), 1.70 – 1.67 (m, 1H), 1.50 – 1.47 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.4, 150.8, 131.5, 126.4 (q, J = 277.2 Hz), 124.8, 123.5, 122.5, 120.9, 116.3, 113.6, 63.8, 55.4, 41.3 (q, J = 2.5 Hz), 38.5 (q, J = 27.8 Hz), 32.0, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, J = 10.7 Hz). HRMS (EI) Calcd for C₂₀H₁₉F₃N₂O₃: [M] = 392.1348. Found: 392.1346.


4-(**4**-acetylpyridin-2-yl)-6,6,6-trifluorohexyl **4**-methoxybenzoate (**5**b). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5b** (63.0 mg, 77%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.77 (d, *J* = 4.9 Hz, 1H), 7.95 (d, *J* = 8.5 Hz, 2H), 7.60 – 7.58 (m, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.22 (t, *J* = 6.5 Hz, 2H), 3.86 (s, 3H), 3.24 – 3.22 (m, 1H), 2.85 – 2.81 (m, 1H), 2.62 (s, 3H), 2.48 – 2.45 (m, 1H), 1.98 – 1.96 (m, 1H), 1.91 – 1.89 (m, 1H), 1.69 – 1.66 (m, 1H), 1.51 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 197.3, 166.2, 163.4, 163.2, 150.9, 143.4, 131.5, 126.6 (q, *J* = 277.2 Hz), 122.6, 120.7, 119.7, 113.6, 64.0, 55.4, 41.4 (d, *J* = 2.5 Hz), 38.7 (q, *J* = 27.7 Hz), 32.1, 26.7, 26.4. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₂₁H₂₂F₃NO₄: [M] = 409.1501. Found: 409.1505.

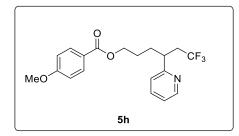

6,6,6-trifluoro-4-(4-(trifluoromethyl)pyridin-2-yl)hexyl 4-methoxybenzoate (5c). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5c** (74.0 mg, 85%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.77 (d, *J* = 5.0 Hz, 1H), 7.96 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 4.9 Hz, 1H), 7.37 (s, 1H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.24 (t, *J* = 6.5 Hz, 2H), 3.86 (s, 3H), 3.24 – 3.21 (m, 1H), 2.87 – 2.81 (m, 1H), 2.49 – 2.46 (m, 1H), 1.99 – 1.97 (m, 1H), 1.92 – 1.89 (m, 1H), 1.71 – 1.67 (m, 1H), 1.53 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.4, 163.4, 150.7, 138.8 (q, *J* = 34.1 Hz), 131.5, 126.5 (q, *J* = 277.8 Hz), 126.7 (q, *J* = 274.8 Hz), 122.6, 118.8, 117.7, 113.6, 64.0, 55.4, 41.4 (d, *J* = 2.8 Hz), 38.6 (q, *J* = 27.8 Hz), 32.1, 26.3. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.1 (t, *J* = 10.9 Hz), -64.8. HRMS (EI) Calcd for C₂₀H₁₉F₆NO₃: [M] = 435.1269. Found: 435.1272.


6,6,6-trifluoro-4-(4-phenylpyridin-2-yl)hexyl 4-methoxybenzoate (**5d**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 6 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5d** (53.6 mg, 61%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.63 (d, J = 5.1 Hz, 1H), 7.97 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 6.7 Hz, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.39 (d, J = 5.1 Hz, 1H), 7.37 (s, 1H), 6.90 (d, J = 8.9 Hz, 2H), 4.26 (t, J = 6.5 Hz, 2H), 3.85 (s, 3H), 3.22 – 3.19 (m, 1H), 2.90 – 2.84 (m, 1H), 2.51 – 2.46 (m, 1H), 2.04 – 2.01 (m, 1H), 1.95 – 1.91 (m, 1H), 1.73 – 1.69 (m, 1H), 1.60 – 1.56 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.3, 162.1, 150.1, 148.9, 138.1, 131.5, 129.1, 127.0, 126.8 (q, J = 277.3 Hz), 122.7, 121.3, 120.0, 113.6, 64.2, 55.4, 41.3 (q, J = 2.5 Hz), 38.8 (q, J = 27.5 Hz), 32.0, 26.4. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.0 (t, J = 11.0 Hz). HRMS (EI) Calcd for C₂₅H₂₄F₃NO₃: [M] = 443.1708. Found: 443.1711.

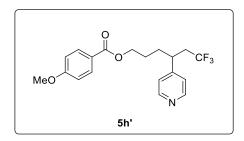

6,6,6-trifluoro-4-(4-methylpyridin-2-yl)hexyl 4-methoxybenzoate (5e). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5e** (38.1 mg, 50%) was obtained. White solid. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.43 (d, *J* = 4.9 Hz, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 6.97 (d, *J* = 5.1 Hz, 1H), 6.95 (s, 1H), 6.91 (d, *J* = 8.5 Hz, 2H), 4.22 (t, *J* = 6.5 Hz, 2H), 3.86 (s, 3H), 3.06 – 3.04 (m, 1H), 2.80 – 2.78 (m, 1H), 2.44 – 2.41 (m, 1H), 2.33 (s, 3H), 1.96 – 1.93 (m, 1H), 1.88 – 1.86 (m, 1H), 1.65 – 1.63 (m, 1H), 1.52 – 1.50 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.3, 163.3, 161.4, 149.4, 147.5, 131.5, 126.8 (q, *J* = 277.2 Hz), 124.3, 122.9, 122.7, 113.6, 64.2, 55.4, 41.0 (d, *J* = 2.9 Hz), 38.8 (q, *J* = 27.6 Hz), 32.0, 26.4, 21.0. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, *J* = 10.9 Hz), HRMS (ESI) Calcd for C₂₀H₂₂F₃NO₃: [M] + Na⁺ = 404.1444. Found: 404.1442.


methyl 6-(1,1,1-trifluoro-6-((4-methoxybenzoyl)oxy)hexan-3-yl)picolinate (5f). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 4 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5f** (18.7 mg, 22%) (minor) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 7.97 (d, J = 7.7 Hz, 1H), 7.95 (d, J = 8.9 Hz, 2H), 7.76 (t, J = 7.7 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 6.91 (d, J = 8.9 Hz, 2H), 4.22 (t, J = 6.5 Hz, 2H), 3.98 (s, 3H), 3.86 (s, 3H), 3.24 – 3.22 (m, 1H), 2.93 – 2.87 (m, 1H), 2.51 – 2.46 (m, 1H), 2.03 – 1.99 (m, 1H), 1.93 – 1.89 (m, 1H), 1.69 – 1.66 (m, 1H), 1.54 – 1.50 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 165.8, 163.3, 162.2, 148.2, 137.2, 131.5, 126.7 (q, J = 277.2 Hz), 126.3, 123.4, 122.6, 113.6, 64.1, 55.4, 52.7, 41.2 (d, J = 2.6 Hz), 38.6 (q, J = 27.6 Hz), 31.9, 26.4. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.9 (t, J = 11.0 Hz). HRMS (EI) Calcd for C₂₁H₂₂F₃NO₅: [M] = 425.1450. Found: 425.1449.

 2.4 Hz), 32.3, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.7 (t, *J* = 10.5 Hz). HRMS (EI) Calcd for C₂₁H₂₂F₃NO₅: [M] = 425.1450. Found: 425.1445.

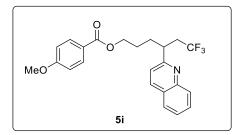


6,6,6-trifluoro-4-(6-methylpyridin-2-yl)hexyl 4-methoxybenzoate (5g). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5g** (24.3 mg, 32%) (major) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.9 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.93 – 6.91 (m, 3H), 4.22 (t, *J* = 6.6 Hz, 2H), 3.86 (s, 3H), 3.08 – 3.06 (m, 1H), 2.82 – 2.80 (m, 1H), 2.52 (s, 3H), 2.44 – 2.42 (m, 1H), 1.96 – 1.93 (m, 1H), 1.87 – 1.84 (m, 1H), 1.67 – 1.64 (m, 1H), 1.54 – 1.51 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.3, 163.3, 160.9, 158.4, 136.4, 131.5, 126.9 (q, *J* = 277.3 Hz), 122.8, 121.3, 120.0, 113.6, 64.2, 55.4, 41.1 (d, *J* = 2.6 Hz), 38.8 (q, *J* = 27.3 Hz), 31.9, 26.4, 24.6. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 11.1 Hz). HRMS (EI) Calcd for C₂₀H₂₂F₃NO₃: [M] = 381.1552. Found: 381.1553.

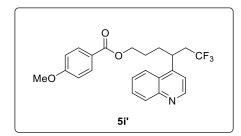


6,6,6-trifluoro-4-(2-methylpyridin-4-yl)hexyl 4-methoxybenzoate (5g'). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 2 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5g'** (16.0 mg, 21%) (minor) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 5.1 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 6.98 (s, 1H), 6.93 – 6.91 (m, 3H), 4.23 (t, *J* = 6.4 Hz, 2H), 3.86 (s, 3H), 2.94 – 2.92 (m, 1H), 2.55 (s, 3H), 2.45 – 2.42 (m, 2H), 1.90 – 1.88 (m, 1H), 1.78 – 1.74 (m, 1H), 1.65 – 1.62 (m, 1H), 1.56 – 1.53 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.4, 159.0, 151.9, 149.6, 131.5, 122.6, 122.3, 119.7, 113.6, 63.8, 55.4, 39.9

(q, J = 27.7 Hz), 39.1 (q, J = 2.6 Hz), 32.2, 26.4, 24.4. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.7 (t, J = 10.6 Hz). HRMS (EI) Calcd for C₂₀H₂₂F₃NO₃: [M] = 381.1552. Found: 381.1548.

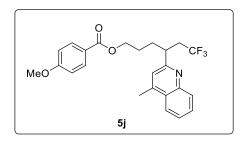


6,6,6-trifluoro-4-(pyridin-2-yl)hexyl 4-methoxybenzoate (**5h**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5h** (34.1 mg, 47%) (major) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.59 (d, *J* = 4.0 Hz, 1H), 7.96 (d, *J* = 8.8 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.17 – 7.14 (m, 2H), 6.91 (d, *J* = 8.9 Hz, 2H), 4.22 (t, *J* = 6.5 Hz, 2H), 3.86 (s, 3H), 3.13 – 3.10 (m, 1H), 2.84 – 2.78 (m, 1H), 2.46 – 2.41 (m, 1H), 1.98 – 1.94 (m, 1H), 1.90 – 1.87 (m, 1H), 1.67 – 1.63 (m, 1H), 1.53 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.3, 161.6, 149.8, 136.4, 131.5, 126.7 (q, *J* = 277.3 Hz), 123.4, 122.7, 121.9, 113.6, 64.2, 55.4, 41.2 (d, *J* = 2.6 Hz), 38.8 (q, *J* = 27.5 Hz), 32.0, 26.4. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.1 (t, *J* = 11.1 Hz). HRMS (EI) Calcd for C₁₉H₂₀F₃NO₃: [M] = 367.1395. Found: 367.1394.

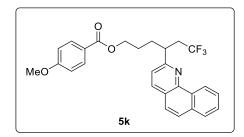


6,6,6-trifluoro-4-(pyridin-4-yl)hexyl 4-methoxybenzoate (**5h**'). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 2 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5h**' (18.0 mg, 25%) (minor) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.57 (d, *J* = 5.0 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 2H), 7.13 (d, *J* = 6.1 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 4.24 (t, *J* = 6.4 Hz, 2H), 3.87 (s, 3H), 3.00 – 2.97 (m, 1H), 2.48 – 2.45 (m, 2H), 1.95 – 1.91 (m, 1H), 1.80 – 1.77 (m, 1H), 1.65 – 1.62 (m, 1H), 1.57 – 1.53 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.5, 151.6, 150.3, 131.5, 126.1 (q, *J* = 277.8 Hz), 122.7, 122.5, 113.7, 63.8,

55.4, 40.0 (q, J = 27.8 Hz), 39.2 (q, J = 2.5 Hz), 32.3, 26.4. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.7 (t, J = 10.6 Hz). HRMS (EI) Calcd for C₁₉H₂₀F₃NO₃: [M] = 367.1395. Found: 367.1391.

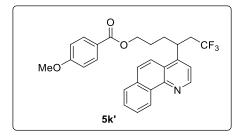


6,6,6-trifluoro-4-(quinolin-2-yl)hexyl 4-methoxybenzoate (**5i**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5i** (35.9 mg, 43%) (major) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.9 Hz, 2H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.9 Hz, 2H), 4.24 (t, *J* = 6.5 Hz, 2H), 3.86 (s, 3H), 3.36 – 3.34 (m, 1H), 3.04 – 2.99 (m, 1H), 2.57 – 2.53 (m, 1H), 2.10 – 2.08 (m, 1H), 2.00 – 1.98 (m, 1H), 1.74 – 1.71 (m, 1H), 1.60 – 1.57 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.3, 162.1, 148.1, 136.5, 131.5, 129.4, 129.2, 127.5, 127.1, 126.8 (q, *J* = 277.4 Hz), 126.1, 122.7, 121.3, 113.6, 64.2, 55.4, 41.7 (d, *J* = 2.4 Hz), 38.6 (q, *J* = 27.6 Hz), 32.2, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 11.0 Hz). HRMS (EI) Calcd for C₂₃H₂₂F₃NO₃: [M] = 417.1552. Found: 417.1553.

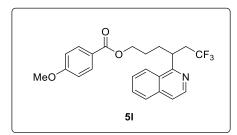


6,6,6-trifluoro-4-(quinolin-4-yl)hexyl 4-methoxybenzoate (**5i**'). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 1 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5i'** (30.0 mg, 36%) (minor) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.90 (d, *J* = 4.5 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.9 Hz, 2H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 4.6 Hz, 1H), 6.90 (d, *J* = 8.9 Hz, 2H), 4.21 (q, *J* = 6.4 Hz, 2H), 3.98 – 3.96 (m, 1H), 3.85 (s, 3H), 2.62 – 2.59 (m, 2H), 2.13 – 2.11 (m, 1H), 2.01 – 2.01 (m, 1H), 1.66 – 1.64 (m, 1H), 1.58 – 1.55 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.4,

150.0, 148.9, 148.7, 131.5, 130.7, 129.4, 127.0, 126.3 (q, J = 277.5 Hz), 122.5, 122.3, 113.6, 63.8, 55.4, 39.8 (q, J = 28.0 Hz), 32.1, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.8 (s). HRMS (EI) Calcd for C₂₃H₂₂F₃NO₃: [M] = 417.1552. Found: 417.1550.

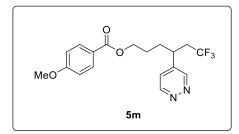


6,6,6-trifluoro-4-(4-methylquinolin-2-yl)hexyl 4-methoxybenzoate (**5j**). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5j** (48.3 mg, 56%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.5 Hz, 1H), 7.98 – 7.95 (m, 3H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.24 (t, *J* = 6.5 Hz, 2H), 3.86 (s, 3H), 3.31 – 3.28 (m, 1H), 3.02 – 2.97 (m, 1H), 2.70 (s, 3H), 2.56 – 2.52 (m, 1H), 2.09 – 2.06 (m, 1H), 1.99 – 1.95 (m, 1H), 1.74 – 1.71 (m, 1H), 1.61 – 1.58 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.3, 161.8, 147.9, 144.6, 131.5, 129.8, 129.1, 127.2, 126.9 (q, *J* = 277.3 Hz), 125.8, 123.6, 122.7, 121.9, 113.6, 64.2, 55.4, 41.6 (d, *J* = 2.5 Hz), 38.5 (q, *J* = 27.6 Hz), 32.1, 26.4, 18.7. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 11.1 Hz). HRMS (EI) Calcd for C₂₄H₂₄F₃NO₃: [M] = 431.1708. Found: 431.1710.

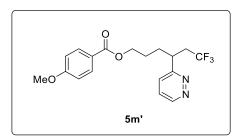


4-(benzo[h]quinolin-2-yl)-6,6,6-trifluorohexyl 4-methoxybenzoate (5k). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5k** (48.9 mg, 52.4%) (major) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 9.37 (d, *J* = 8.5 Hz, 1H), 8.12 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.6 Hz, 3H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.75 – 7.68 (m, 3H), 7.40 (d, *J* = 8.1 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 4.26 (t, *J* = 6.1 Hz, 2H), 3.84 (s, 3H), 3.43 – 3.40 (m, 1H), 3.17 – 3.12 (m, 1H), 2.67 – 2.62 (m, 1H), 2.26 – 2.22 (m, 1H), 2.07 – 2.01 (m, 1H), 1.78 – 1.73 (m, 1H), 1.63 – 1.59 (m, 1H). ¹³C NMR (151 MHz,

Chloroform-*d*) δ 166.2, 163.3, 160.6, 146.2, 136.2, 133.8, 131.5, 131.4, 128.1, 127.7, 127.2, 127.0 (q, J = 277.4 Hz), 126.8, 125.1, 125.0, 124.5, 122.7, 122.0, 113.5, 64.2, 55.4, 41.6 (d, J = 2.5 Hz), 39.1 (q, J = 27.4 Hz), 32.5, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.8 (t, J = 11.1 Hz). HRMS (EI) Calcd for C₂₇H₂₄F₃NO₃: [M] = 467.1708. Found: 467.1711.

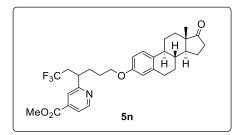


4-(benzo[h]quinolin-4-yl)-6,6,6-trifluorohexyl 4-methoxybenzoate (5k'). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 1 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5k'** (25.8 mg, 27.6%) (minor) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 9.36 (d, J = 8.1 Hz, 1H), 9.00 (d, J = 4.6 Hz, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.93 – 7.87 (m, 4H), 7.76 (t, J = 7.5 Hz, 1H), 7.72 (t, J = 7.3 Hz, 1H), 7.42 (d, J = 4.7 Hz, 1H), 6.87 (d, J = 8.5 Hz, 2H), 4.23 – 4.21 (m, 2H), 4.06 (s, 1H), 3.84 (s, 3H), 2.66 – 2.63 (m, 2H), 2.16 – 2.14 (m, 1H), 2.03 (s, 1H), 1.68 – 1.66 (m, 1H), 1.59 – 1.54 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.4, 148.7, 148.4, 147.0, 133.2, 132.0, 131.5, 128.4, 128.2, 127.6, 127.3, 126.3 (q, J = 277.6 Hz), 125.0, 124.9, 122.5, 119.7, 118.6, 113.6, 63.8, 55.4, 40.0 (q, J = 27.8 Hz), 32.3, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -63.7 (s). HRMS (EI) Calcd for C₂₇H₂₄F₃NO₃: [M] = 467.1708. Found: 467.1707.

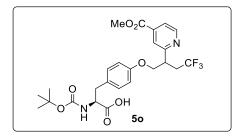


6,6,6-trifluoro-4-(isoquinolin-1-yl)hexyl 4-methoxybenzoate (5l). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 4 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5l** (45.7 mg, 55%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 5.6 Hz, 1H), 8.22 (d, *J* = 8.6 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 5.7 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 4.21 – 4.15 (m, 3H), 3.85 (s, 3H), 3.13 – 3.07 (m, 1H), 2.62 – 2.59 (m, 1H), 2.19 – 2.14

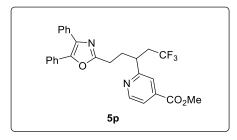
(m, 1H), 2.04 – 2.01 (m, 1H), 1.69 – 1.66 (m, 1H), 1.52 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.3, 161.5, 141.8, 136.5, 131.5, 130.0, 127.7, 127.5, 127.1, 126.9 (q, *J* = 277.8 Hz), 122.7, 119.7, 113.5, 64.1, 55.4, 38.5 (q, *J* = 27.6 Hz), 34.8, 32.3, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.3 (t, *J* = 11.1 Hz). HRMS (EI) Calcd for C₂₃H₂₂F₃NO₃: [M] = 417.1552. Found: 417.1550.

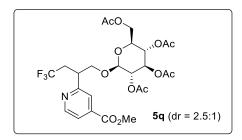


6,6,6-trifluoro-4-(pyridazin-4-yl)hexyl 4-methoxybenzoate (5m). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 1 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5m** (54.5 mg, 74%) (major) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 9.15 (d, *J* = 5.2 Hz, 1H), 9.11 (s, 1H), 7.94 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 6.5 Hz, 1H), 6.92 (d, *J* = 7.9 Hz, 2H), 4.25 (t, *J* = 6.4 Hz, 2H), 3.86 (s, 3H), 3.05 – 3.01 (m, 1H), 2.55 – 2.50 (m, 2H), 1.97 – 1.94 (m, 1H), 1.84 – 1.82 (m, 1H), 1.69 – 1.66 (m, 1H), 1.58 – 1.54 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.12 , 163.49 , 151.55 , 151.21 , 141.93 , 131.51 , 125.78 (q, *J* = 277.4 Hz), 125.01 , 122.28 , 113.68 , 63.44 , 55.42 , 39.32 (q, *J* = 28.3 Hz), 37.15 (d, *J* = 2.7 Hz), 32.12 , 26.32 . ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.3 Hz). HRMS (FAB) Calcd for C₁₈H₁₉F₃N₂O₃: [M] + H⁺ = 369.1426. Found: 369.1424.

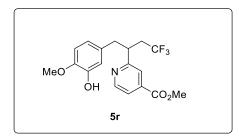


6,6,6-trifluoro-4-(pyridazin-3-yl)hexyl 4-methoxybenzoate (5m'). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 1 : 1). From 4-methoxyphenyl hex-5-enoate (44.0 mg, 0.2 mmol), compound **5m'** (9.6 mg, 13%) (minor) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 9.06 (d, *J* = 4.8 Hz, 1H), 7.90 (d, *J* = 7.0 Hz, 2H), 7.39 – 7.37 (m, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 2H), 4.19 (t, *J* = 6.3 Hz, 2H), 3.81 (s, 3H), 3.23 – 3.21 (m, 1H), 2.94 –


2.92 (m, 1H), 2.54 – 2.51 (m, 1H), 2.05 – 2.03 (m, 1H), 1.95 – 1.93 (m, 1H), 1.65 – 1.62 (m, 1H), 1.52 – 1.49 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 163.8, 163.4, 150.2, 131.5, 126.6, 126.5, 126.5 (q, *J* = 277.8 Hz), 122.5, 113.6, 63.9, 55.4, 40.3 (d, *J* = 2.2 Hz), 38.6 (q, *J* = 28.2 Hz), 32.1, 26.3. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₁₈H₁₉F₃N₂O₃: [M] = 368.1348. Found: 368.1346.


methyl 2-(1,1,1-trifluoro-6-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)hexan-3-yl)isonicotinate (5n). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 3 : 1). From (8R,9S,13S,14S)-13-methyl-3-(pent-4-en-1-yloxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (67.6 mg, 0.2 mmol), compound **5n** (80.4 mg, 74%) was obtained. White solid. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.74 (d, *J* = 6.0 Hz, 1H), 7.72 (d, *J* = 4.5 Hz, 2H), 7.18 (d, *J* = 8.6 Hz, 1H), 6.66 (d, *J* = 8.5 Hz, 1H), 6.60 (s, 1H), 3.97 (s, 3H), 3.87 (t, *J* = 6.2 Hz, 2H), 3.25 – 3.23 (m, 1H), 2.88 – 2.84 (m, 3H), 2.51 – 2.48 (m, 2H), 2.39 (d, *J* = 10.7 Hz, 1H), 2.24 (t, *J* = 8.5 Hz, 1H), 2.16 – 2.13 (m, 1H), 2.08 – 2.05 (m, 1H), 2.00 – 1.94 (m, 4H), 1.69 – 1.66 (m, 1H), 1.62 – 1.57 (m, 2H), 1.53 – 1.49 (m, 4H), 1.45 – 1.41 (m, 1H), 0.91 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 220.8, 165.5, 163.0, 156.8, 150.4, 137.8, 137.7, 132.1, 126.6 (q, *J* = 277.3 Hz), 126.3, 122.5, 121.1, 114.4, 112.0, 67.3, 52.7, 50.4, 48.0, 43.9, 41.3 (d, *J* = 2.9 Hz), 38.7 (q, *J* = 27.6 Hz), 38.3, 35.8, 32.3, 31.6, 29.6, 26.8, 26.5, 25.9, 21.5, 13.8. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, *J* = 10.9 Hz). HRMS (EI) Calcd for C₃₁H₃₆F₃NO₄: [M] = 543.2596. Found: 543.2598.

