SUPPORTING INFORMATION

Heterogeneous Copper-Catalyzed Direct Reduction of C-Glycosidic Enones to Saturated

Alcohols in Water

L. Petitjean^a, T. M. Dewinter^a, P. V. Petrovic^a, P. Coish^a, J. Hitce^b, M. Moreau^c, T. Bordier^b, H. C. Erythropel^a and P.T. Anastas^a*

^aCenter for Green Chemistry and Green Engineering, School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA.

^bL'Oréal Research & Innovation, 30 rue Maurice Berteaux, 95500, Le Thillay, France

^cL'Oréal Research & Innovation, 133 Terminal Avenue, Clark, New Jersey, 07066, USA.

• Corresponding author paul.anastas@yale.edu

Table of Contents

1.	Experimental Section
a. b. c. d. e. f. g. Enc h. (c.f. i. j. k. I.	General Experimental 2 Synthesis of the Cu-PMO Catalyst 3 Synthesis of the Hydrotalcite (HTC) catalyst 4 Synthesis of Lubineau's ketone 1b 5 General Procedure A for synthesis of C-glycosidic substrates 2a-g 5 General Procedure B for synthesis of C-Glycosidic Substrates 2i-j 6 Optimized General Procedure C for the full catalytic hydrogenation of C-glycosidic ones 2a-j 7 Procedures and Amounts for the optimization of the one-step enone full reduction Table 1) 7 Procedure for the large-scale reduction of Aromatic Enone 2e 10 Catalyst Recycling Studies 10 Amberlite IR-120H ⁺ regeneration and reuse 11 Substrates Syntheses, Isolations and Characterizations 11
i. ii. iii	C-Glycosidic Aromatic Enones 2a-h
2.	Procedures and tables for calculated geometries
a. b. c.	Coordinates for the optimized geometries28Procedure for calculating NMRs50Calculation of the CP3 and the probability parameters53
3.	NMRs
a. b.	¹ H and ¹¹ B NMRs of crude reaction mixtures (Schemes 3-5)
4.	Bibliography

1. Experimental Section

a. <u>General Experimental</u>

Chemicals and solvents were purchased from Sigma-Aldrich, Alfa-Aesar, JT Baker or TCI and used as received. Compound 1a (Octulose) was obtained from L'Oreal as a solution in H₂O, and concentrated *in vacuo* before use. All hydrogenation reactions under H₂ atmosphere were set-up in a 100 mL stainless-steel Parr reactor equipped with a mechanical stirrer. The reactions were pressurized under Hydrogen Atmosphere (Airgas, Ultra High Purity). The loaded reactor was placed on a bench-top Parr stand equipped with a Parr 4843 reactor controller. Proton nuclear magnetic resonance (¹H NMR) spectra were acquired using Agilent DD2 400 MHz, Agilent DD2 500 MHz, Agilent DD2 600 MHz or Varian Inova 500 MHz spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) and are calibrated to the residual solvent peak. Coupling constants (J) are reported in Hz. Multiplicities are reported using the following abbreviations: s =singlet; d = doublet; t = triplet; m = multiplet (range of multiplet is given). Carbon nuclear magnetic resonance (¹³C NMR) spectra were acquired using Agilent DD2 600 MHz or Agilent DD2 400 MHz spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and are calibrated to the residual solvent peak. X-Ray Powder Diffraction (XRPD) measurements were performed on a Bruker D8-focus X-Ray diffractometer equipped with a Cu line-focus sealed tube, a divergent beam geometer and a Nal scintillation detector. Measurements were made with a 40 kV, 40 mA beam in the range 20 from 3° to 80° locked couple scan type, a step size of 0.05° and a scan speed of 1 second/step. Analytical thin layer chromatography was performed on pre-coated 250 µm layer thickness silica gel 60 F₂₅₄ Plates (EMD Chemicals Inc.). Visualization was performed by ultraviolet light and/or by staining with potassium permanganate or ceric ammonium molybdate (CAM) solutions. Purifications by column chromatography were performed using SilicaFlash F60 silica gel (40-63 μm, 230-400 mesh, Silicycle). Elemental analyses were performed using inductively coupled plasma optical emission spectroscopy (ICP-OES) on a Perkin Elmer Optima 3000 equipped with a Scott nebulizer. The Sc standard was measured at 361.384 nm, Cu at 324.754 nm, Mg at 279.079 nm and Al at 308.215 nm. Samples were prepared for ICP-OES by dissolving a known solid amount in 2 mL of 6 M nitric acid and diluting to 50 mL with DI H_2O . Elemental components were quantified by comparison with purchased calibration standards. High resolution mass spectra (HRMS) were recorded using an Agilent 6550A QTOF by electrospray ionization time of flight experiments.