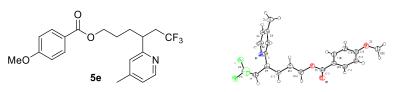
(2S)-2-((tert-butoxycarbonyl)amino)-3-(4-(4,4,4-trifluoro-2-(4-(methoxycarbonyl)pyridin-2yl)butoxy)phenyl)propanoic acid (50). Purified by flash column chromatography on silica gel (dichloromethane/MeOH 10 : 1). From (S)-3-(4-(allyloxy)phenyl)-2-((tert-= butoxycarbonyl)amino)propanoic acid (64.2 mg, 0.2 mmol), compound 50 (61.0 mg, 58%) was obtained. White solid. ¹H NMR (599 MHz, Methanol- d_4) δ 8.72 (d, J = 5.2 Hz, 1H), 7.92 (s, 1H), 7.80 (dd, J = 5.0, 1.6 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 6.74 (d, J = 8.2 Hz, 2H), 4.20 – 4.15 (m, 3H), 3.96 (s, 3H), 3.70 – 3.68 (m, 1H), 3.07 (dd, J = 13.7, 4.6 Hz, 1H), 2.96 – 2.92 (m, 1H), 2.84 – 2.78 (m, 2H), 1.36 (s, 9H), 1.27 (s, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 166.9, 162.3, 158.6, 157.4, 151.5, 139.8, 132.5, 131.8, 128.5 (q, J = 276.0 Hz), 124.3, 122.9, 115.6, 115.5, 80.1, 71.6, 53.4, 43.2, 39.1, 35.8 (q, J = 28.4 Hz), 28.9, 28.6. ¹⁹F NMR (564 MHz, Chloroform-d) δ -65.4 (t, J = 11.0 Hz). HRMS (EI) Calcd for $C_{25}H_{29}F_3N_2O_7$: [M] + Na⁺ = 549.1819. Found: 549.1800.



methyl 2-(5-(4,5-diphenyloxazol-2-yl)-1,1,1-trifluoropentan-3-yl)isonicotinate (5p). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 3 : 1). From (2-(but-3-en-1-yl)-4,5-diphenyloxazole (55.0 mg, 0.2 mmol), compound 5p (49.0 mg, 51%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.72 (d, J = 5.0 Hz, 1H), 7.74 (s, 1H), 7.69 (d, J = 5.0 Hz, 1H), 7.61 (d, J = 7.3 Hz, 2H), 7.54 (d, J = 7.0 Hz, 2H), 7.37 – 7.32 (m, 6H), 3.90 (s, 3H), 3.37 – 3.34 (m, 1H), 2.91 – 2.88 (m, 1H), 2.74 – 2.69 (m, 2H), 2.55 – 2.51 (m, 1H), 2.44 – 2.42 (m, 1H), 2.36 – 2.34 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.4, 162.1, 162.1, 150.6, 145.2, 137.8, 135.0, 132.4, 128.9, 128.6, 128.5, 128.4, 128.0, 127.8, 126.5 (q, J = 277.4 Hz), 126.4, 122.7, 121.3, 52.6, 41.1 (d, J = 2.9 Hz), 38.8 (q, J = 27.6 Hz), 32.5, 25.8. ¹⁹F NMR (564 MHz, Chloroform-d) δ -64.0 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₂₇H₂₃F₃N₂O₃: [M] + Na⁺ = 503.1553. Found: 503.1550.

(2S,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(4,4,4-trifluoro-2-(4-(methoxycarbonyl)pyridin-2-

yl)butoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5q). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 1 : 1). From Allyl-2,3,4,6-tetra-O-acetyl- β -Dglucopyranoside (77.6 mg, 0.2 mmol), compound 5q (88.9 mg, 75%) (dr = 2.5:1) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-*d*) δ 8.67 (d, *J* = 4.3 Hz, 1H), 7.72 – 7.70 (m, 2H), 5.10 (t, J = 9.5 Hz, 1H), 5.02 (t, J = 9.7 Hz, 1H), 4.88 (dd, J = 9.6, 8.0 Hz, 1H), 4.41 (d, J = 8.0 Hz, 1H),4.22 (dd, J = 12.3, 4.8 Hz, 1H), 4.09 – 4.04 (m, 2H), 3.93 (s, 3H), 3.77 – 3.73 (m, 1H), 3.65 – 3.63 (m, 1H), 3.46 - 3.44 (m, 1H), 2.76 - 2.72 (m, 1H), 2.53 - 2.49 (m, 1H), 2.06 (s, 3H), 1.98 (s, 3H), 1.94 (s, 3H), 1.79 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.5, 170.1, 169.3, 168.8, 165.4, 160.4, 150.1, 137.8, 126.5 (q, J = 276.9 Hz), 123.2, 121.4, 100.6, 72.6, 71.8, 71.7, 70.9, 68.3, 61.8, 52.6, 41.7 (d, J = 2.5 Hz), 34.7 (q, J = 28.5 Hz), 20.6, 20.4, 20.4, 20.2. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.1 (t, J= 10.8 Hz). *Isomer*: ¹H NMR (599 MHz, Chloroform-*d*) δ 8.66 (d, *J* = 4.6 Hz, 1H), 7.72 – 7.70 (m, 2H), 5.15 (t, J = 9.5 Hz, 1H), 5.02 (t, J = 9.7 Hz, 1H), 4.95 (dd, J = 9.7, 8.0 Hz, 1H), 4.50 (d, J = 7.9 Hz, 1H), 4.18 (dd, *J* = 12.3, 4.8 Hz, 1H), 4.09 – 4.04 (m, 2H), 3.93 (s, 3H), 3.77 – 3.73 (m, 1H), 3.65 – 3.63 (m, 1H), 3.46 – 3.44 (m, 1H), 2.74 – 2.72 (m, 1H), 2.63 – 2.58 (m, 1H), 2.04 (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H), 1.97 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.5, 170.1, 169.2, 169.0, 165.4, 160.1, 150.2, 137.9, 126.6 (q, *J* = 276.3 Hz), 122.7, 121.5, 100.9, 72.6, 71.9, 71.8, 71.0, 68.3, 61.8, 52.6, 41.9 (d, J = 2.2 Hz), 34.7 (q, J = 28.5 Hz), 20.5, 20.4, 20.4, 20.3. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ -64.0 (t, J = 11.3 Hz). HRMS (EI) Calcd for C₂₅H₃₀F₃NO₁₂: [M] + Na⁺ = 616.1612. Found: 616.1611.



methyl 2-(4,4,4-trifluoro-1-(3-hydroxy-4-methoxyphenyl)butan-2-yl)isonicotinate (5r). Purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 2 : 1). From Eugenol (32.8 mg, 0.2 mmol), compound 5r (35.4 mg, 48%) was obtained. Colorless oil. ¹H NMR (599 MHz, Chloroform-d) δ 8.75 (d, J = 5.0 Hz, 1H), 7.69 (dd, J = 5.0, 1.6 Hz, 1H), 7.53 (s, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.52 (dd, J = 8.0, 1.9 Hz, 1H), 6.46 (d, J = 1.9 Hz, 1H), 5.65 (s, 1H), 3.93 (s, 3H), 3.76 (s, 3H), 3.41 – 3.39 (m, 1H), 3.02 – 2.99 (m, 1H), 2.93 – 2.83 (m, 2H), 2.47 – 2.43 (m, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 165.5, 162.8, 150.2, 146.4, 144.2, 137.6, 130.3, 126.7 (q, J = 277.4 Hz), 122.7, 121.8, 121.0, 114.4, 111.4, 55.8, 52.6, 43.7 (d, J = 2.5 Hz), 41.7, 37.5 (q, J = 27.7 Hz). ¹⁹F NMR (564 MHz,

Chloroform-*d*) δ -63.9 (t, J = 10.9 Hz). HRMS (EI) Calcd for C₁₈H₁₈F₃NO₄: [M] + Na⁺ = 392.1080. Found: 392.1077.

VI. Crystallographic Data of 5e

A crystal of **P027_002M** was coated with parabar oil and the diffraction data measured at 100 K with synchrotron radiation ($\lambda = 0.70000$ Å) on a Rayonix MX225HS detector at BL2D-SMC with a silicon (111) double crystal monochromator (DCM) at the Pohang Accelerator Laboratory, Korea. The PAL BL2D-SMDC program was used for data collection (detector distance is 66 mm, omega scan; $\Delta \omega = 1^{\circ}$, exposure time is 1 sec per frame) and HKL3000sm (Ver. 716.7) was used for cell refinement, reduction and absorption correction. The crystal structure of **P027_002M** was solved by SHELX structure solution program and refined by full-matrix least-squares calculations with the SHELXL.

Datablock: P027_002M

Bond precision:		C-C = 0.0021 A			Wavelength=0.70000	
Cell:	a=8.3180(1	7)	b=11.515(2)		c=11.539(2)	
	alpha=61.60	0(3)	beta=78.05(3)		gamma=75.08(3)	
Temperature	:100 K					
		Calculat	ed		Reported	
Volume		934.8(4)			934.8(4)	
Space group		P -1			P -1	
Hall group		-P 1			-P 1	
Moiety form	ula	C20 H22 F3 N O3			?	
Sum formula	L	C20 H22	2 F3 N O3		C20 H22 F3 N O3	
Mr		381.39			381.38	
Dx,g cm-3		1.355			1.355	
Ζ		2			2	
Mu (mm-1)		0.105			0.105	
F000		400.0			400.0	
F000'		400.24				
h,k,lmax		11,15,15			11,15,15	
Nref		4732			4586	
Tmin,Tmax		0.995,0.9	996		0.863,1.000	
Tmin'		0.995				
Correction method= # Reported T Limits: Tmin=0.863 Tmax=1.000 AbsCorr =						

Correction method= # Reported T Limits: Tmin=0.863 Tmax=1.000 AbsCorr = EMPIRICAL

Data completeness= 0.969		Theta(max)= 27.998	
R(reflections)= 0.0624(3876)		wR2(reflections)= 0.1927(4586)	
S = 1.125	Npar= 246		

VII. Computational Details

All calculations were conducted using DFT^{S5} as implemented in Gaussian 09 software^{S6} of ab initio quantum chemistry programs with Minnesota functional M06 including Grimme's D3 dispersion correction levels of theory. ^{S7, S8} Geometry optimization of all species was carried out using the 6-31G** basis set. Frequency analysis was performed to ensure the stationary point as minimum. The orbital energy levels of the optimized structures were reevaluated by additional single point calculations on each geometry using M06 including Grimme's D3 dispersion correction and Dunning's correlation consistent triple-ζ basis set cc-pVTZ.^{S9}

- Cartesian coordinates of optimized structures (Å)

1a (alkenyl substrate)

Lowest three frequencies(cm⁻¹): 25.3295, 29.4851, 46.2267

С	3.75546300	-0.64219600	0.01286800
С	3.60668500	0.74620500	0.06357200
С	2.62557800	-1.46755800	-0.03996800
Н	4.47214400	1.40030900	0.10411600
Н	2.77753400	-2.54284200	-0.07791800
С	2.33091500	1.29165300	0.06090600
С	1.36211000	-0.91183500	-0.04298300
Н	2.18946500	2.36873600	0.09980600
Н	0.48279200	-1.54840300	-0.08306600
С	1.20114300	0.47860700	0.00782300
0	4.94622400	-1.28070900	0.01134900
С	6.11440700	-0.49510200	0.05495000
Н	6.18676600	0.16894100	-0.81751500
Н	6.15860500	0.11275000	0.96925800
Н	6.95591900	-1.18984000	0.04660800
С	-0.12237900	1.13256300	0.00672600
0	-0.30171100	2.32974100	0.06006500
0	-1.13215800	0.24326500	-0.06225500
С	-2.44373300	0.80899200	-0.06767400
Н	-2.53455700	1.50912800	-0.90993600
Н	-2.58983700	1.39677400	0.84927100
С	-3.43568600	-0.32210100	-0.17076900
Н	-3.23263600	-0.89946300	-1.08423200
Н	-3.29554600	-1.01293600	0.67169200
С	-4.87133800	0.19547300	-0.18469300

Н	-4.98475500	0.90382600	-1.02145100
Н	-5.07305800	0.76711500	0.73341100
С	-5.87037000	-0.90752800	-0.31726800
Н	-5.78143100	-1.52675500	-1.21371100
С	-6.81689900	-1.18288800	0.57373400
Н	-6.92916800	-0.58828500	1.47964200
Н	-7.51645600	-2.00313800	0.43741400

1-methoxy-4-methylpyridinium salt

Lowest three frequencies(cm⁻¹): 48.2023, 96.5337, 105.4065

С	-1.80003500	0.00170300	0.05104800
С	-1.08200500	-1.19986000	-0.04427400
С	0.28256700	-1.18565400	-0.21522000
Ν	0.91974500	-0.00031000	-0.28547300
С	0.28444300	1.18540300	-0.21569800
С	-1.08055700	1.20158800	-0.04426900
Н	-1.59392400	-2.15654100	0.00774700
Н	0.91128100	-2.06465300	-0.31590600
Н	0.91404900	2.06371800	-0.31694800
Н	-1.59087700	2.15897900	0.00776300
С	-3.27290400	0.00041700	0.26097400
Н	-3.49361100	-0.08790800	1.33272800
Н	-3.73397000	0.92570900	-0.09328000
Н	-3.74985600	-0.84839300	-0.23697400
0	2.26401000	-0.00143300	-0.53229200
С	3.02047700	0.00001400	0.69661400
Н	2.80745700	0.90253300	1.28005600
Н	2.80607700	-0.90023900	1.28302800
Н	4.06116400	-0.00123000	0.37338700

Trifluoromethyl radical

Lowest three frequencies(cm⁻¹): 512.7667, 512.8168, 710.0702

С	0.00000000	0.00000000	0.32773500
F	0.00000000	1.25208200	-0.07283000
F	1.08433500	-0.62604100	-0.07283000
F	-1.08433500	-0.62604100	-0.07283000

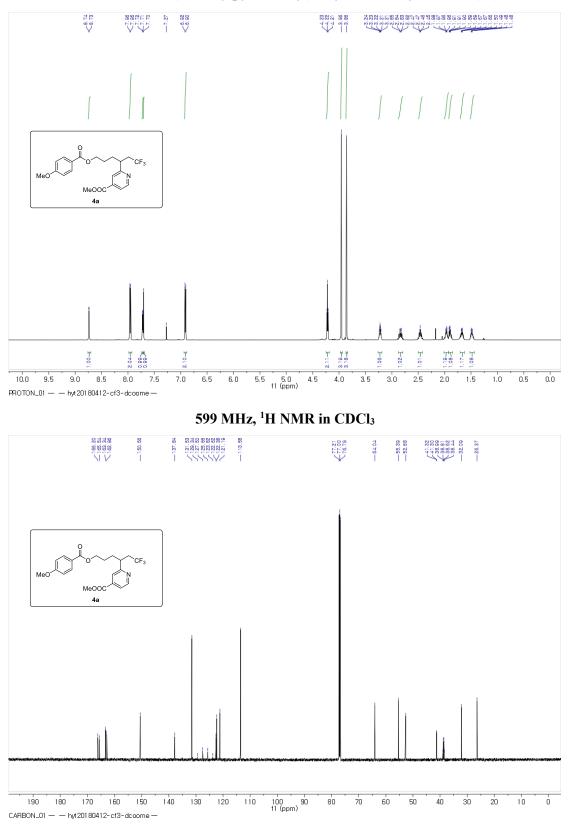
A (alkyl radical intermediate)

Lowest three frequencies(cm⁻¹): 22.0838, 28.5634, 33.6473

С	5.52786800	-0.89695100	-0.00006800
С	5.55196900	0.49642800	-0.10205800
С	4.30452400	-1.57347300	0.08410600
Н	6.49108800	1.03661200	-0.17104100

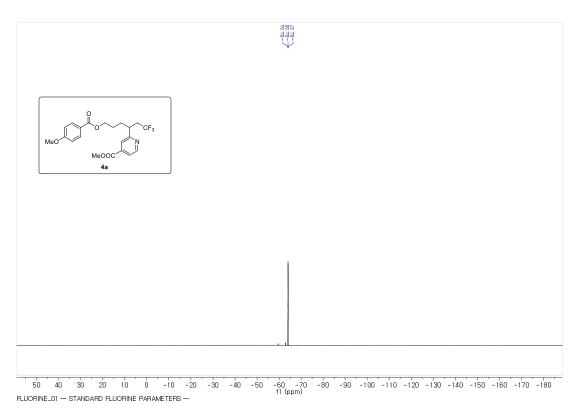
Н	4.32212300	-2.65718300	0.16065700
С	4.35410700	1.19653200	-0.11378100
С	3.12023000	-0.86503300	0.07036500
Н	4.34551000	2.28094500	-0.18995700
Н	2.17007400	-1.38697300	0.13735600
С	3.13249700	0.53210300	-0.02823000
0	6.62891800	-1.67902800	0.02672900
С	7.88800100	-1.05441000	-0.06448300
Н	8.00840200	-0.52546200	-1.02007700
Н	8.04823600	-0.34450000	0.75857900
Н	8.63297800	-1.84923200	0.00000700
С	1.90145300	1.34569900	-0.04222400
0	1.87106600	2.55443100	-0.12035300
0	0.78745300	0.59096500	0.04424400
С	-0.44116100	1.31731200	0.04503900
Н	-0.52291800	1.89708800	-0.88511100
Н	-0.43537300	2.04243000	0.87071800
С	-1.56344100	0.32028500	0.18515600
Н	-1.51955500	-0.40025600	-0.64268400
Н	-1.42018400	-0.25630000	1.10984600
С	-2.92395800	1.00239200	0.20776100
Н	-3.06302900	1.59485300	-0.71465200
Н	-2.93911300	1.75468500	1.02187000
С	-4.04751700	0.04796200	0.36299900
Н	-3.85315600	-0.95278500	0.74832400
С	-5.45583000	0.49911300	0.24541900
Н	-5.56398700	1.27329600	-0.52758300
Н	-5.83807800	0.94540800	1.18053300
С	-6.39417600	-0.62267200	-0.10691100
F	-6.35397100	-1.60026800	0.80904200
F	-7.65835000	-0.19102300	-0.17779500
F	-6.08655600	-1.17040900	-1.28683400

VIII. References

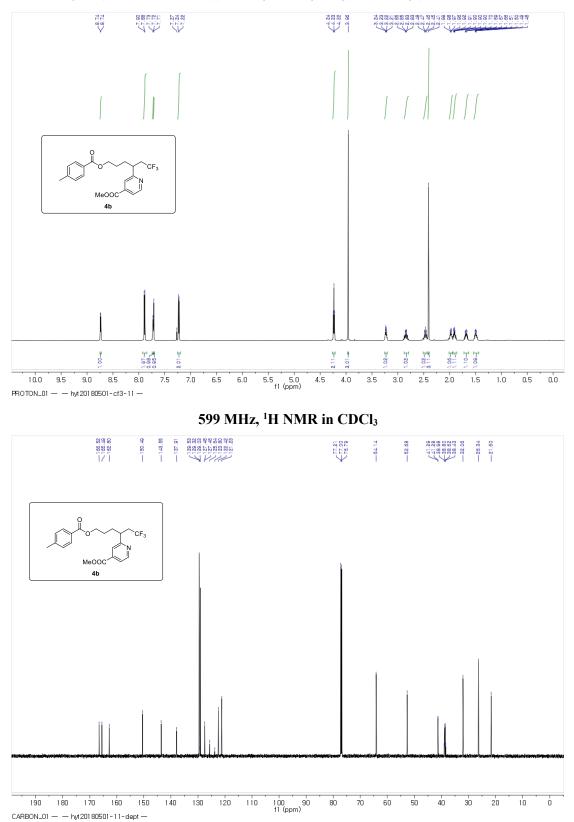

- [S1] Cismesia, M. A.; Yoon, T. P. Chem. Sci., 2015, 6, 5426.
- [S2] Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem., 2004, 76, 2105.
- [S3] Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoldi, R. A. J. Phys. Chem., 1981, 85, 2766.
- [S4] Konik, Y. A.; Kudrjashova, M.; Konrad, N.; Kaabel, S.; Järving, I.; Lopp, M.; Kananovich, D. G. Org. Biomol. Chem. 2017, 15, 4635.
- [S5] Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989.
- [S6] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;

Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, **2013**.

- [S7] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- [S8] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. J. Chem. Phys. 2010, 132, 154104.
- [S9] Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.

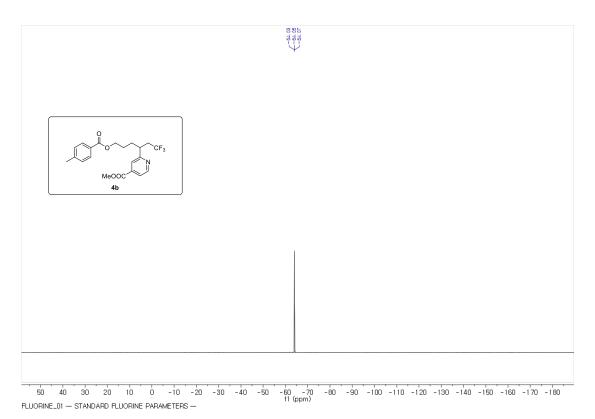

Appendix I

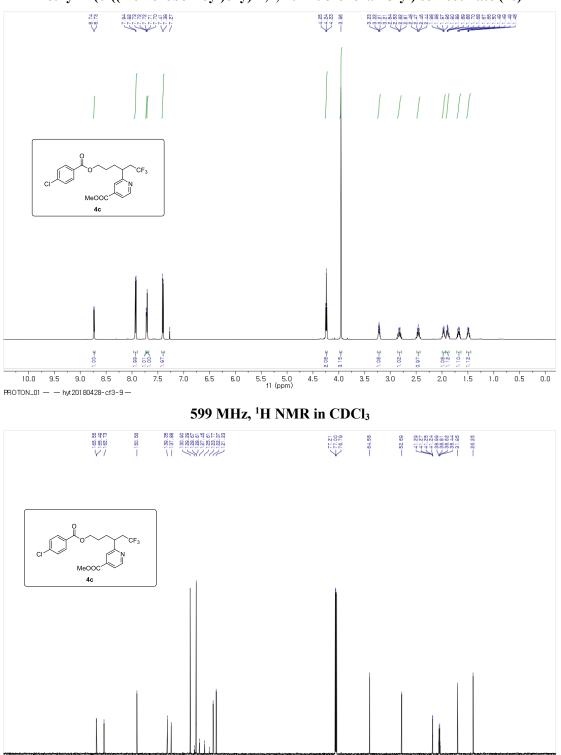
Spectral Copies of ¹H, ¹³C and ¹⁹F NMR Data Obtained in this Study



6,6,6-trifluoro-4-(4-methylpyridin-2-yl)hexyl 4-methoxybenzoate (4a).

151 MHz, ¹³C NMR in CDCl₃





methyl 2-(1,1,1-trifluoro-6-((4-methylbenzoyl)oxy)hexan-3-yl)isonicotinate (4b).

151 MHz, ¹³C NMR in CDCl₃

methyl 2-(6-((4-chlorobenzoyl)oxy)-1,1,1-trifluorohexan-3-yl)isonicotinate (4c).

151 MHz, ¹³C NMR in CDCl₃

190

180 170

CARBON_01 - - hyt 201 80428-cf3-9 -

160 150

140

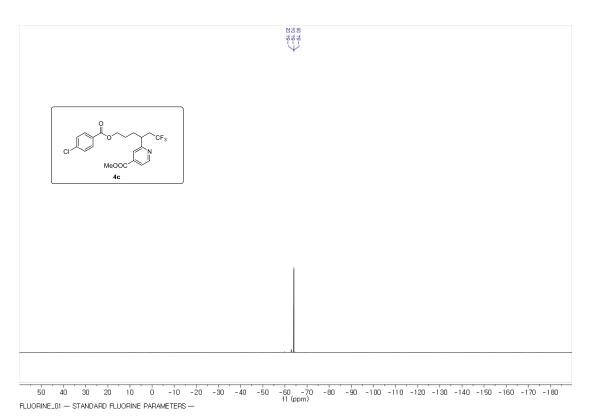
130

120 110

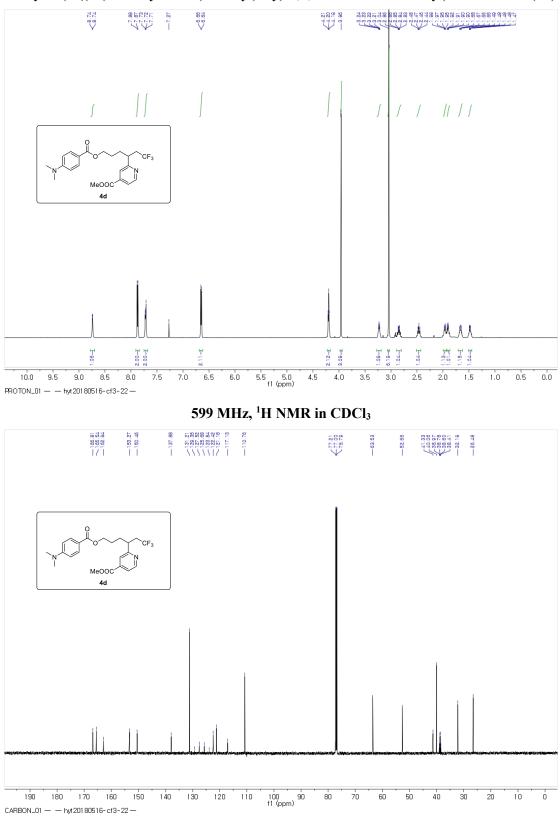
100 90 f1 (ppm) вo

70

60

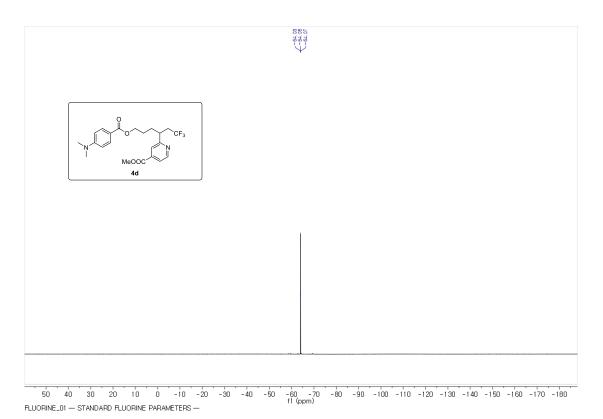

50

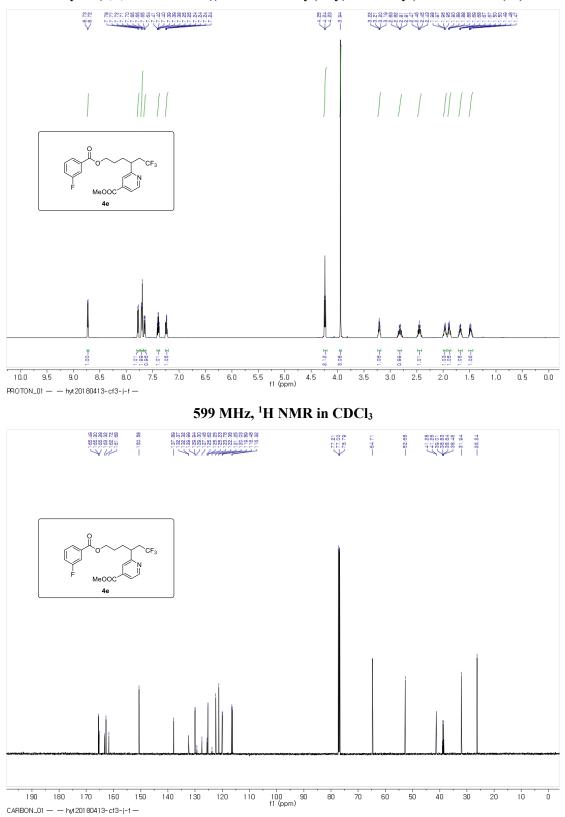
40 30


20

10

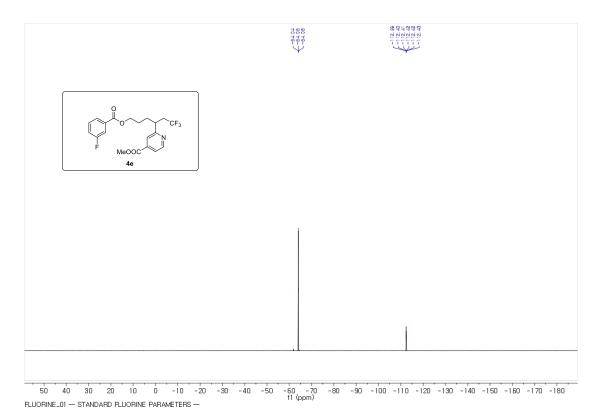
ó



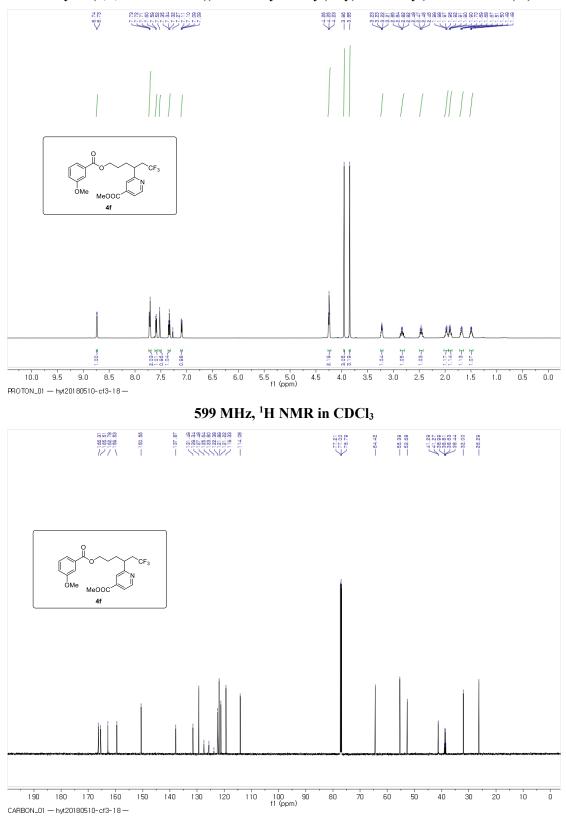


methyl 2-(6-((4-(dimethylamino)benzoyl)oxy)-1,1,1-trifluorohexan-3-yl)isonicotinate (4d).

151 MHz, ¹³C NMR in CDCl₃

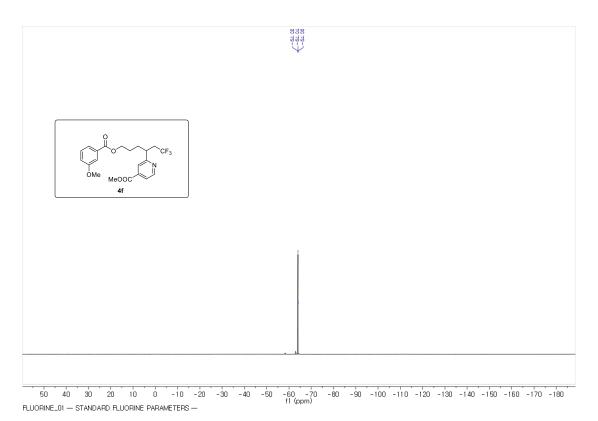


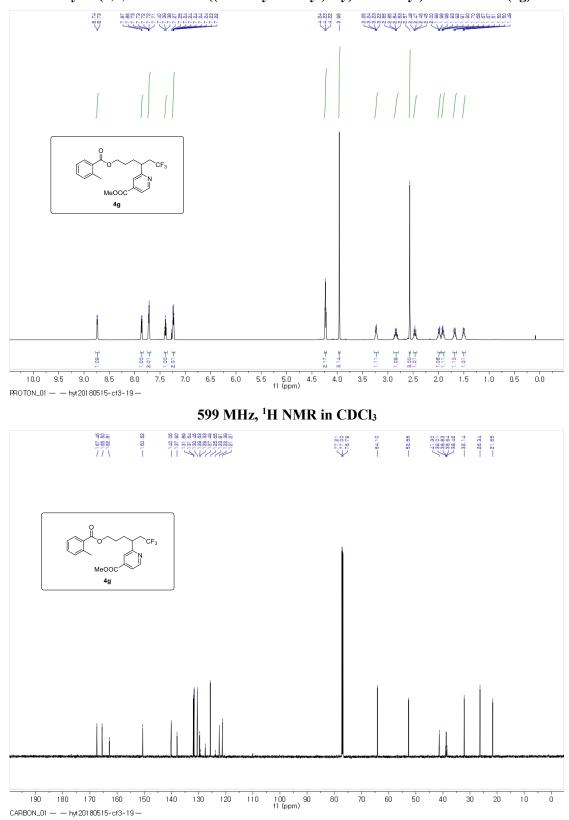
564 MHz, ¹⁹F NMR in CDCl₃



methyl 2-(1,1,1-trifluoro-6-((3-fluorobenzoyl)oxy)hexan-3-yl)isonicotinate (4e).

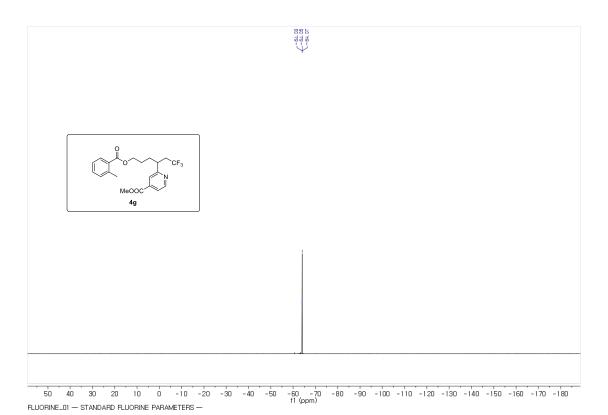
151 MHz, ¹³C NMR in CDCl₃


564 MHz, ¹⁹F NMR in CDCl₃

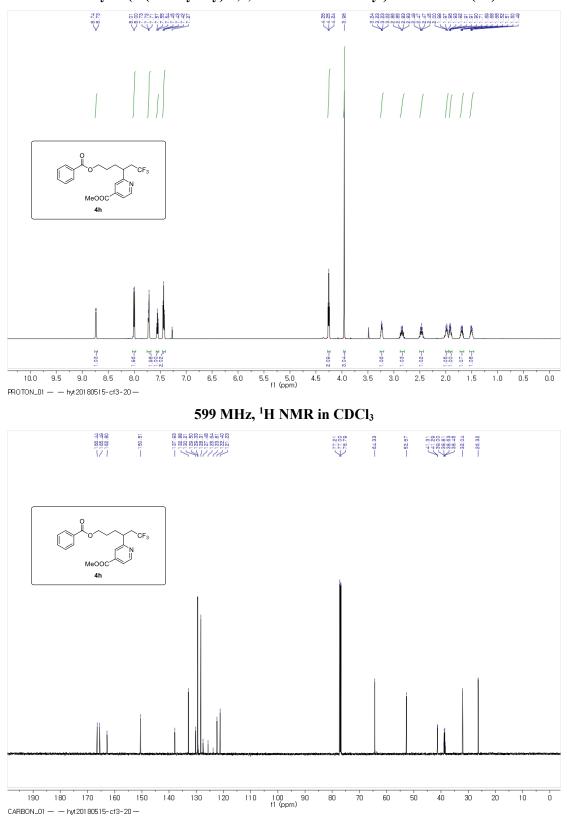

methyl 2-(1,1,1-trifluoro-6-((3-methoxybenzoyl)oxy)hexan-3-yl)isonicotinate (4f).

151 MHz, ¹³C NMR in CDCl₃

S60

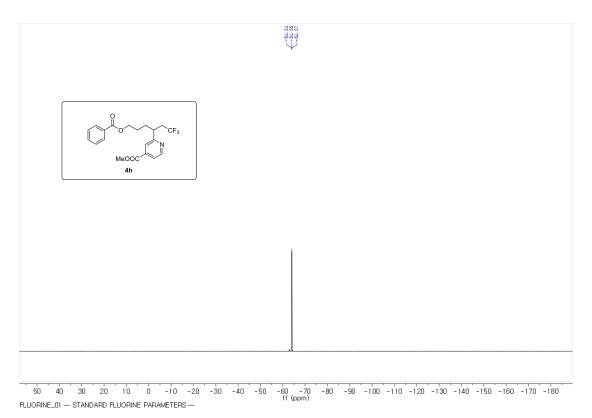


564 MHz, ¹⁹F NMR in CDCl₃

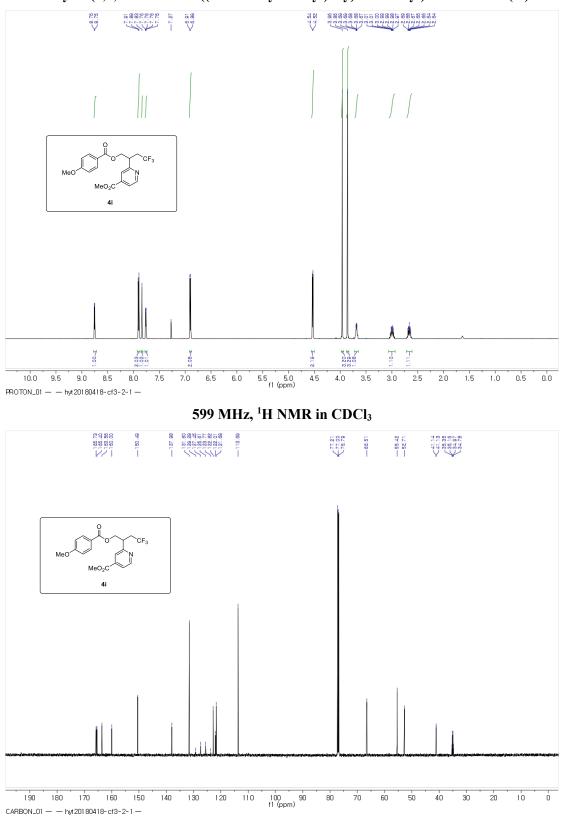


methyl 2-(1,1,1-trifluoro-6-((2-methylbenzoyl)oxy)hexan-3-yl)isonicotinate (4g).

151 MHz, ¹³C NMR in CDCl₃

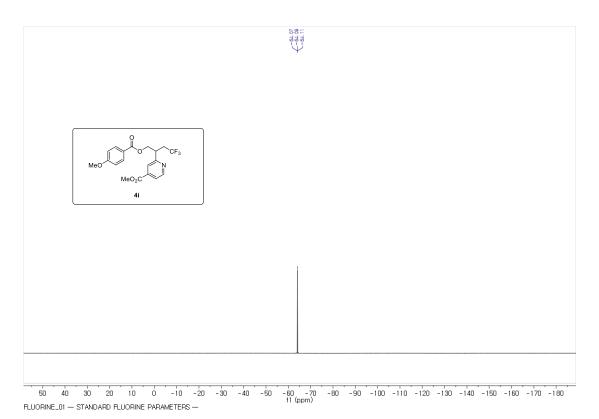


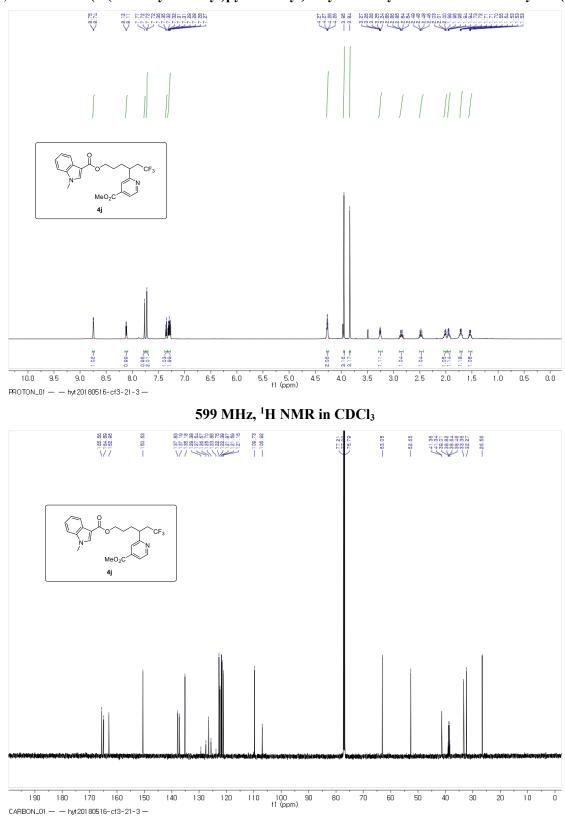
564 MHz, ¹⁹F NMR in CDCl₃



methyl 2-(6-(benzoyloxy)-1,1,1-trifluorohexan-3-yl)isonicotinate (4h).

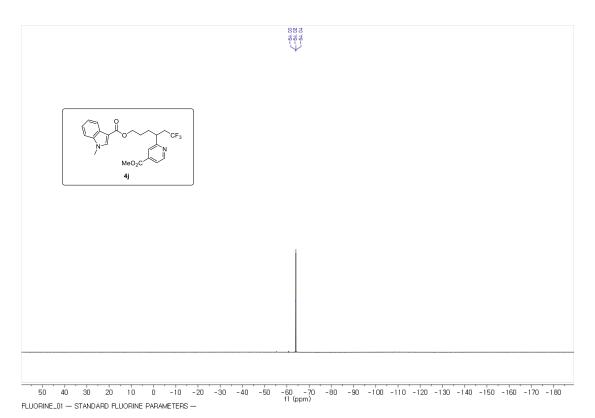
151 MHz, ¹³C NMR in CDCl₃



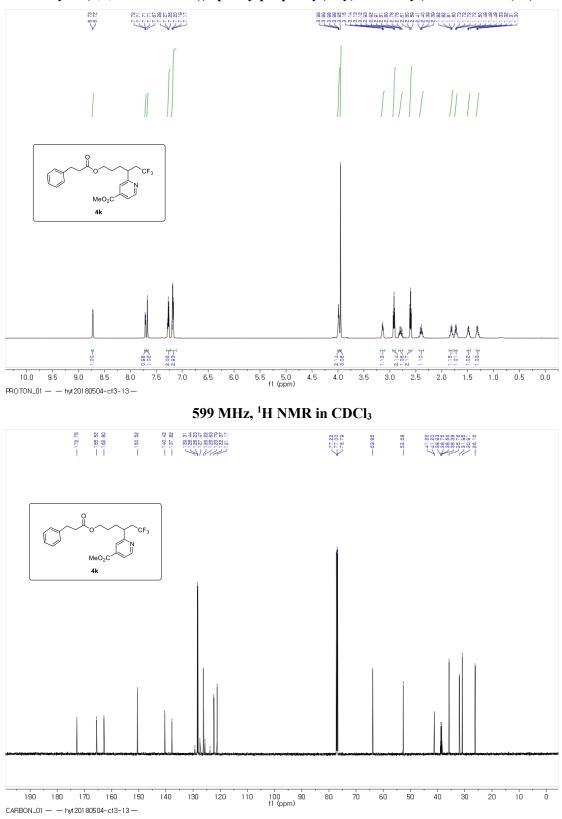


methyl 2-(4,4,4-trifluoro-1-((4-methoxybenzoyl)oxy)butan-2-yl)isonicotinate (4i).

151 MHz, ¹³C NMR in CDCl₃



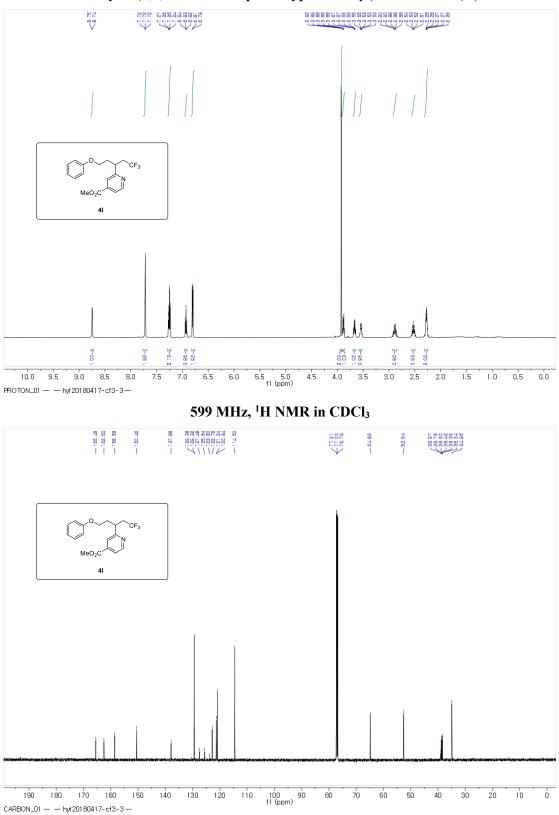
564 MHz, ¹⁹F NMR in CDCl₃



6,6,6-trifluoro-4-(4-(methoxycarbonyl)pyridin-2-yl)hexyl 1-methyl-1H-indole-3-carboxylate (4j).

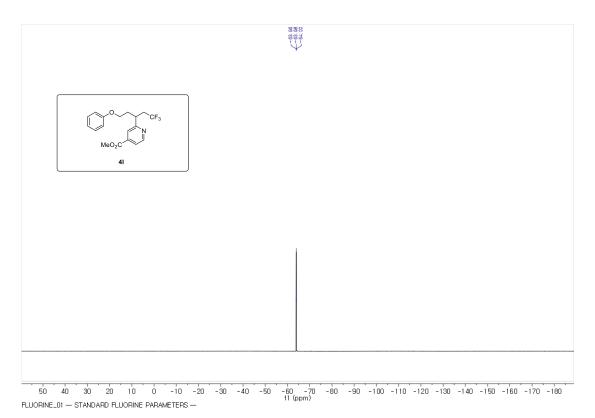
151 MHz, ¹³C NMR in CDCl₃

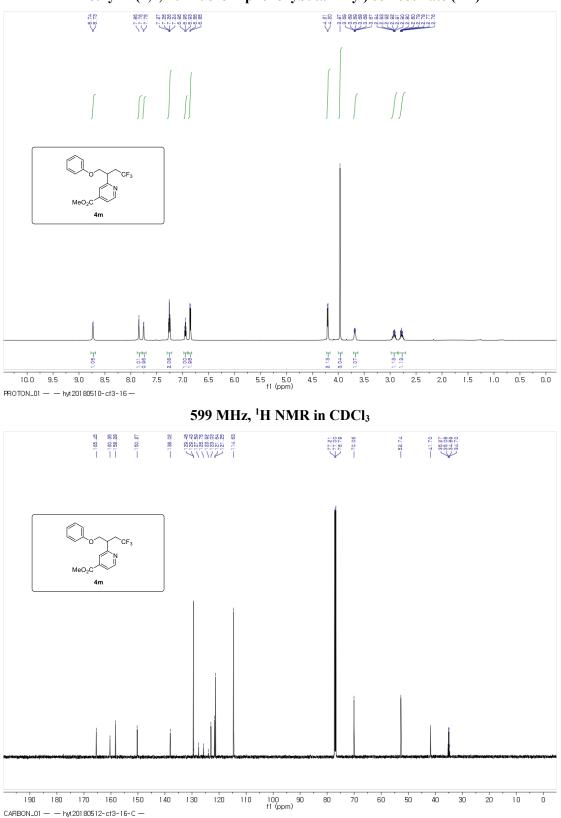
564 MHz, ¹⁹F NMR in CDCl₃



methyl 2-(1,1,1-trifluoro-6-((3-phenylpropanoyl)oxy)hexan-3-yl)isonicotinate (4k).

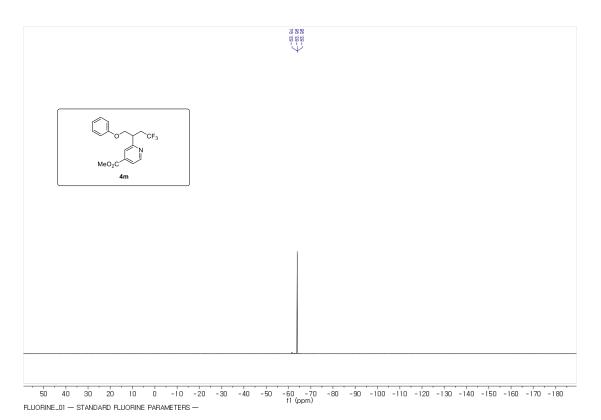
151 MHz, ¹³C NMR in CDCl₃

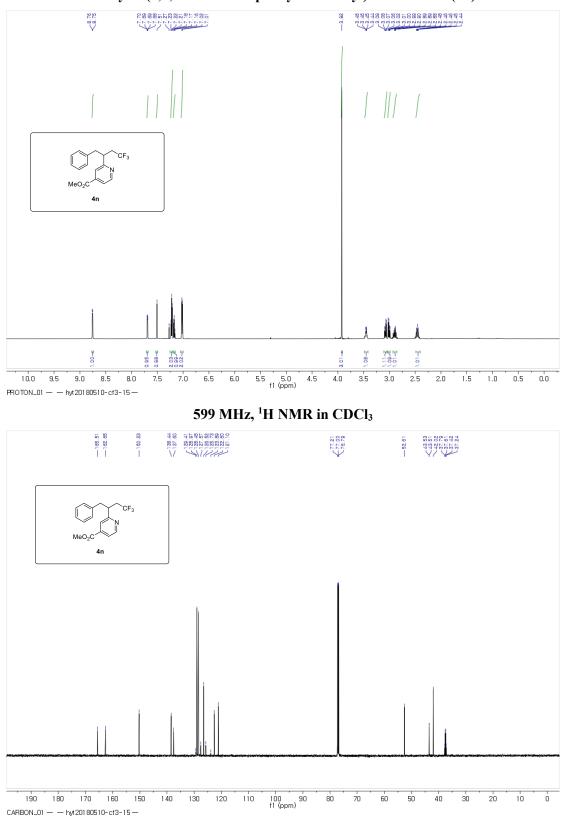




methyl 2-(1,1,1-trifluoro-5-phenoxypentan-3-yl)isonicotinate (4l).

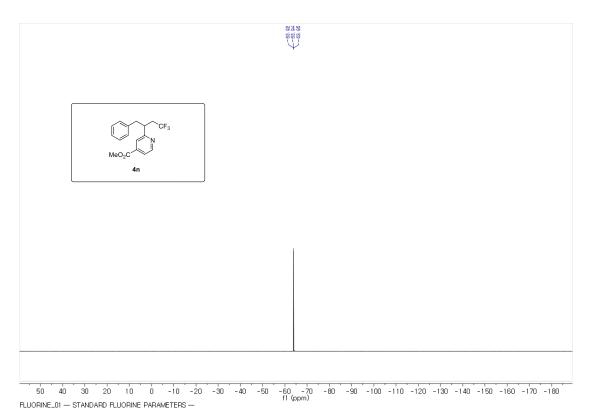
151 MHz, ¹³C NMR in CDCl₃



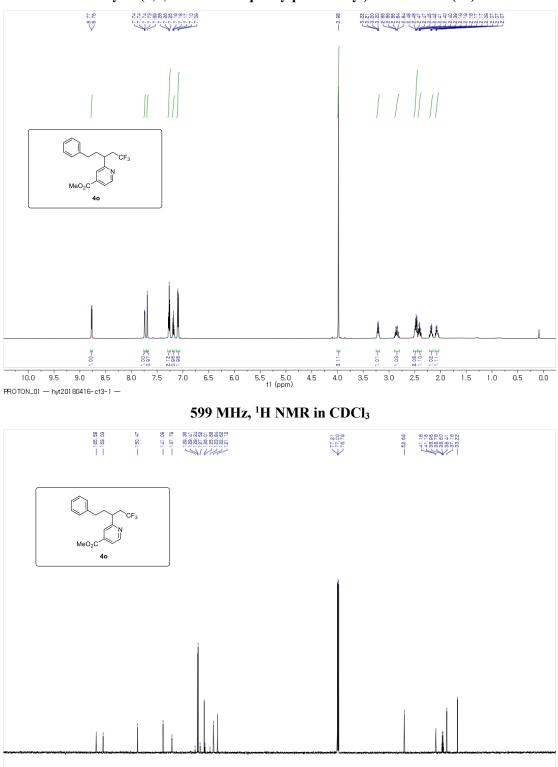


methyl 2-(4,4,4-trifluoro-1-phenoxybutan-2-yl)isonicotinate (4m).

151 MHz, ¹³C NMR in CDCl₃



564 MHz, ¹⁹F NMR in CDCl₃



methyl 2-(4,4,4-trifluoro-1-phenylbutan-2-yl)isonicotinate (4n).

151 MHz, ¹³C NMR in CDCl₃

564 MHz, ¹⁹F NMR in CDCl₃

methyl 2-(1,1,1-trifluoro-5-phenylpentan-3-yl)isonicotinate (40).

151 MHz, ¹³C NMR in CDCl₃

80

70

60

50

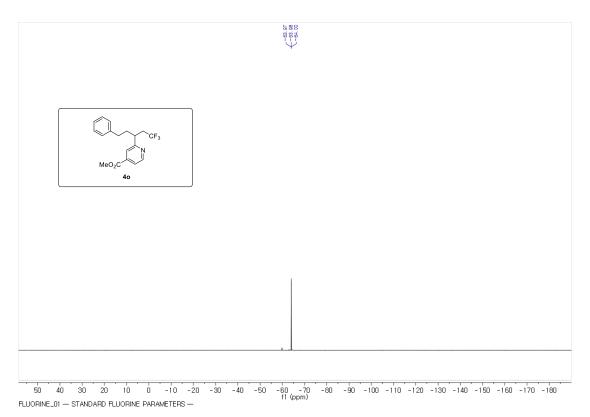
40

30

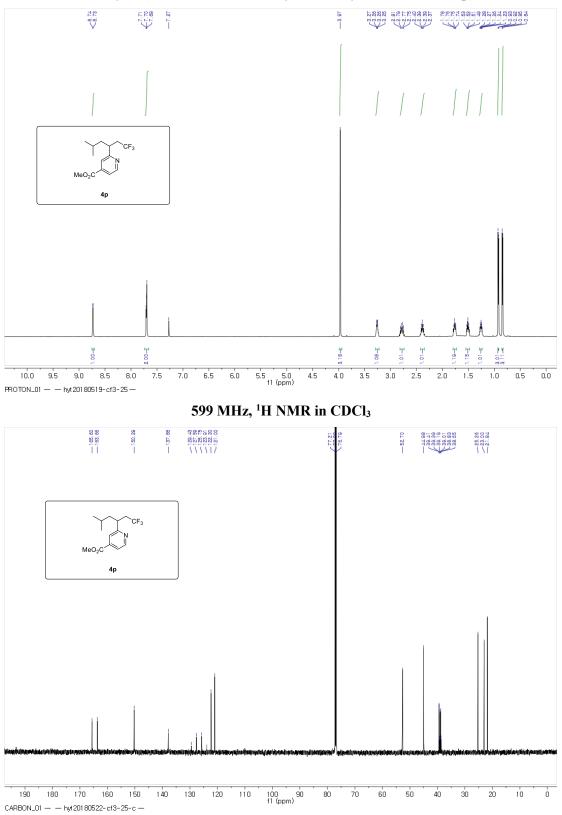
20

10

130 120 110 100 90 f1 (ppm)

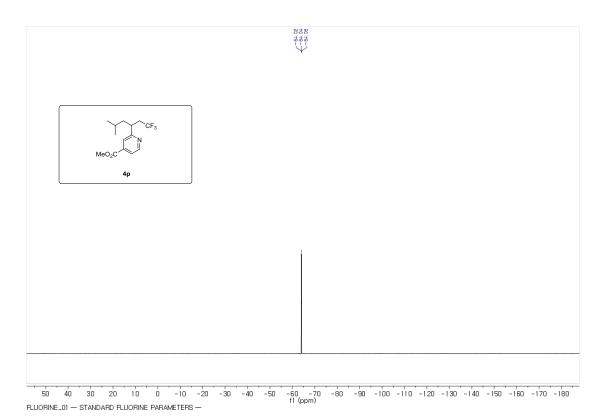

190 180 170

CARBON_01 — hyt20180416-cf3-1 —

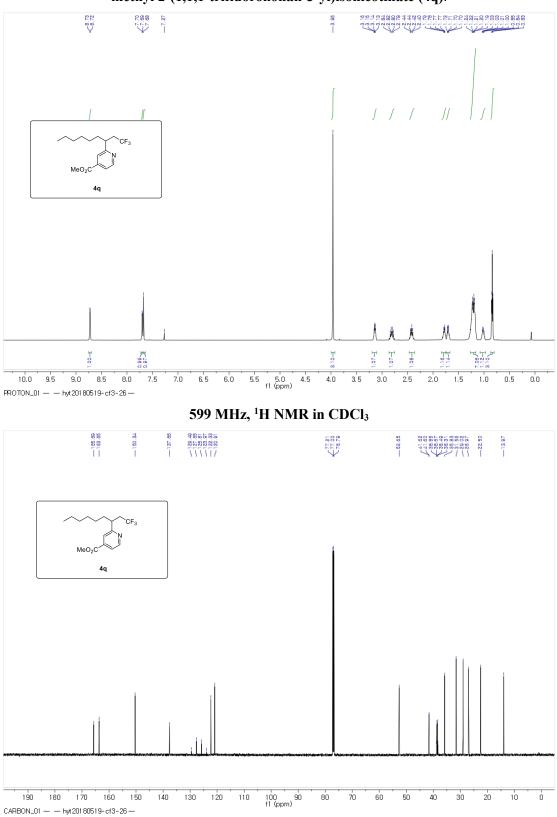

160

150 140

ò

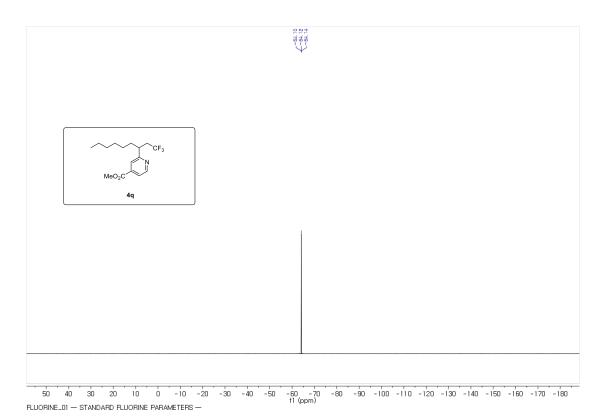


564 MHz, ¹⁹F NMR in CDCl₃

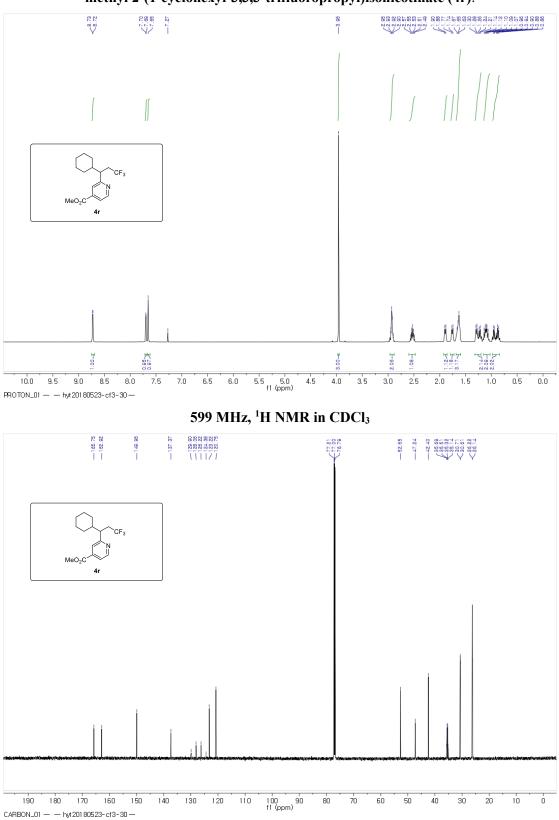


methyl 2-(1,1,1-trifluoro-5-methylhexan-3-yl)isonicotinate (4p).

151 MHz, ¹³C NMR in CDCl₃

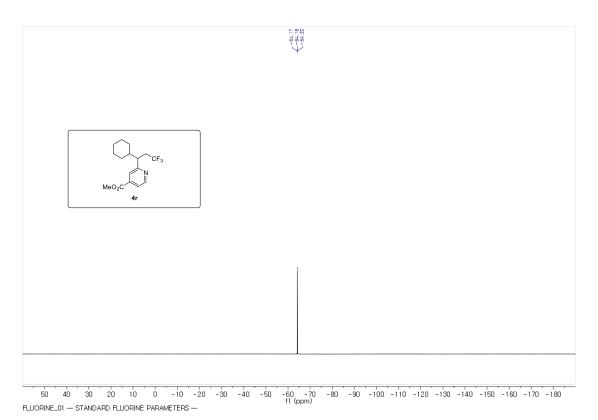


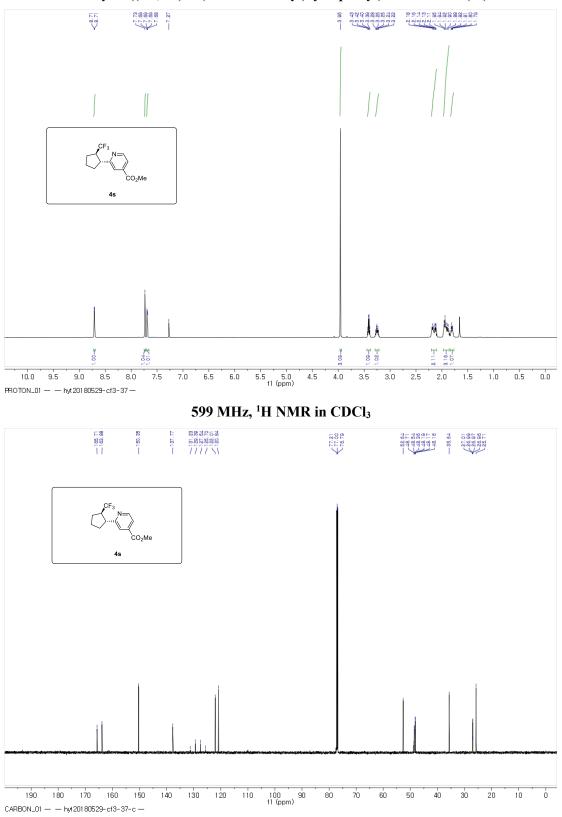
564 MHz, ¹⁹F NMR in CDCl₃



methyl 2-(1,1,1-trifluorononan-3-yl)isonicotinate (4q).

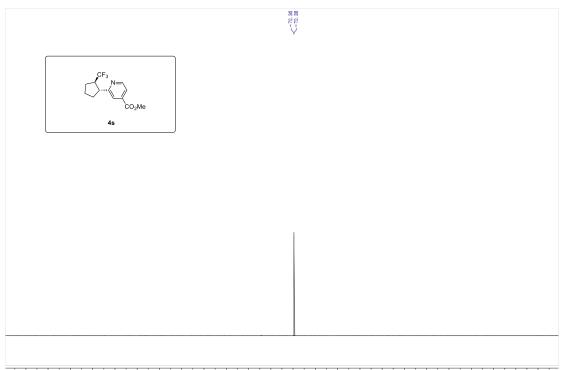
151 MHz, ¹³C NMR in CDCl₃



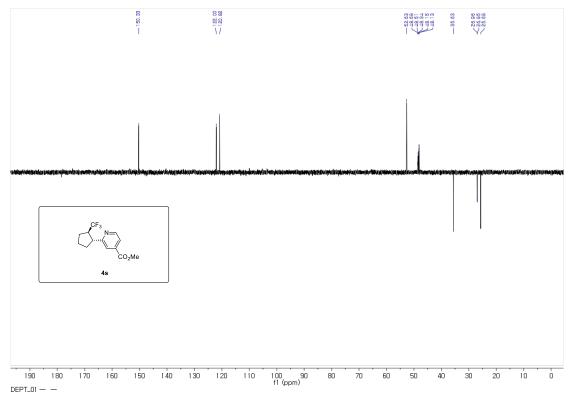


methyl 2-(1-cyclohexyl-3,3,3-trifluoropropyl)isonicotinate (4r).

151 MHz, ¹³C NMR in CDCl₃

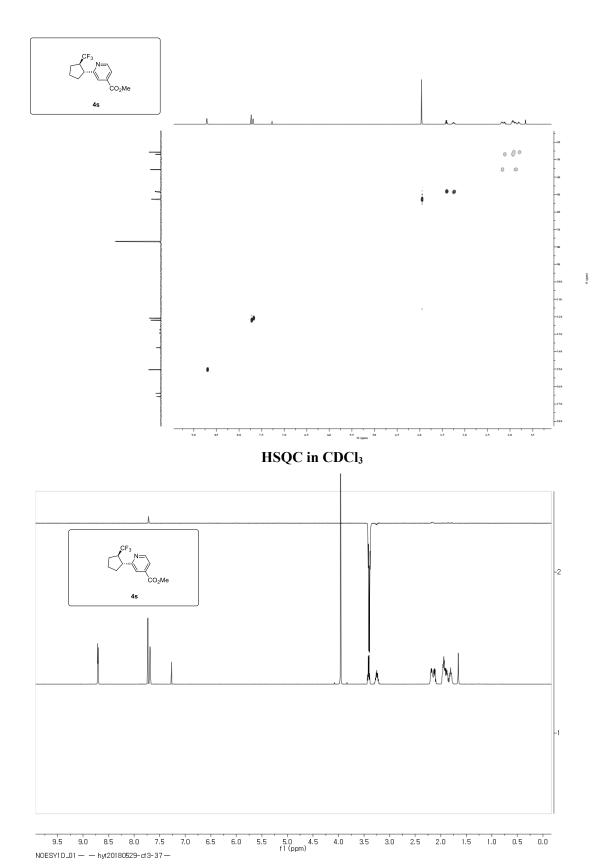


564 MHz, ¹⁹F NMR in CDCl₃

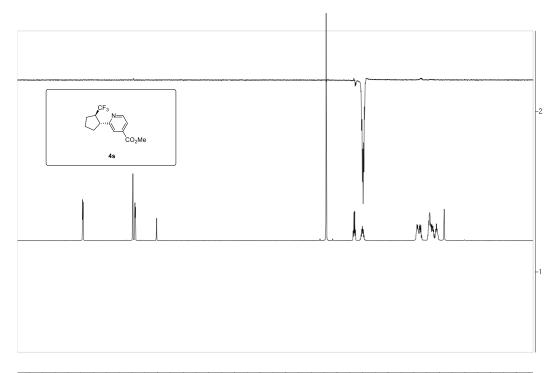


methyl 2-((1R,2R)-2-(trifluoromethyl)cyclopentyl)isonicotinate (4s).

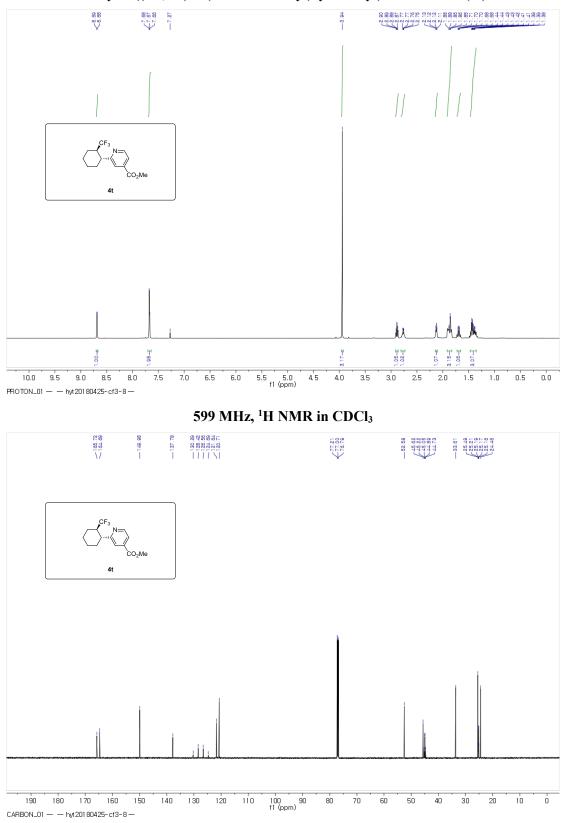
151 MHz, ¹³C NMR in CDCl₃



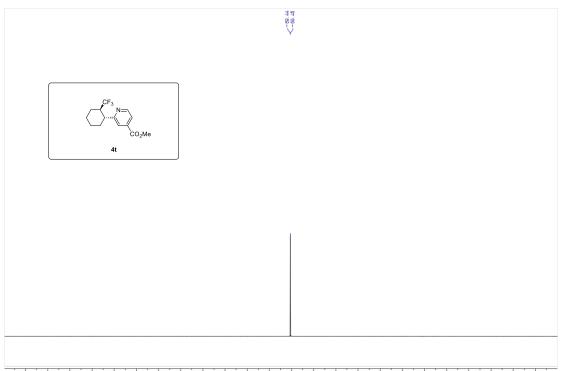
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 FLUORINE_01 — STANDARD FLUORINE PARAMETERS —


564 MHz, ¹⁹F NMR in CDCl₃

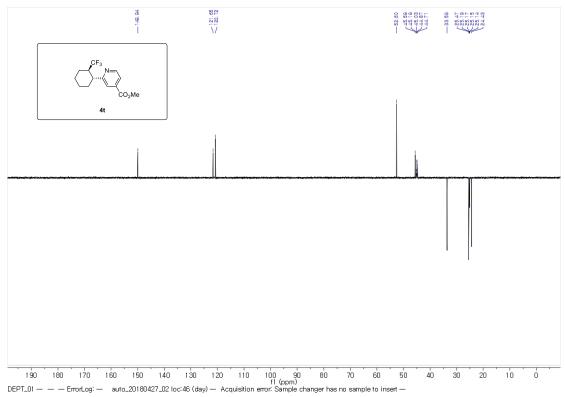
DEPT135 in CDCl₃



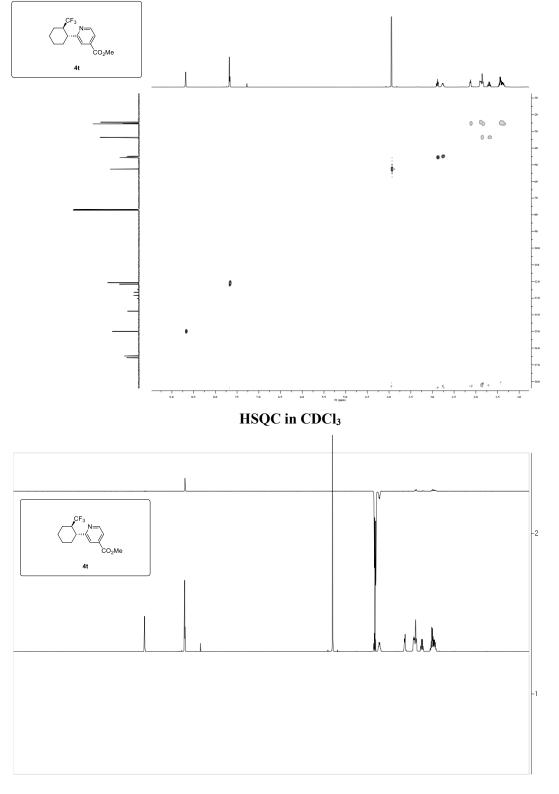
S88



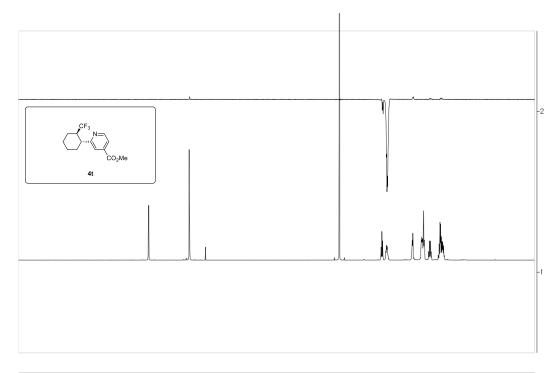
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 NOESY1D_02 — hyt20180529-cf3-37 —


methyl 2-((1R,2R)-2-(trifluoromethyl)cyclohexyl)isonicotinate (4t).

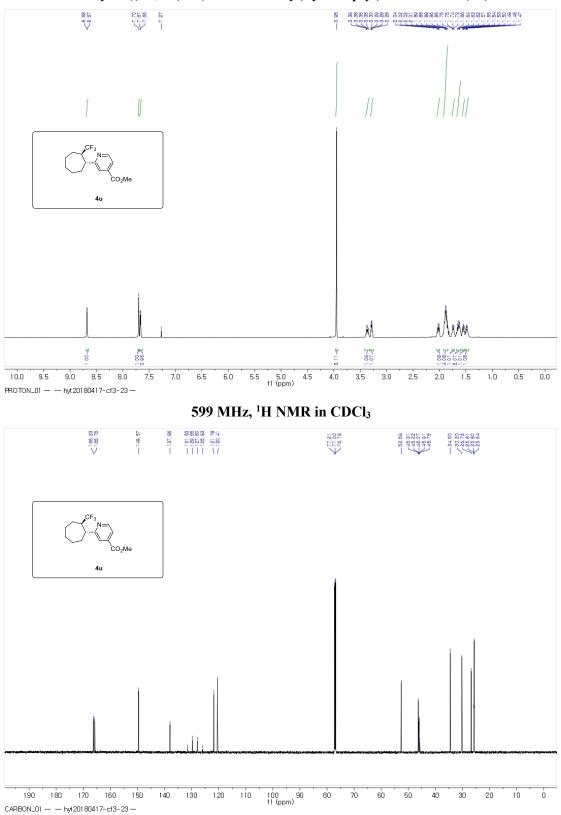
151 MHz, ¹³C NMR in CDCl₃


50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 FLUORINE_01 — STANDARD FLUORINE PARAMETERS —

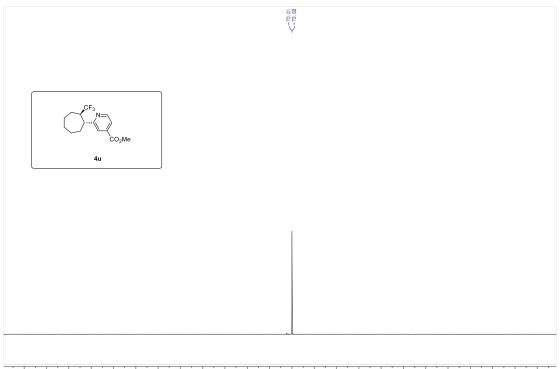
564 MHz, ¹⁹F NMR in CDCl₃



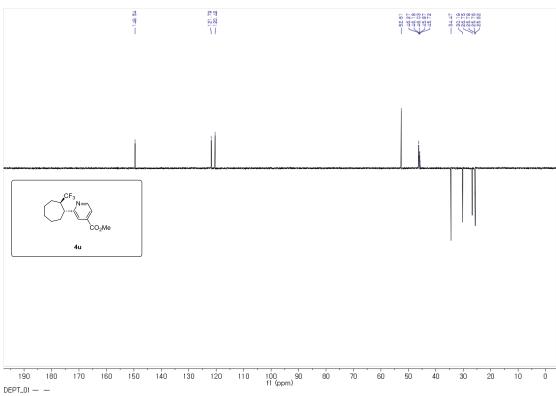
DEPT135 in CDCl₃


11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 NOESY1D_03 — hyt20180429-ct3-8-noe —

(unkl) (j

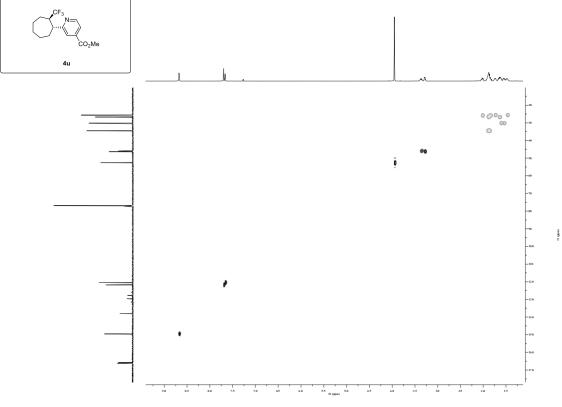


11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 NOESY1D_04 — hyt20180429-cf3-8-noe —

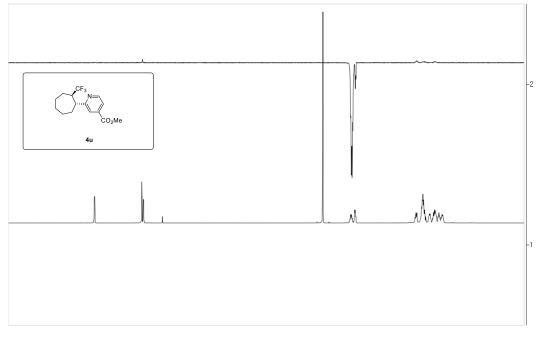


methyl 2-((1R,2R)-2-(trifluoromethyl)cycloheptyl)isonicotinate (4u).

151 MHz, ¹³C NMR in CDCl₃

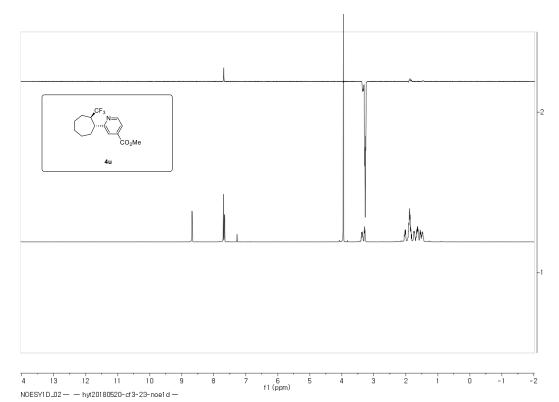


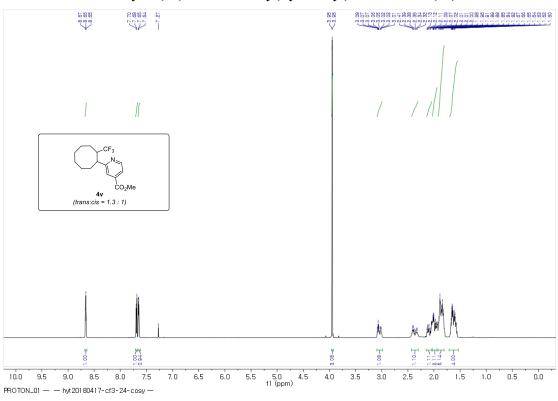
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 FLUORINE_01 — STANDARD FLUORINE PARAMETERS —



564 MHz, ¹⁹F NMR in CDCl₃

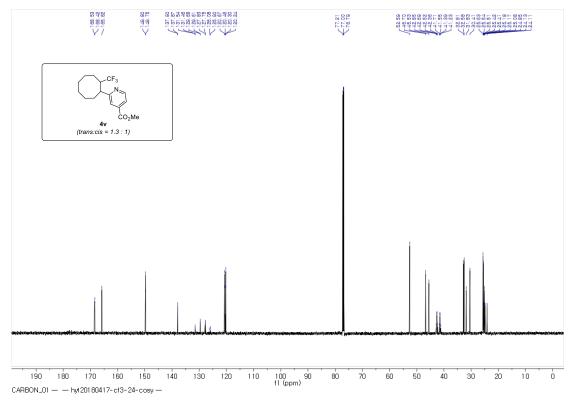
DEPT135 in CDCl₃


HSQC in CDCl₃

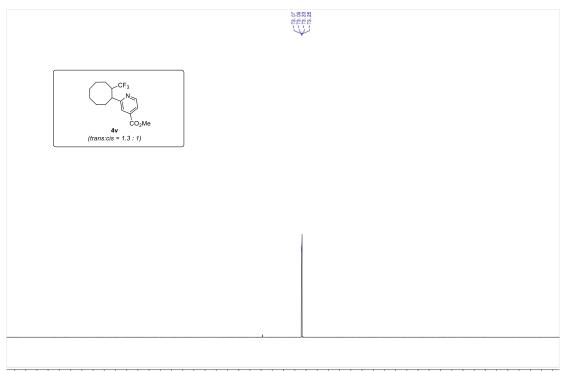

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 NOESY1D_01 — hyt20180520-cf3-23-noe1d —

NOESY 1D in CDCl₃

S96

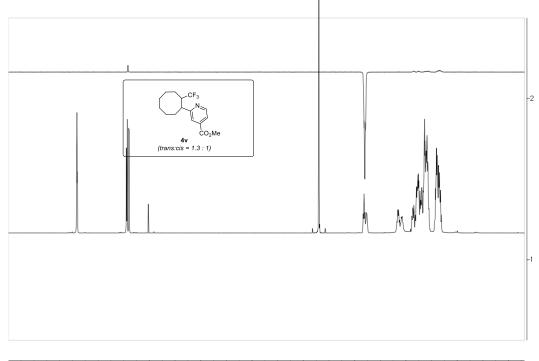


NOESY 1D in CDCl₃

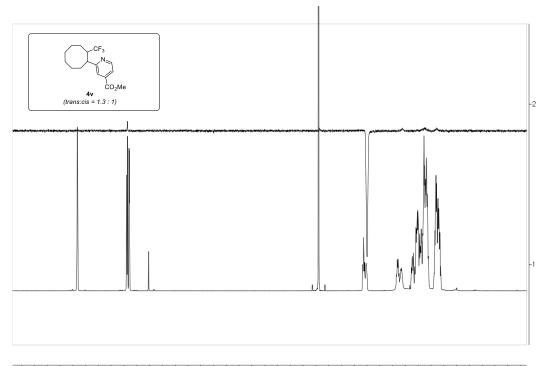


methyl 2-(2-(trifluoromethyl)cyclooctyl)isonicotinate (4v).

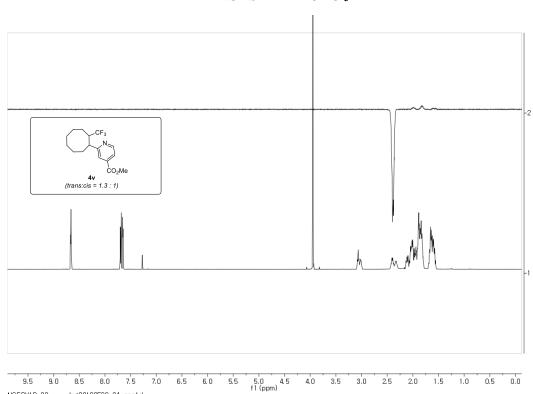
599 MHz, ¹H NMR in CDCl₃



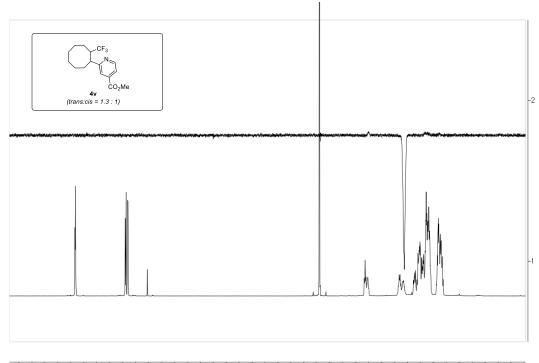
151 MHz, ¹³C NMR in CDCl₃



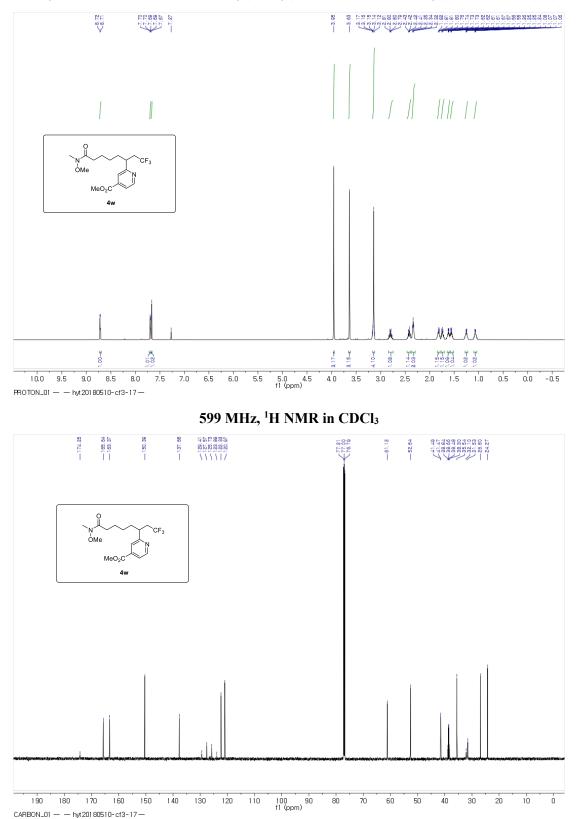
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 FLUORINE_01 — STANDARD FLUORINE PARAMETERS —



9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 NOESY1D.01 — hyt20180520-24-noe1d —

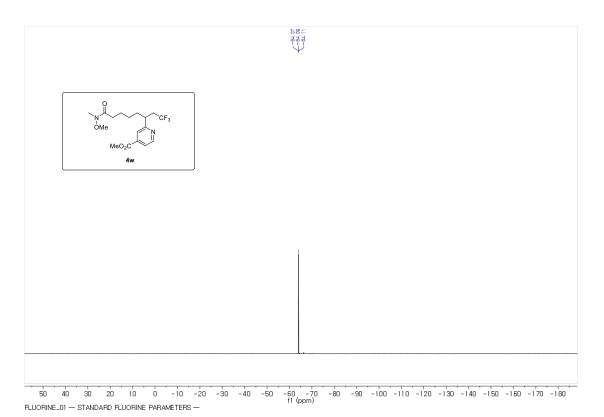


9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm) NOESY1D_02— — hyt20180520-24-noe1d—



NOESY 1D in CDCl₃

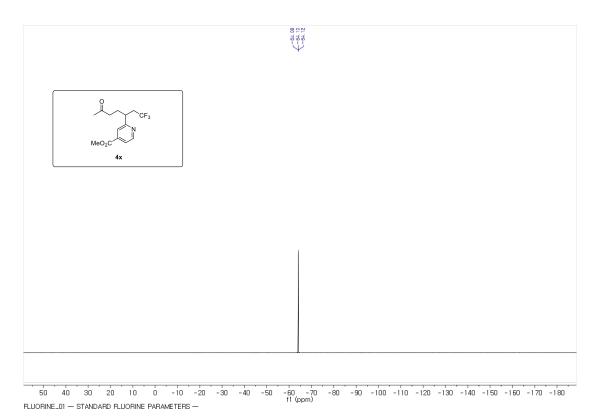
NOESY1D_03— — hyt20180520-24-noe1d—



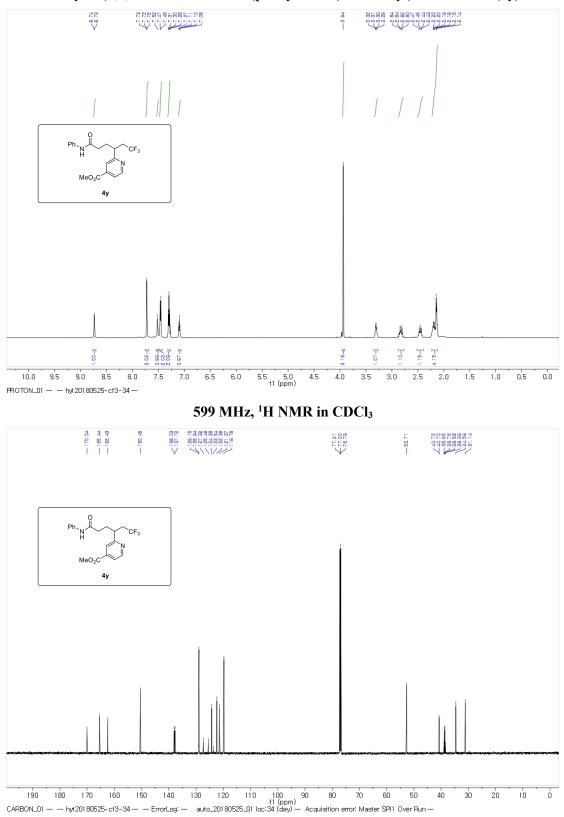
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 NOESY1D_04 — hyt20180520-24-noe1d —

methyl 2-(1,1,1-trifluoro-8-(methoxy(methyl)amino)-8-oxooctan-3-yl)isonicotinate (4w).

151 MHz, ¹³C NMR in CDCl₃

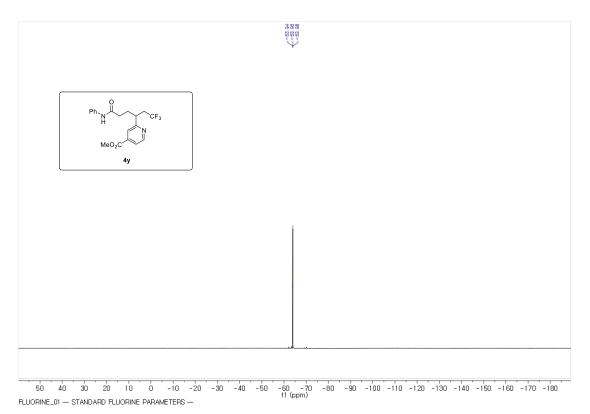


564 MHz, ¹⁹F NMR in CDCl₃

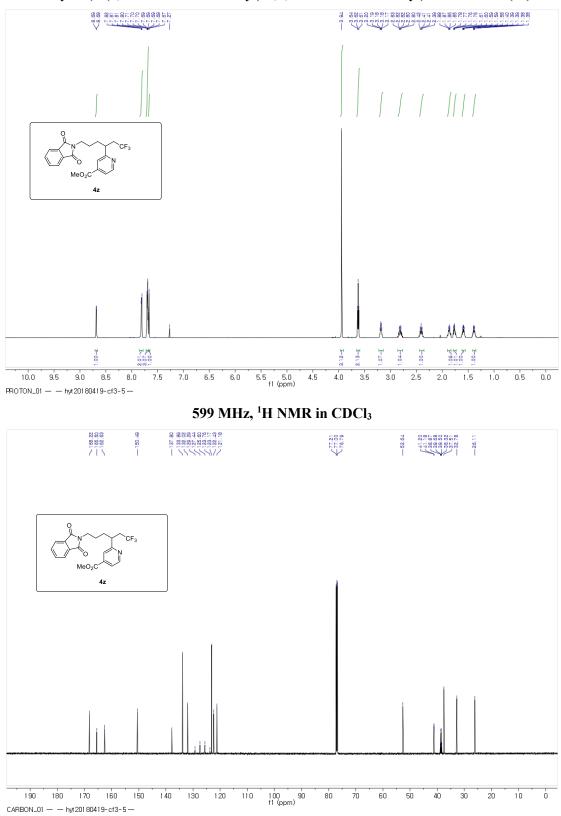


methyl 2-(1,1,1-trifluoro-6-oxoheptan-3-yl)isonicotinate (4x).

151 MHz, ¹³C NMR in CDCl₃



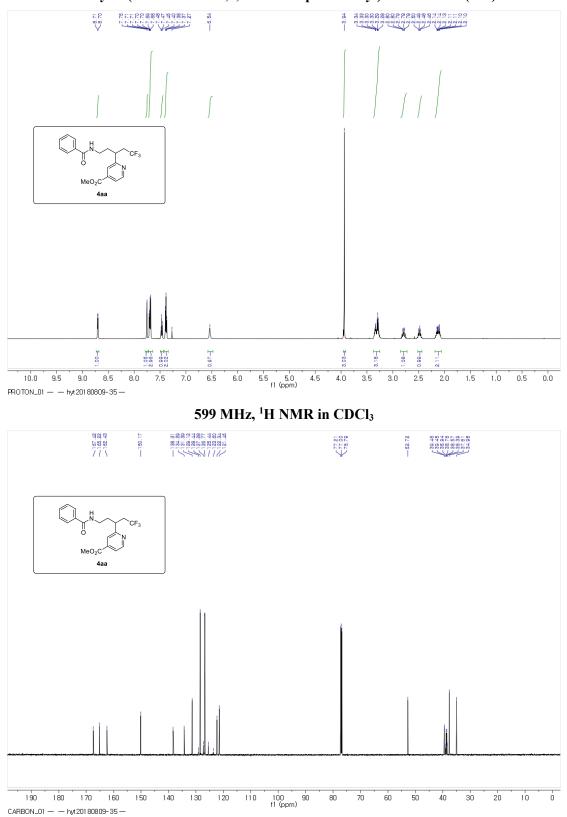
564 MHz, ¹⁹F NMR in CDCl₃



methyl 2-(1,1,1-trifluoro-6-oxo-6-(phenylamino)hexan-3-yl)isonicotinate (4y).

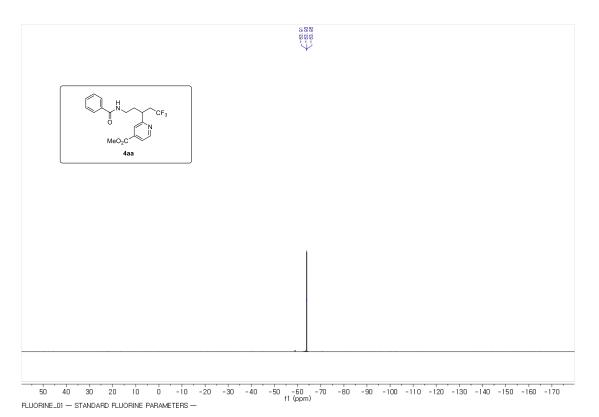
151 MHz, ¹³C NMR in CDCl₃

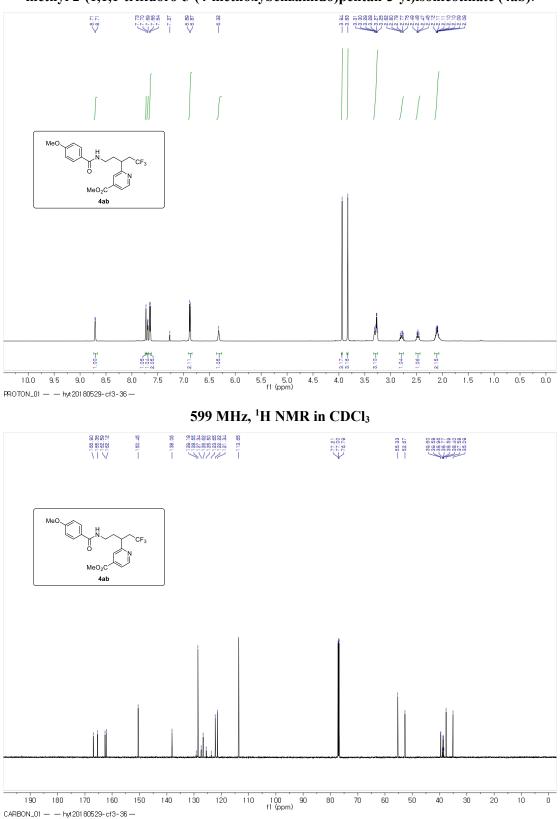




methyl 2-(6-(1,3-dioxoisoindolin-2-yl)-1,1,1-trifluorohexan-3-yl)isonicotinate (4z).

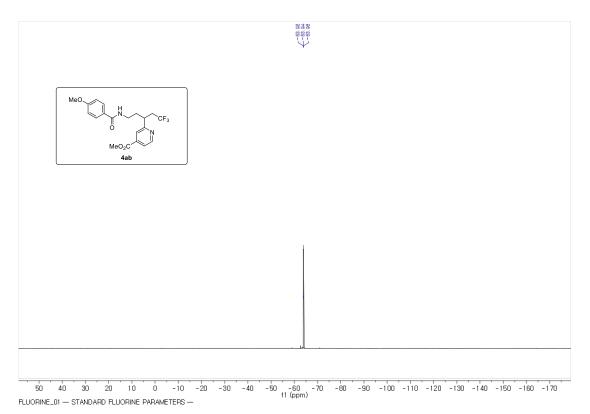
151 MHz, ¹³C NMR in CDCl₃

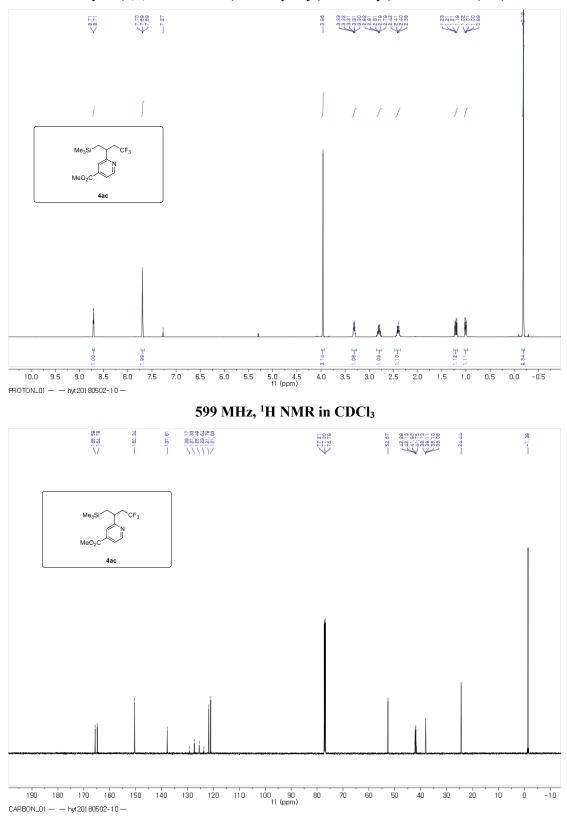




methyl 2-(5-benzamido-1,1,1-trifluoropentan-3-yl)isonicotinate (4aa).

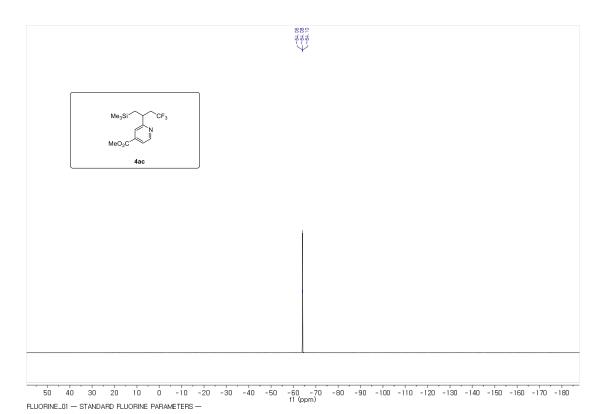
151 MHz, ¹³C NMR in CDCl₃

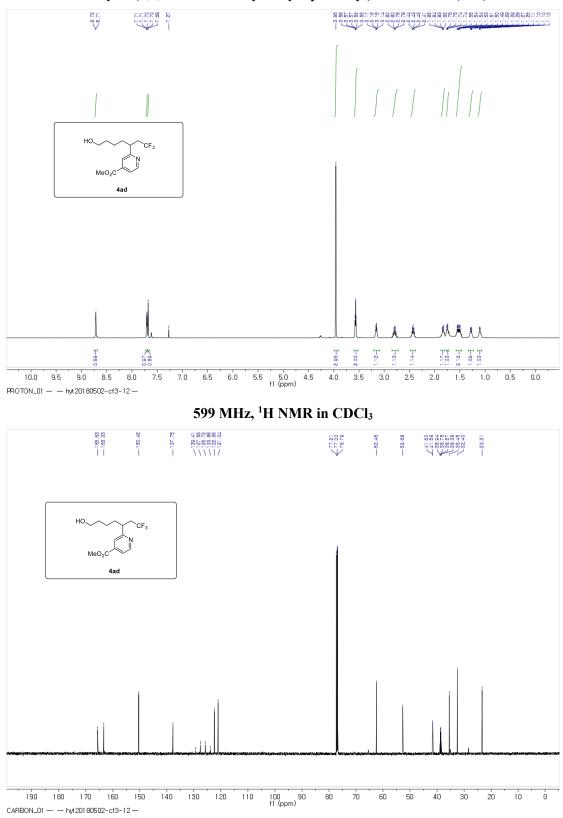




methyl 2-(1,1,1-trifluoro-5-(4-methoxybenzamido)pentan-3-yl)isonicotinate (4ab).

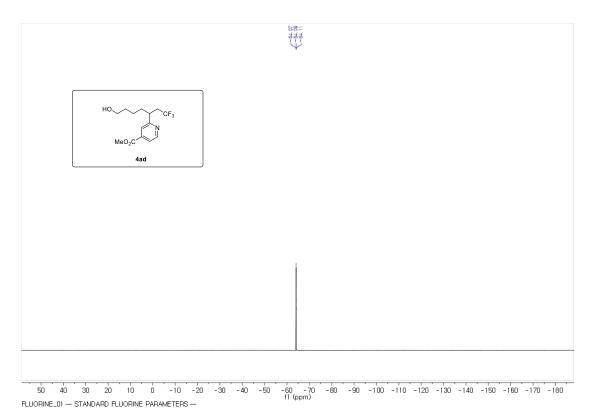
151 MHz, ¹³C NMR in CDCl₃



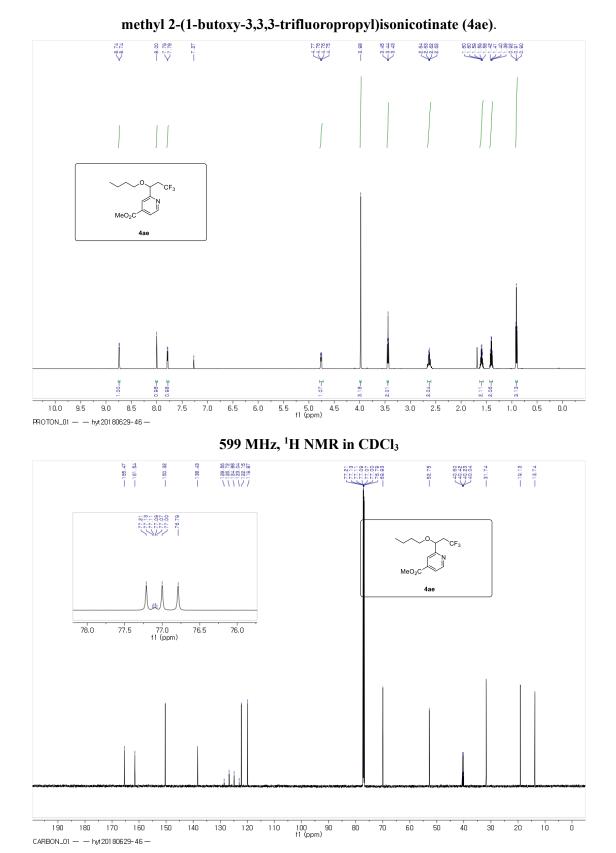


methyl 2-(4,4,4-trifluoro-1-(trimethylsilyl)butan-2-yl)isonicotinate (4ac).

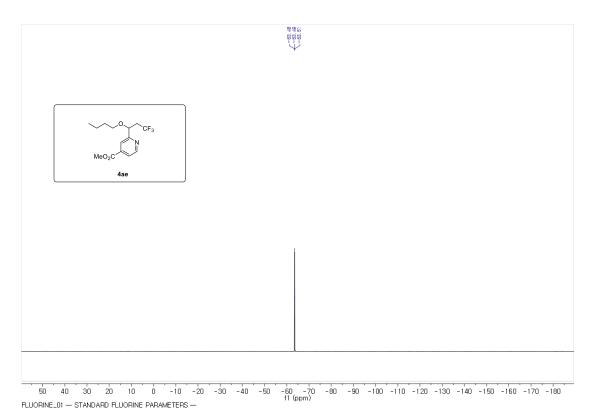
151 MHz, ¹³C NMR in CDCl₃



564 MHz, ¹⁹F NMR in CDCl₃

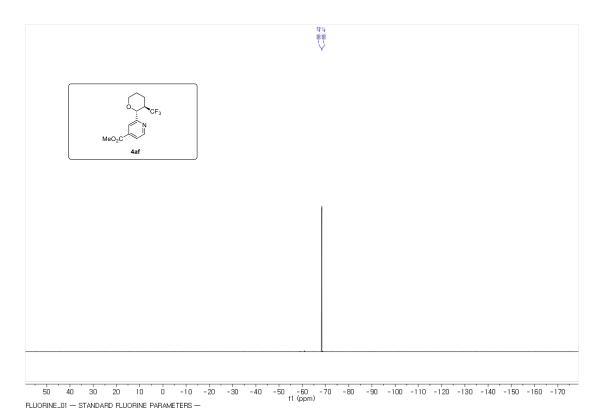


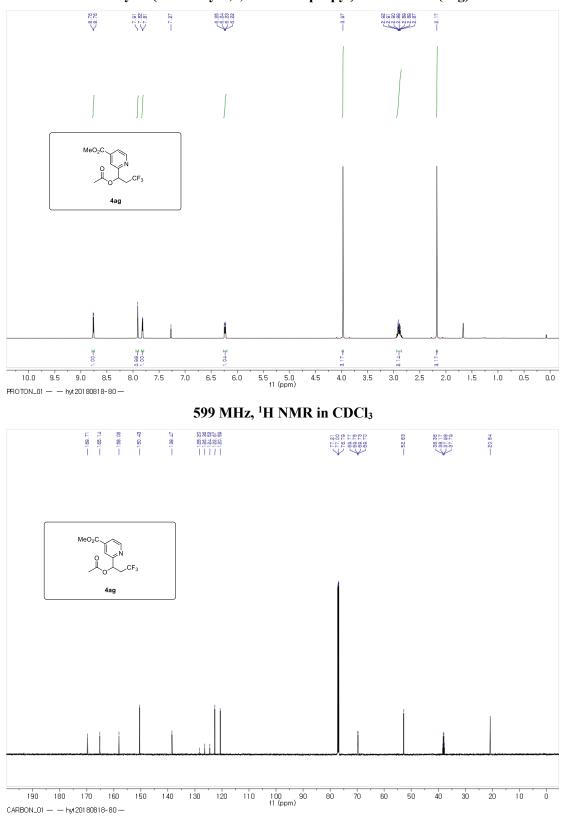
methyl 2-(1,1,1-trifluoro-7-hydroxyheptan-3-yl)isonicotinate (4ad).


151 MHz, ¹³C NMR in CDCl₃

564 MHz, ¹⁹F NMR in CDCl₃

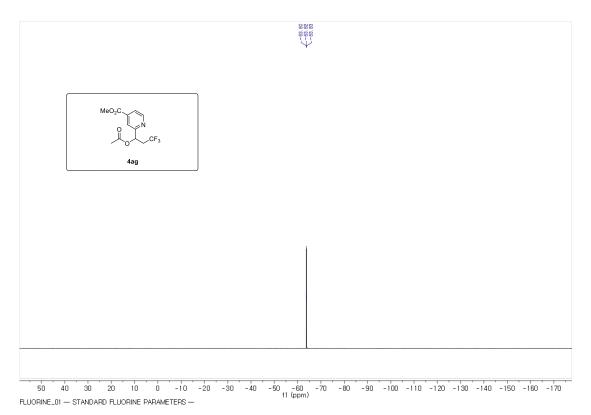
151 MHz, ¹³C NMR in CDCl₃

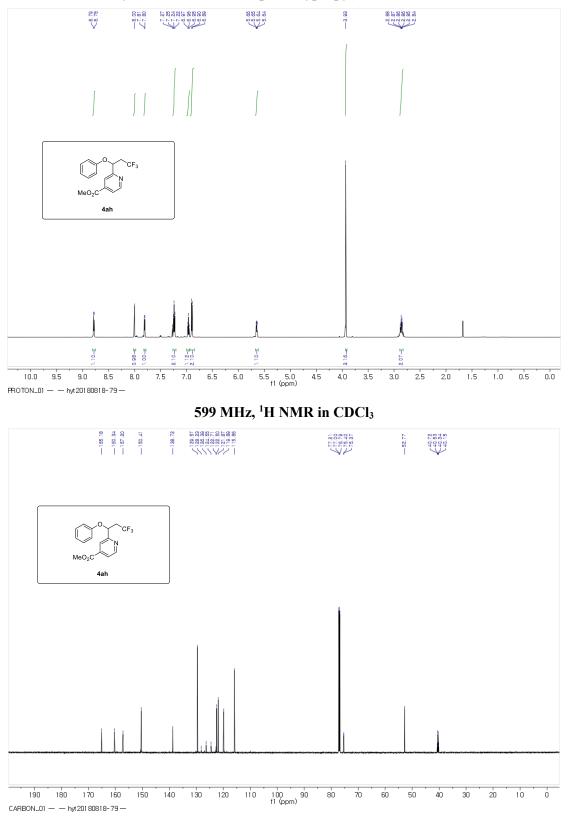




methyl 2-((2R,3R)-3-(trifluoromethyl)tetrahydro-2H-pyran-2-yl)isonicotinate (4af).

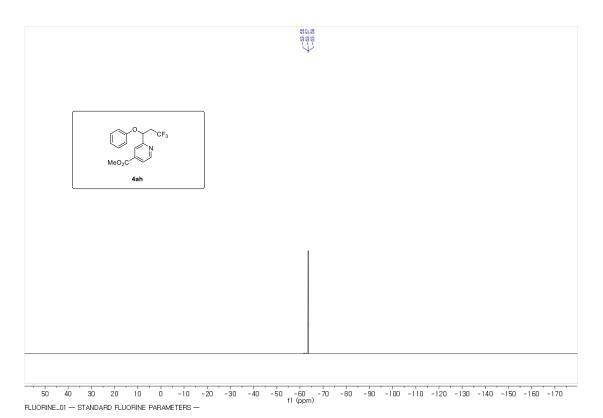
151 MHz, ¹³C NMR in CDCl₃

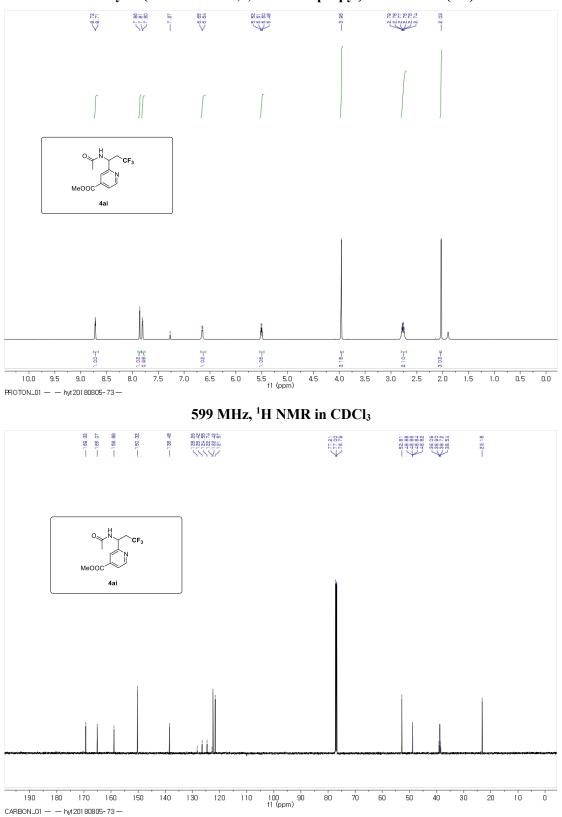




methyl 2-(1-acetoxy-3,3,3-trifluoropropyl)isonicotinate (4ag).

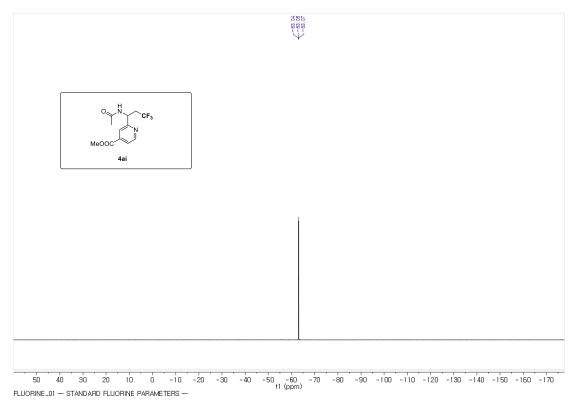
151 MHz, ¹³C NMR in CDCl₃

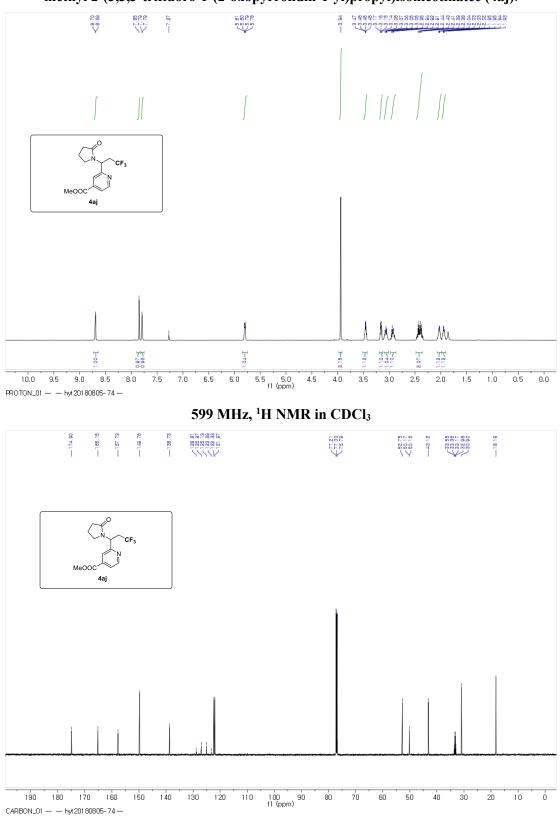




methyl 2-(3,3,3-trifluoro-1-phenoxypropyl)isonicotinate (4ah).

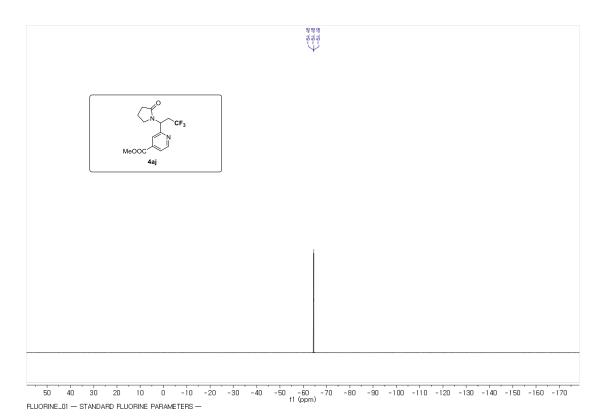
151 MHz, ¹³C NMR in CDCl₃

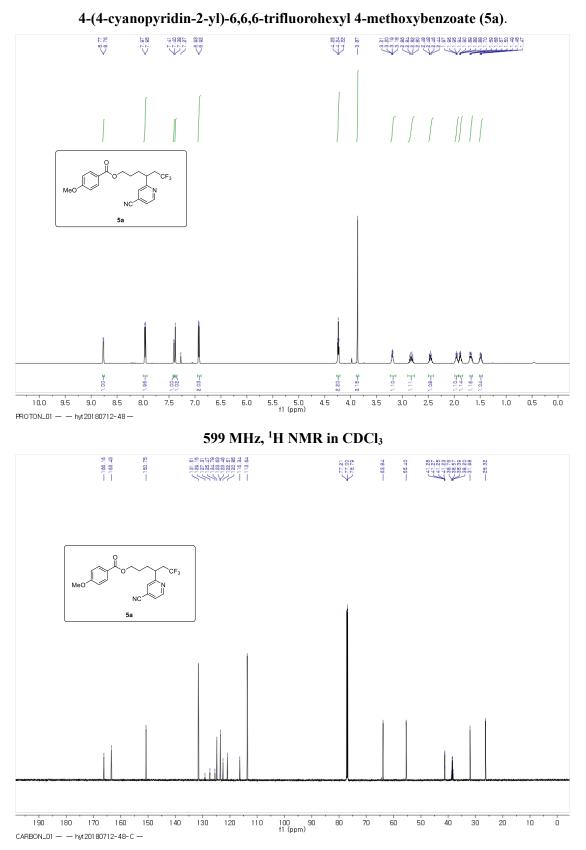




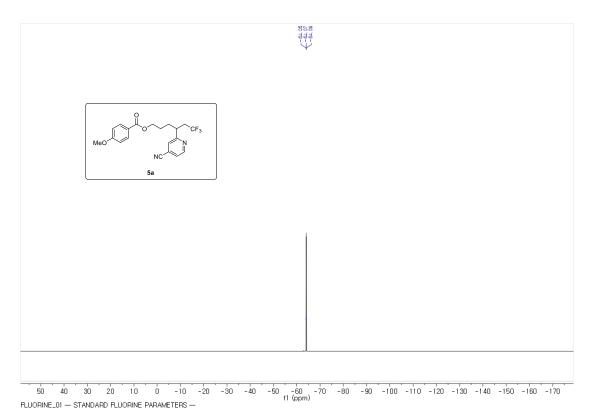
methyl 2-(1-acetamido-3,3,3-trifluoropropyl)isonicotinate (4ai).

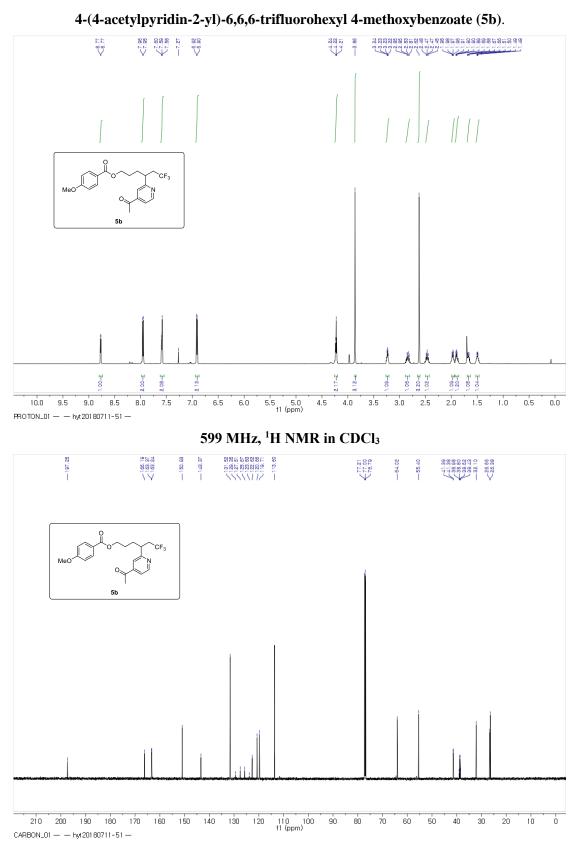
151 MHz, ¹³C NMR in CDCl₃

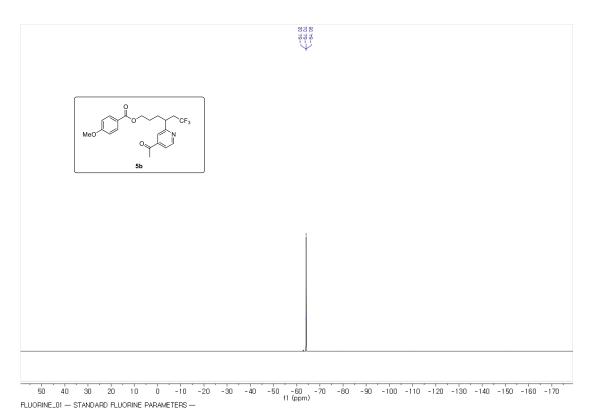


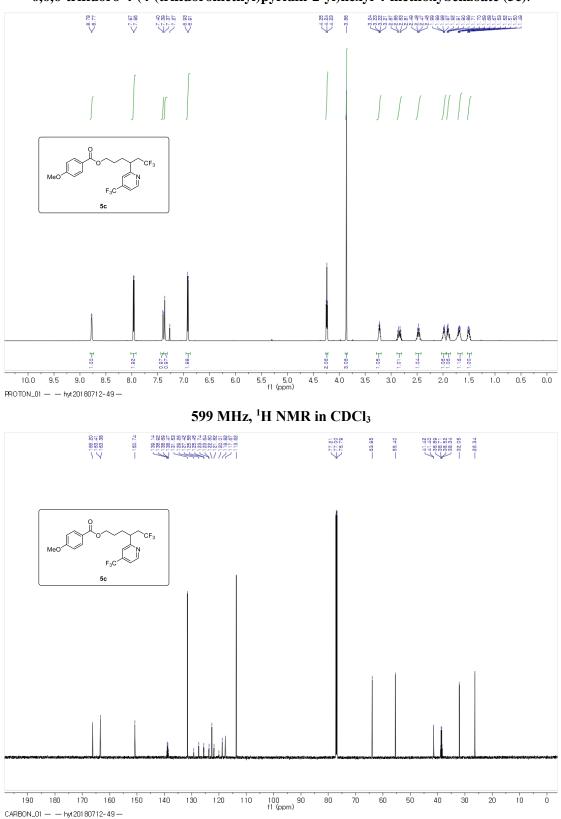


methyl 2-(3,3,3-trifluoro-1-(2-oxopyrrolidin-1-yl)propyl)isonicotinatee (4aj).

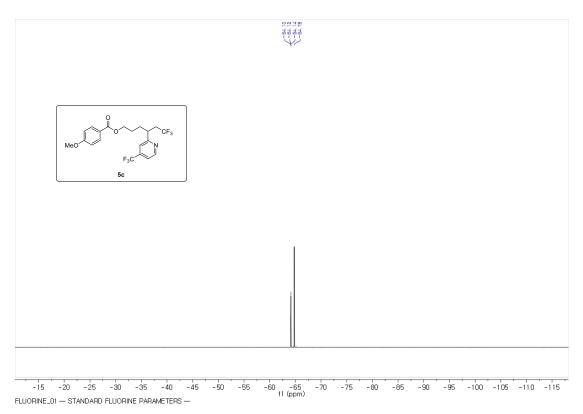

151 MHz, ¹³C NMR in CDCl₃

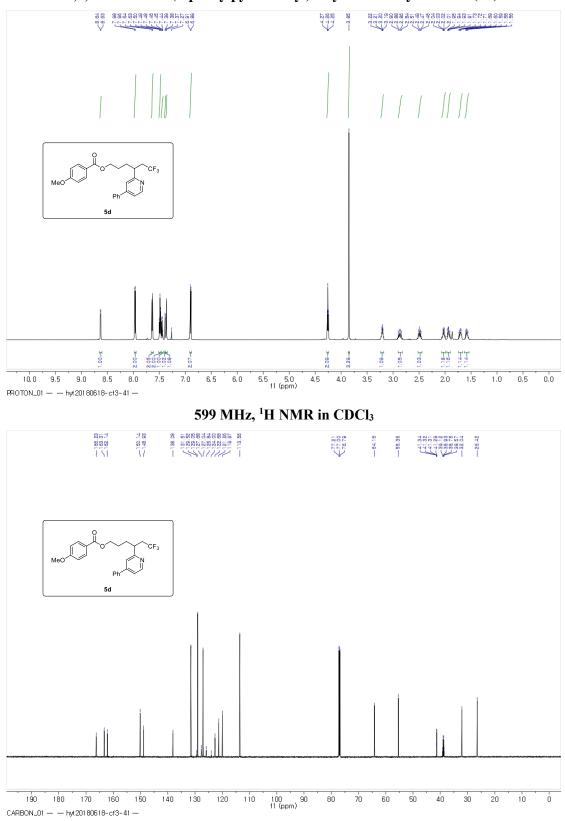

564 MHz, ¹⁹F NMR in CDCl₃


151 MHz, ¹³C NMR in CDCl₃


564 MHz, ¹⁹F NMR in CDCl₃

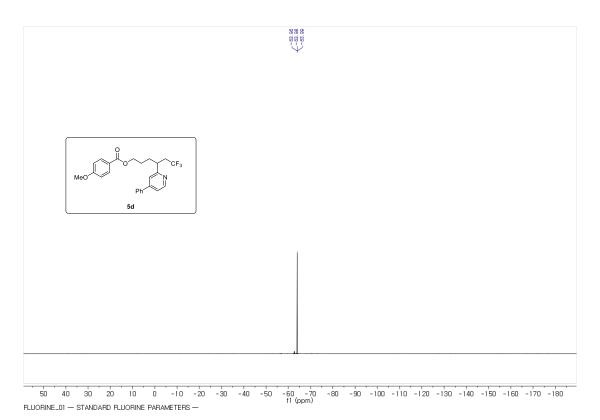
151 MHz, ¹³C NMR in CDCl₃

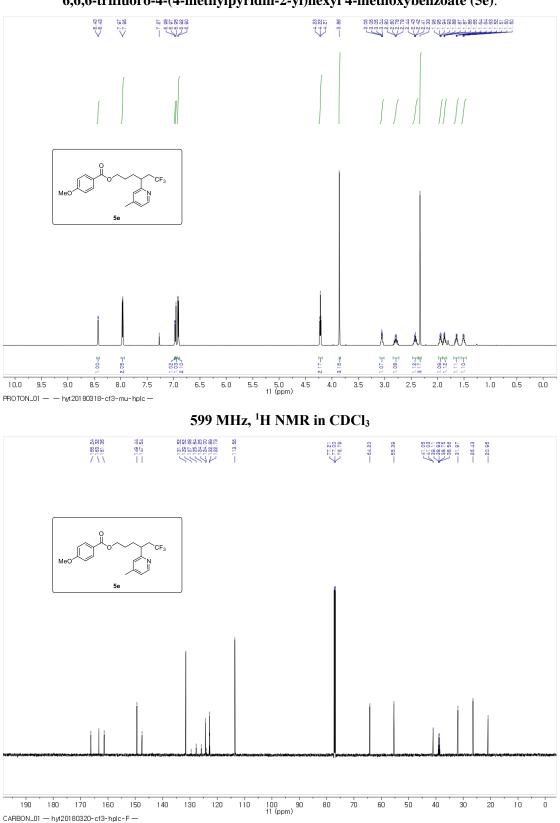




6,6,6-trifluoro-4-(4-(trifluoromethyl)pyridin-2-yl)hexyl 4-methoxybenzoate (5c).

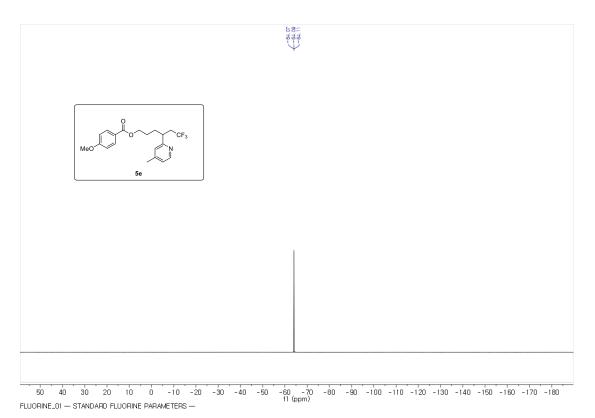
151 MHz, ¹³C NMR in CDCl₃

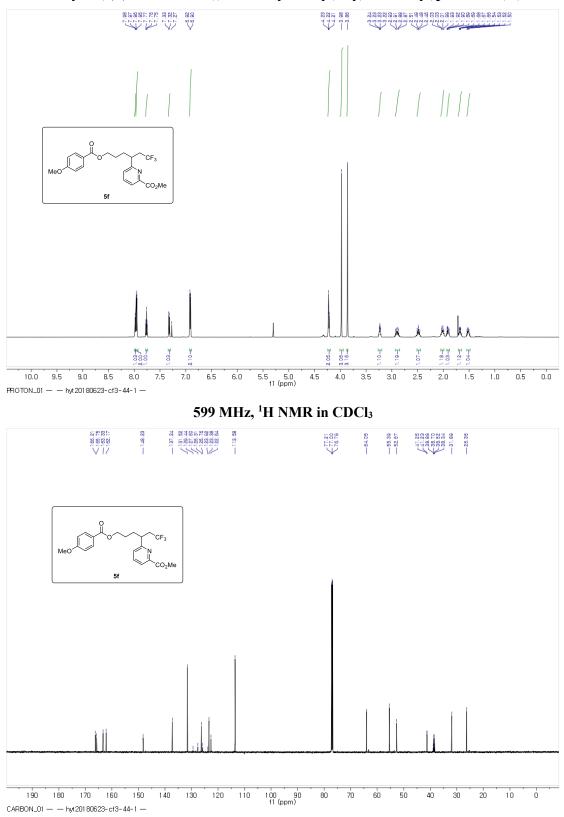




6,6,6-trifluoro-4-(4-phenylpyridin-2-yl)hexyl 4-methoxybenzoate (5d).

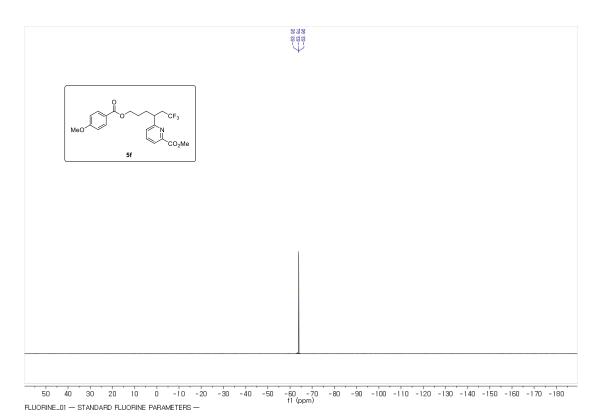
151 MHz, ¹³C NMR in CDCl₃



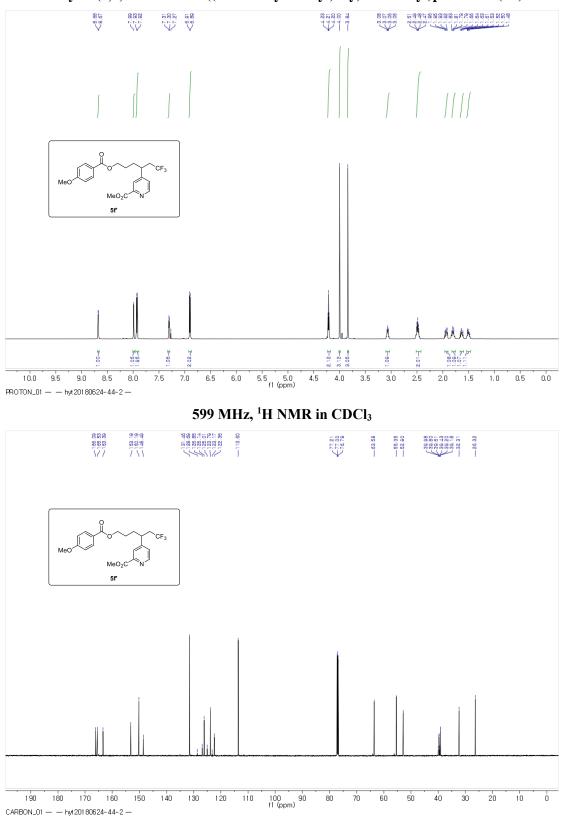


6,6,6-trifluoro-4-(4-methylpyridin-2-yl)hexyl 4-methoxybenzoate (5e).

151 MHz, ¹³C NMR in CDCl₃

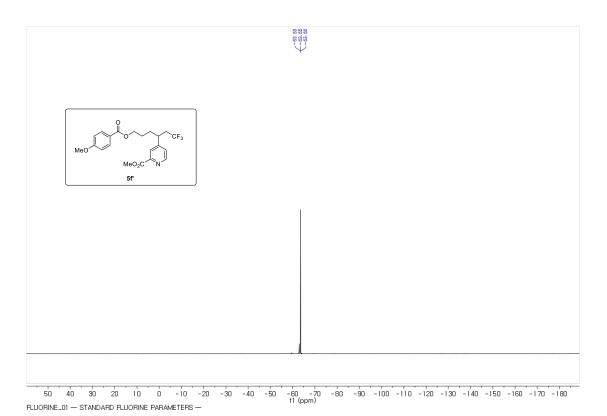


564 MHz, ¹⁹F NMR in CDCl₃

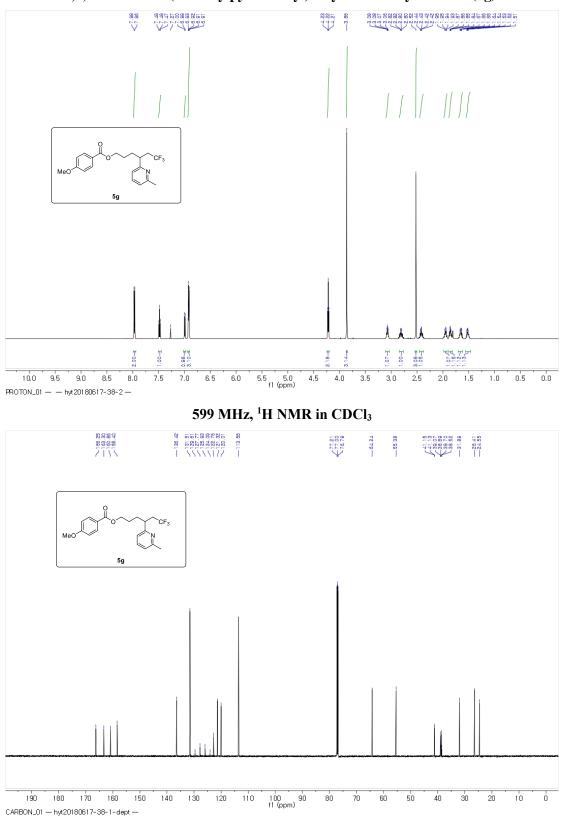


methyl 6-(1,1,1-trifluoro-6-((4-methoxybenzoyl)oxy)hexan-3-yl)picolinate (5f).

151 MHz, ¹³C NMR in CDCl₃

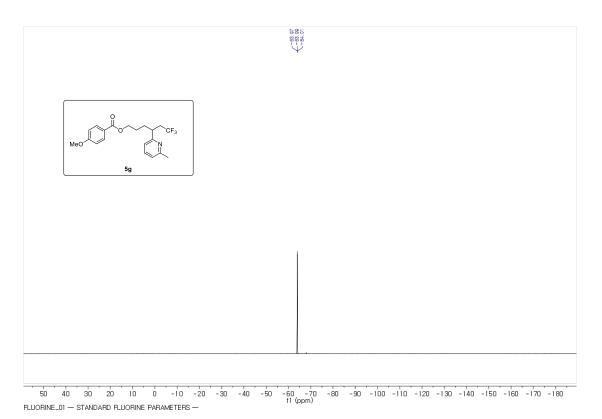


564 MHz, ¹⁹F NMR in CDCl₃

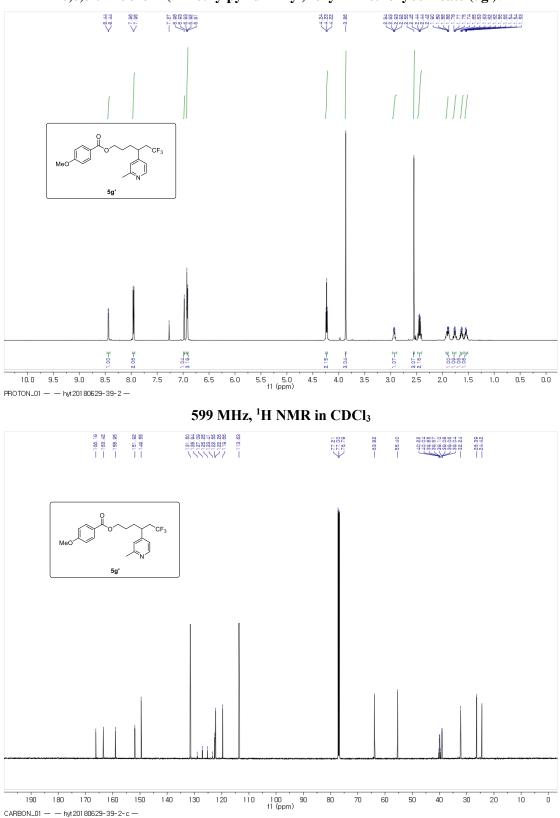


methyl 4-(1,1,1-trifluoro-6-((4-methoxybenzoyl)oxy)hexan-3-yl)picolinate (5f').

151 MHz, ¹³C NMR in CDCl₃

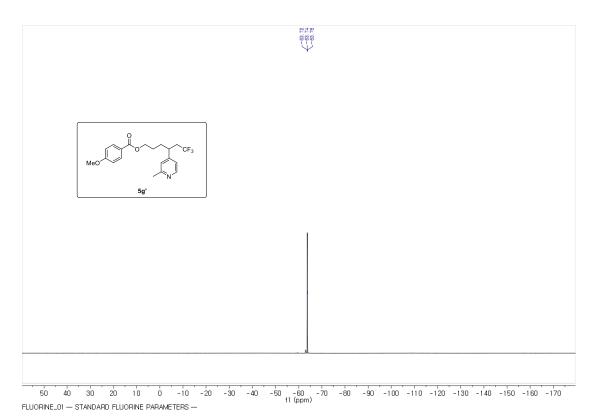


564 MHz, ¹⁹F NMR in CDCl₃

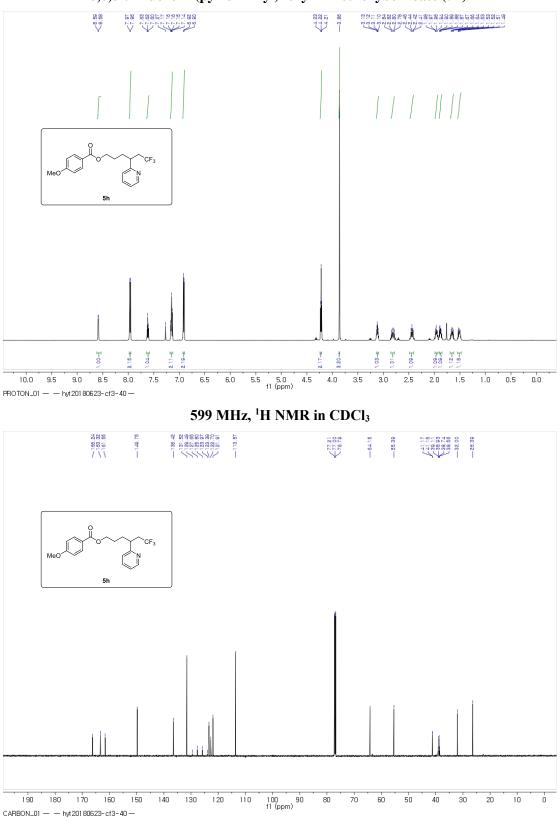


6,6,6-trifluoro-4-(6-methylpyridin-2-yl)hexyl 4-methoxybenzoate (5g).

151 MHz, ¹³C NMR in CDCl₃

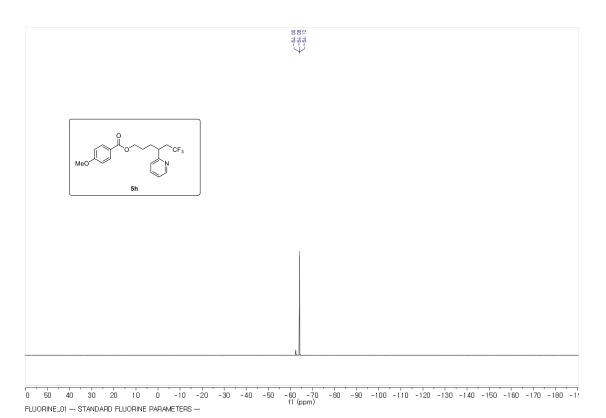


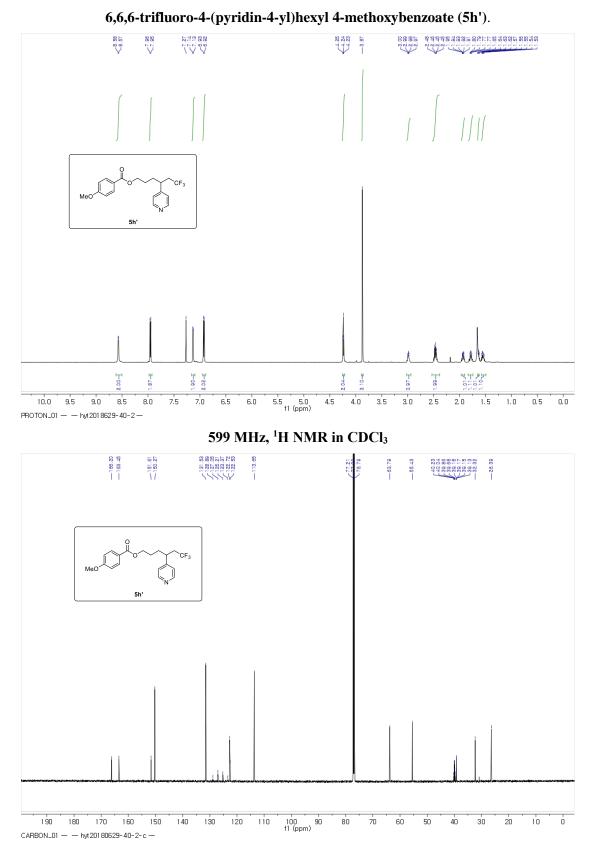
564 MHz, ¹⁹F NMR in CDCl₃



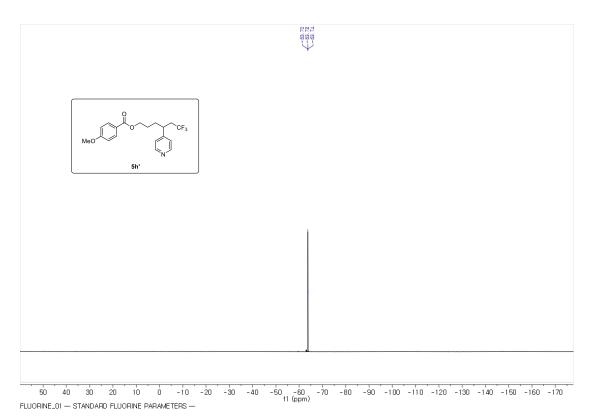
6,6,6-trifluoro-4-(2-methylpyridin-4-yl)hexyl 4-methoxybenzoate (5g').

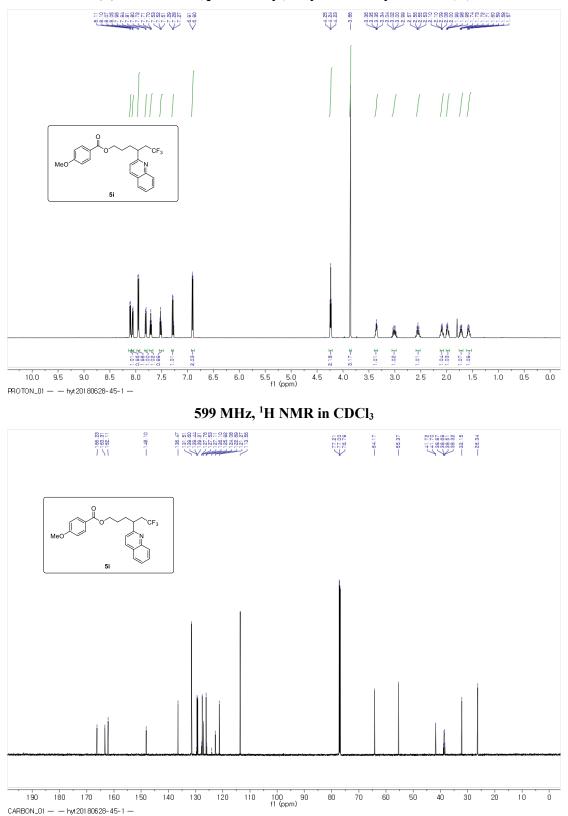
151 MHz, ¹³C NMR in CDCl₃



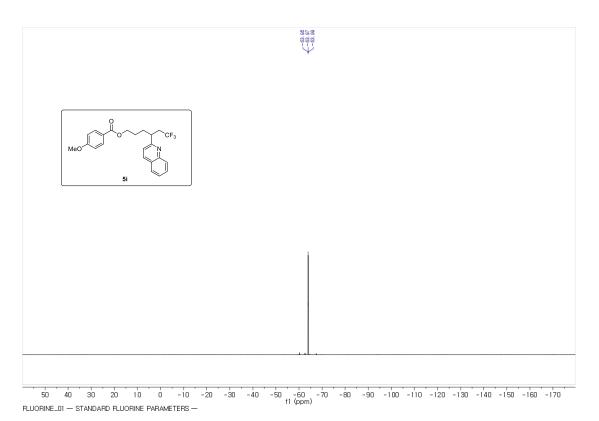


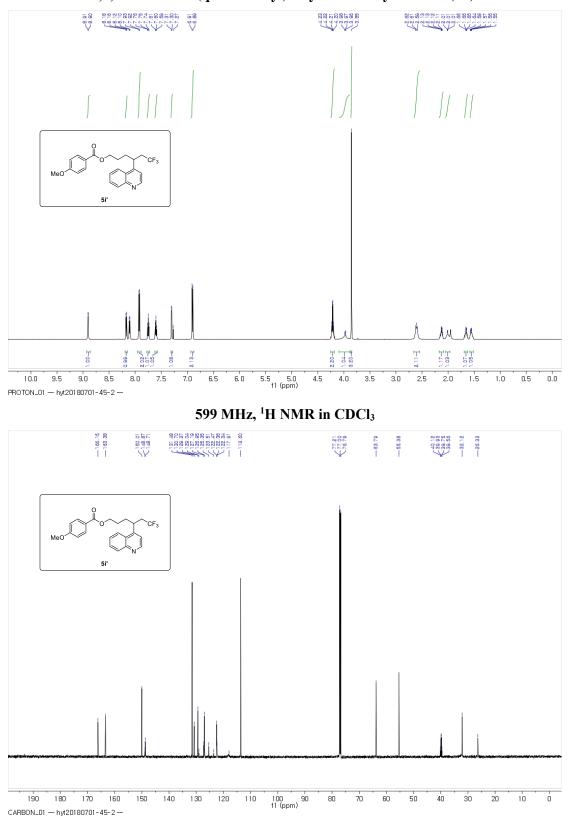
6,6,6-trifluoro-4-(pyridin-2-yl)hexyl 4-methoxybenzoate (5h).


151 MHz, ¹³C NMR in CDCl₃


564 MHz, ¹⁹F NMR in CDCl₃

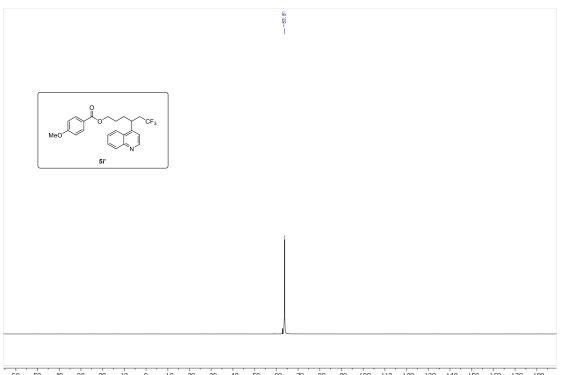
151 MHz, ¹³C NMR in CDCl₃

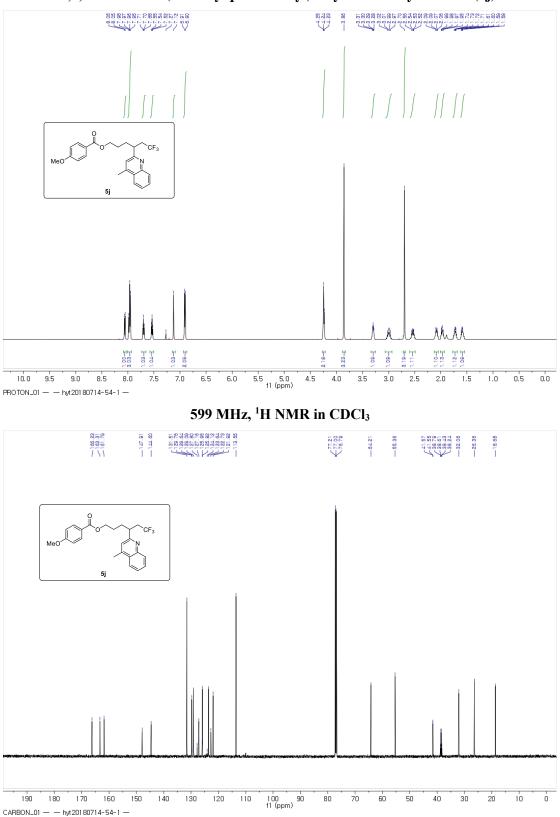




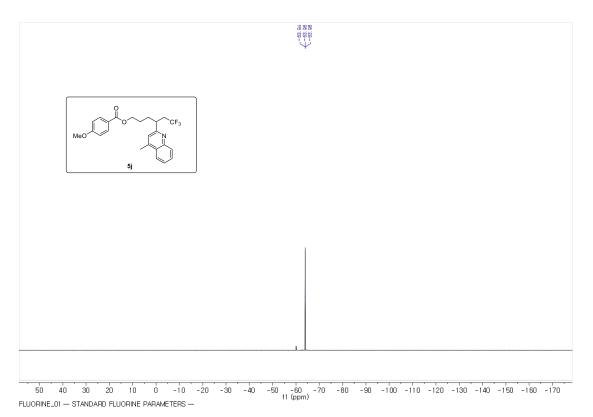
6,6,6-trifluoro-4-(quinolin-2-yl)hexyl 4-methoxybenzoate (5i).

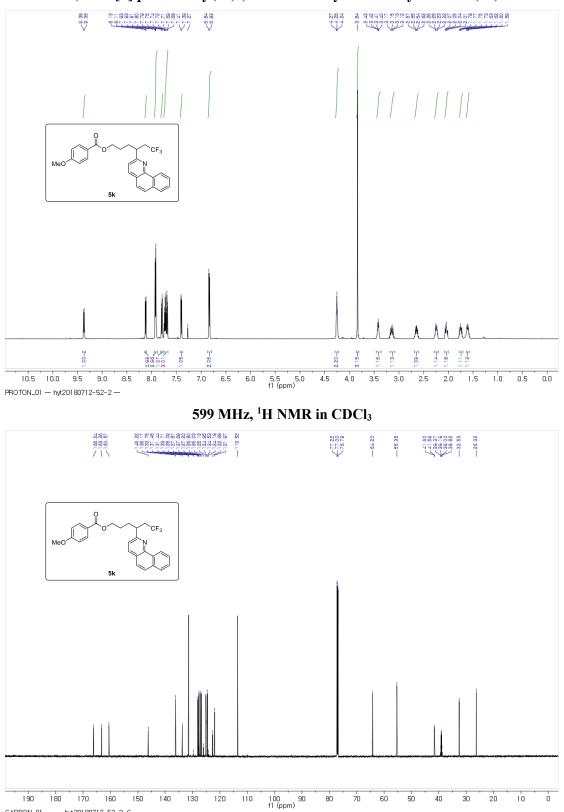
151 MHz, ¹³C NMR in CDCl₃




6,6,6-trifluoro-4-(quinolin-4-yl)hexyl 4-methoxybenzoate (5i').

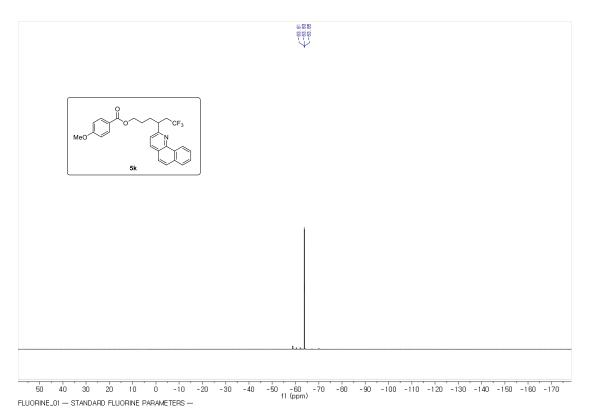
151 MHz, ¹³C NMR in CDCl₃

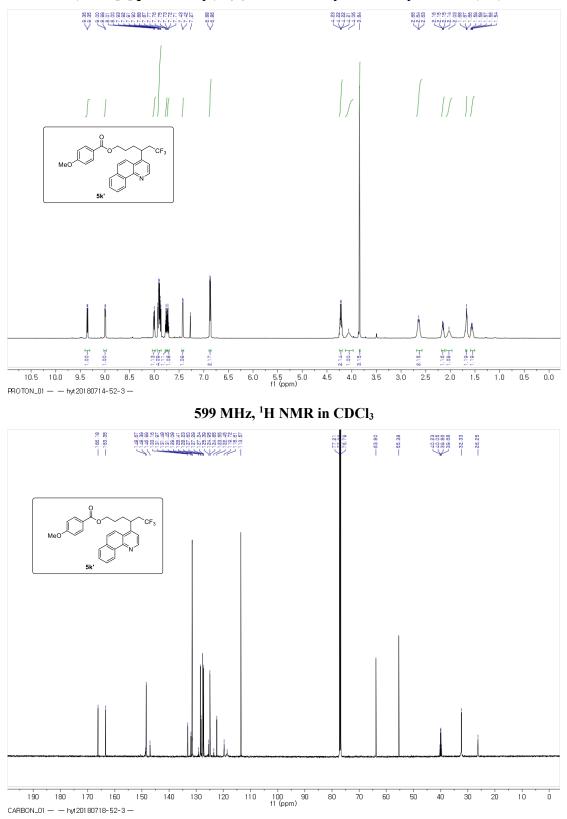

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 FLUORINE_01 — STANDARD FLUORINE PARAMETERS —



6,6,6-trifluoro-4-(4-methylquinolin-2-yl)hexyl 4-methoxybenzoate (5j).

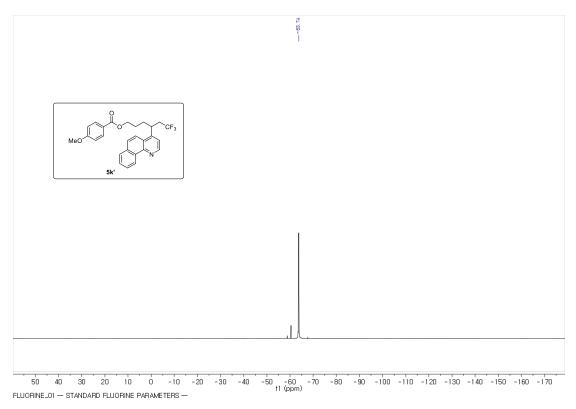
151 MHz, ¹³C NMR in CDCl₃

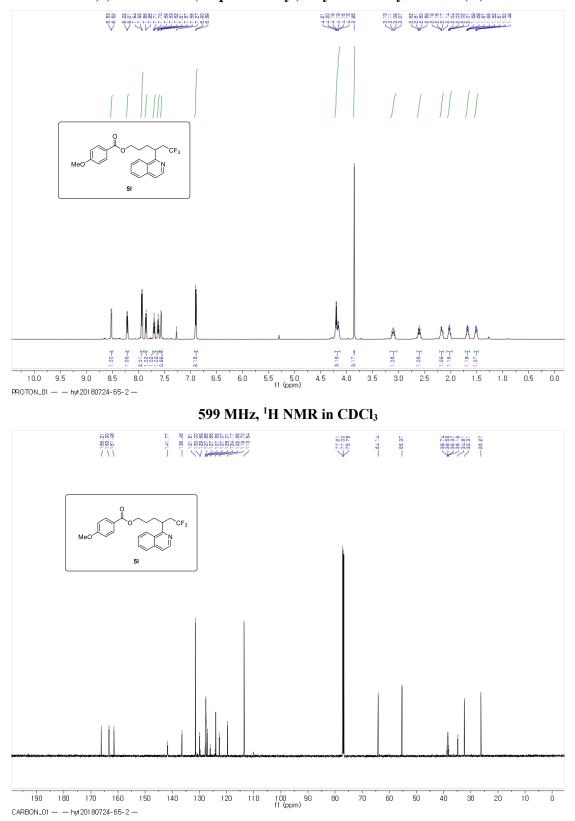



4-(benzo[h]quinolin-2-yl)-6,6,6-trifluorohexyl 4-methoxybenzoate (5k).

151 MHz, ¹³C NMR in CDCl₃

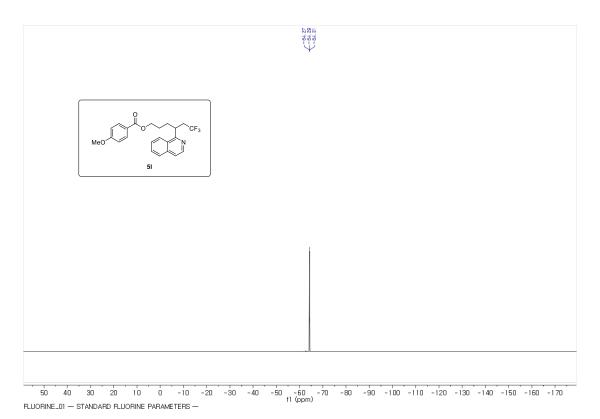
CARBON_01 - - hyt 201 80712-52-2-C -



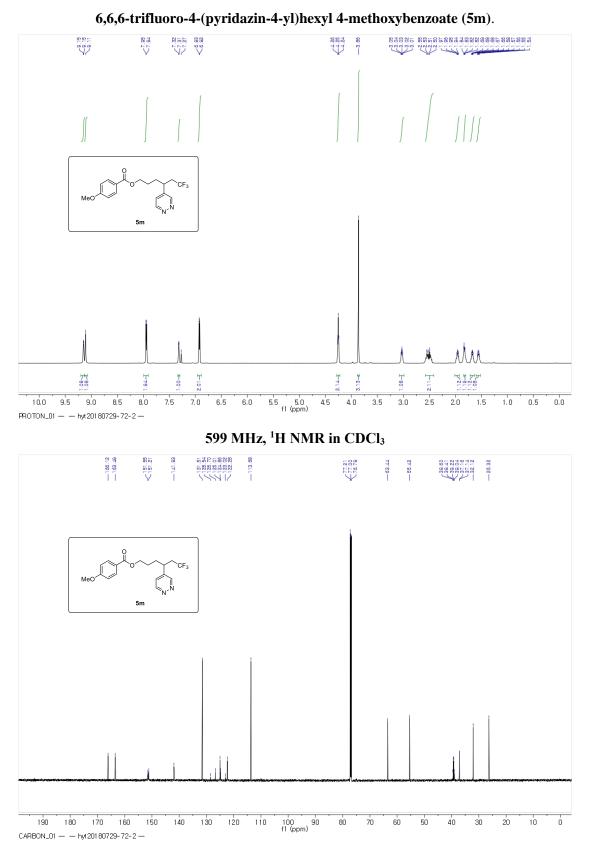


4-(benzo[h]quinolin-4-yl)-6,6,6-trifluorohexyl 4-methoxybenzoate (5k').

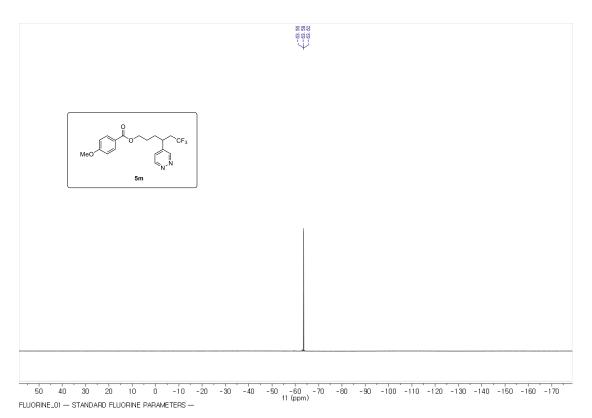
151 MHz, ¹³C NMR in CDCl₃

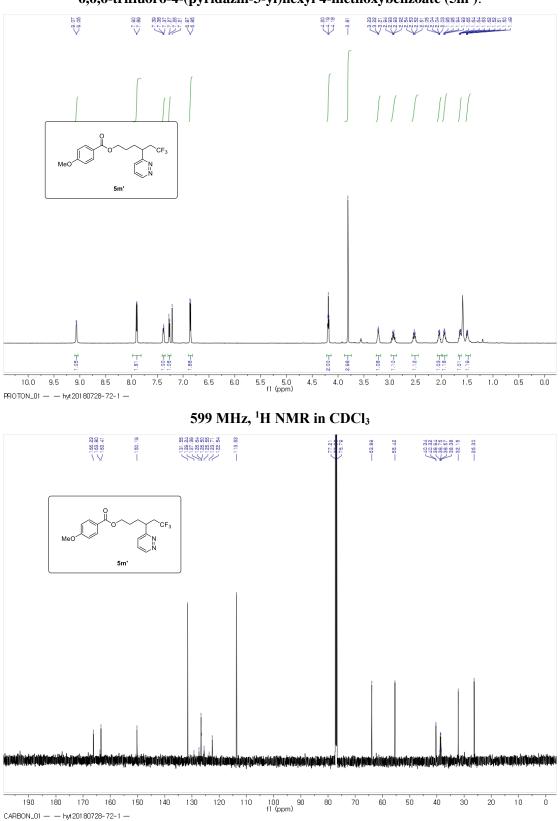


564 MHz, ¹⁹F NMR in CDCl₃

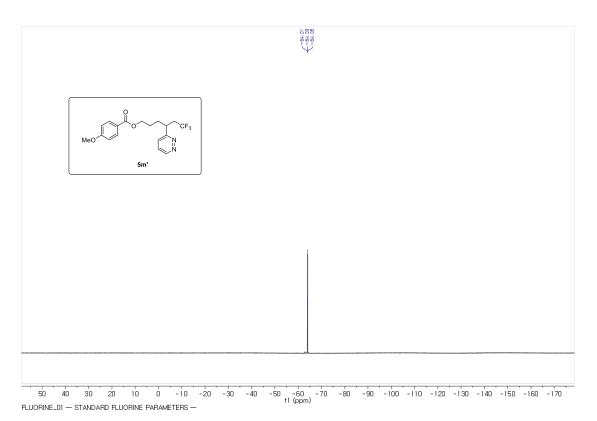


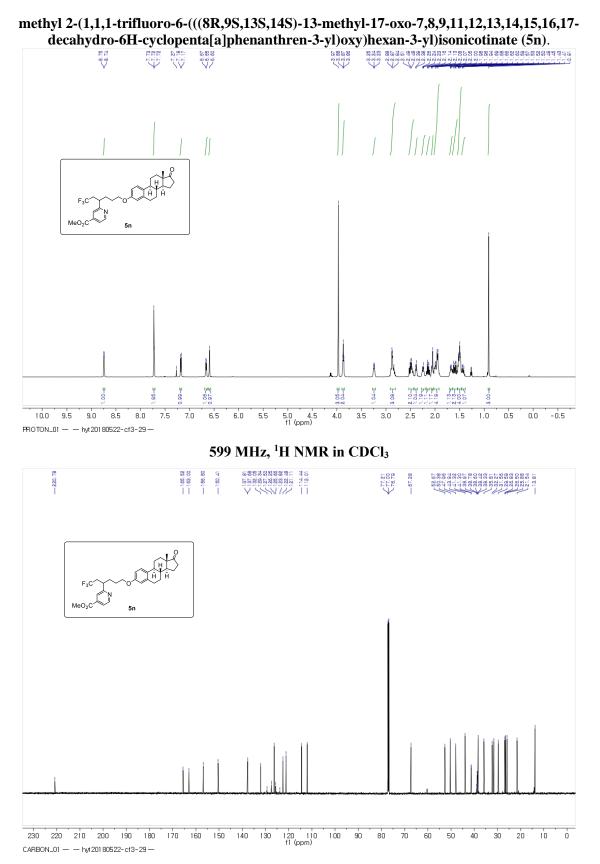
6,6,6-trifluoro-4-(isoquinolin-1-yl)hexyl 4-methoxybenzoate (5l).


151 MHz, ¹³C NMR in CDCl₃

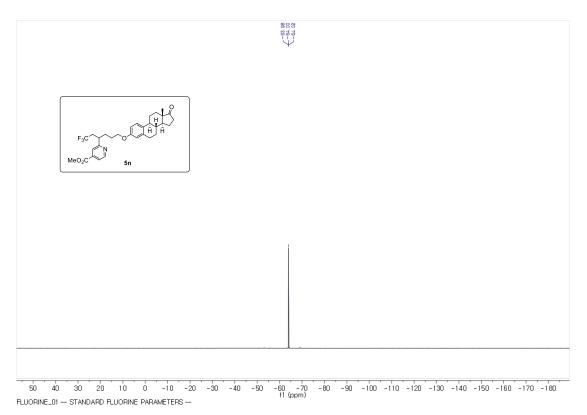


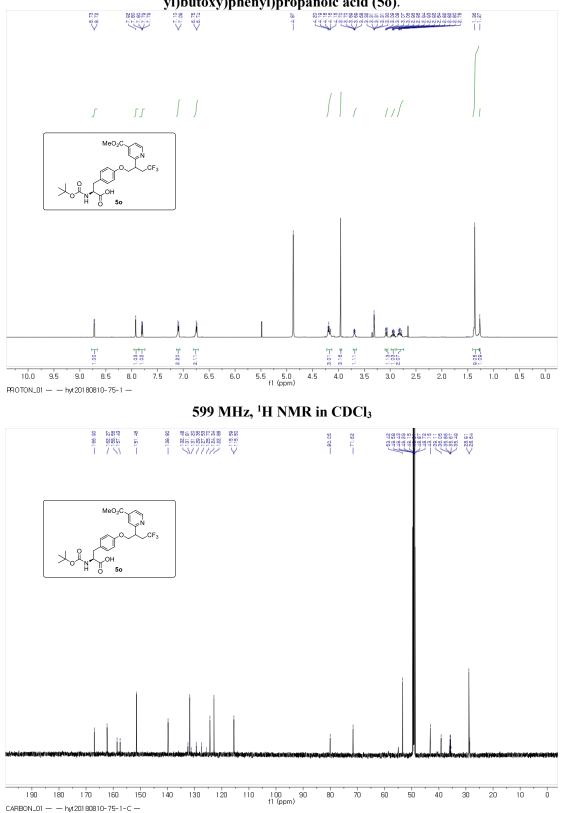
151 MHz, ¹³C NMR in CDCl₃



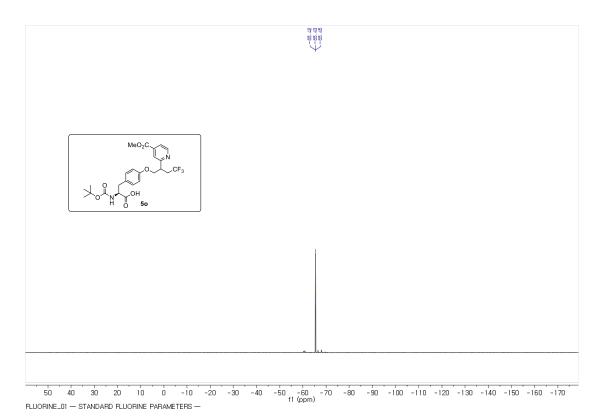


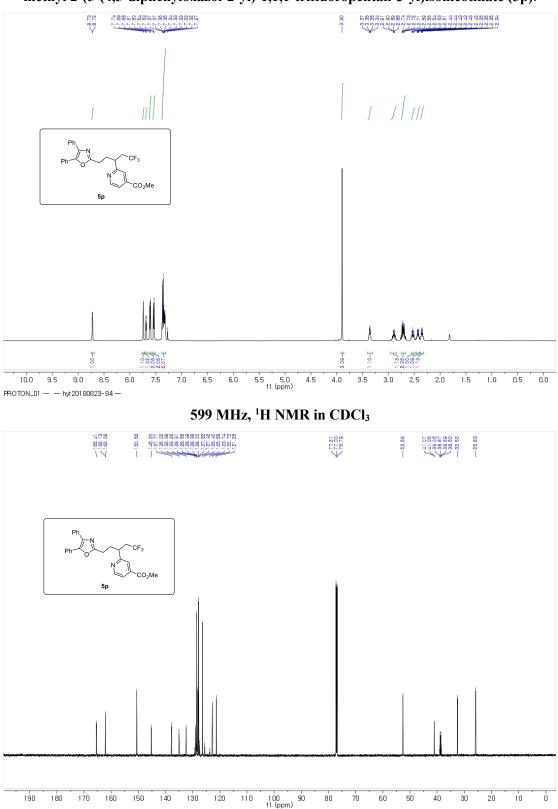
6,6,6-trifluoro-4-(pyridazin-3-yl)hexyl 4-methoxybenzoate (5m').


151 MHz, ¹³C NMR in CDCl₃



151 MHz, ¹³C NMR in CDCl₃

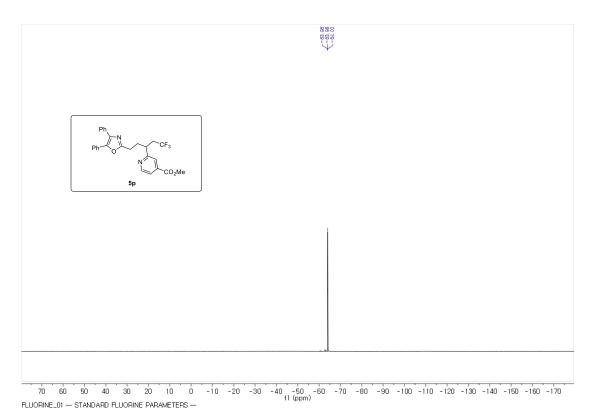




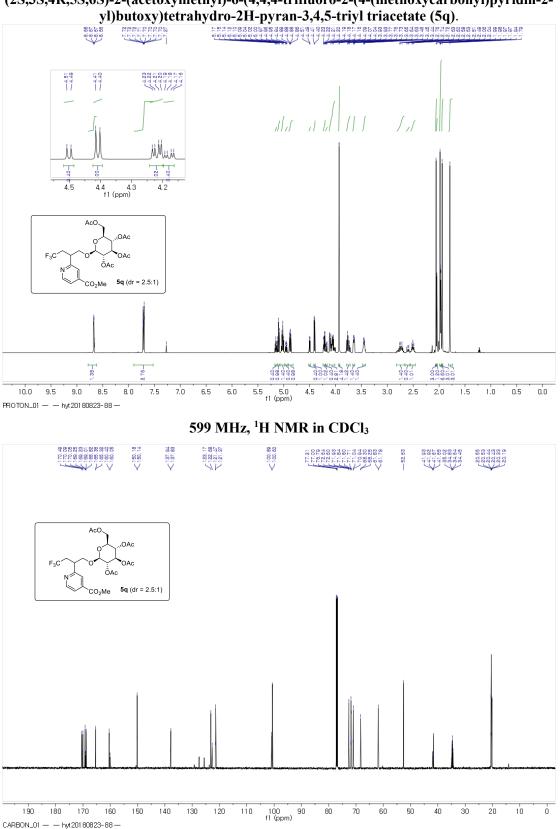
(2S)-2-((tert-butoxycarbonyl)amino)-3-(4-(4,4,4-trifluoro-2-(4-(methoxycarbonyl)pyridin-2yl)butoxy)phenyl)propanoic acid (50).

151 MHz, ¹³C NMR in CDCl₃

564 MHz, ¹⁹F NMR in CDCl₃

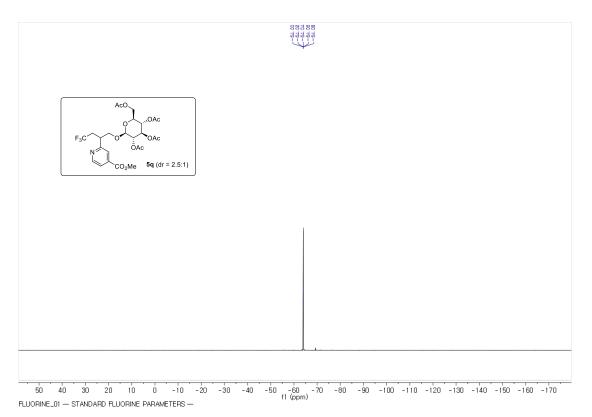


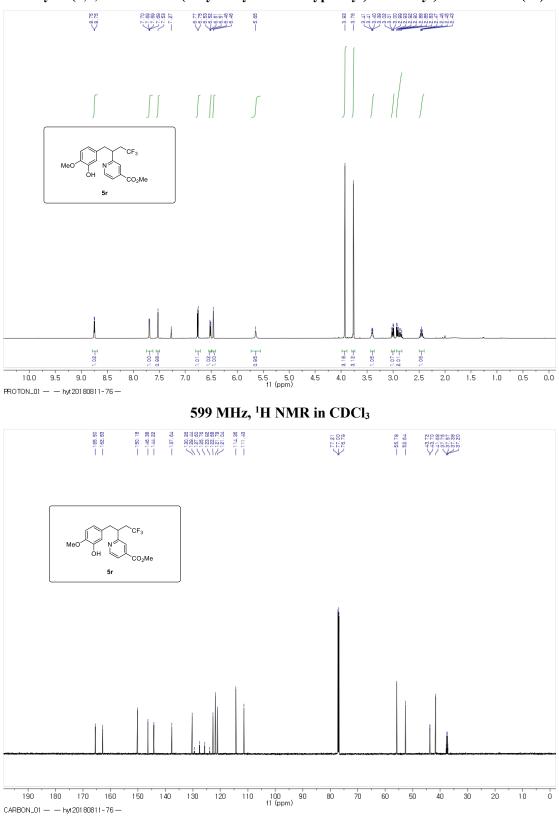
methyl 2-(5-(4,5-diphenyloxazol-2-yl)-1,1,1-trifluoropentan-3-yl)isonicotinate (5p).


151 MHz, ¹³C NMR in CDCl₃

ò

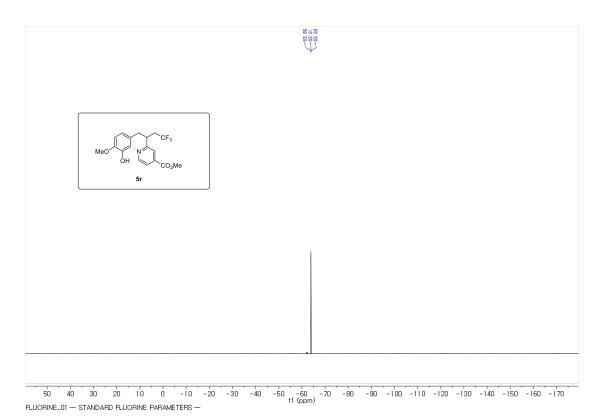
CARBON_01 - - hyt 201 80823-84 -





(2S,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(4,4,4-trifluoro-2-(4-(methoxycarbonyl)pyridin-2-

151 MHz, ¹³C NMR in CDCl₃



methyl 2-(4,4,4-trifluoro-1-(3-hydroxy-4-methoxyphenyl)butan-2-yl)isonicotinate (5r).

151 MHz, ¹³C NMR in CDCl₃

564 MHz, ¹⁹F NMR in CDCl₃