b. Synthesis of the Cu-PMO Catalyst

A solution of Al(NO₃)₃.9H₂O (18.8 g, 0.05 mol, 1 equiv.), Mg(NO₃)₂.6H₂O (30.76 g, 0.12 mol, 2.4 equiv.) and Cu(NO₃)₂.2.5H₂O (7.0g, 0.03 mol, 0.6 equiv.) in 300 mL distilled (DI) water was added dropwise over four hours to a stirring solution of Na₂CO₃.H₂O (6.2 g, 0.05 mol, 1 equiv.) in 375 mL distilled water. The pH was kept constant at pH ~ 10 by adding aliquots of 1 M NaOH aqueous solution. Upon completion of the addition, the mixture is allowed to stir vigorously at room temperature for three days. The blue precipitate is collected by vacuum filtration and washed with 1.5 L distilled water. The filter cake is then suspended in a solution of Na₂CO₃ solution (62 g, 0.5 mol, 10 equiv.) in DI H₂O (250 mL, 2M) and allowed to stir at room temperature overnight. Upon completion, the precipitate is collected by vacuum filtration and washed with DI H₂O (2.5 L). The filter is left to dry overnight in a 105°C oven to obtain copper-doped hydrotalcite. The solid is ground by mortar and pestle and subjected to calcination at 460°C in air for 24 h to obtain Cu-PMO (9.21 g) as a green powder. The Cu-PMO was analyzed by XRPD (Figure S1), showing the expected loss of hydrotalcite features¹. Elemental analysis of Cu-PMO was performed by ICP-OES (Table S1) and confirms incorporation of the metals in the expected ratio.

Figure S1: XPRD of Cu-PMO catalyst

	Cu	Mg	AI	
Concentration (mg/L)	26.09	39.37	19.36	
Mass in solution (mg)	1.305	1.969	0.968	
Amount in solution (mmol)	0.0205	0.0806	0.0359	
Normalized Ratio of Metals	0.57	2.25	1.00	

Table S1: Metal Ion Composition of Cu-PMO determined by ICP-OES

c. Synthesis of the Hydrotalcite (HTC) catalyst

A solution of Al(NO₃)₃.9H₂O (18.8 g, 0.05 mol, 1 equiv.) and Mg(NO₃)₂.6H₂O (38.46 g, 0.15 mol, 3 equiv.) in 300 mL distilled (DI) water was added dropwise over four hours to a stirring solution of Na₂CO₃.H₂O (6.2 g, 0.05 mol, 1 equiv.) in 375 mL distilled water. The pH was kept constant at pH ~ 10 by adding aliquots of 1 M NaOH aqueous solution. Upon completion of the addition, the mixture is allowed to stir vigorously at 40°C for three days. The white precipitate is collected by vacuum filtration and washed with 1.5 L distilled water. The filter cake is then suspended in a solution of Na₂CO₃ solution (62 g, 0.5 mol, 10 equiv.) in DI H₂O (250 mL, 2M) and allowed to stir at 40°C overnight. Upon completion, the precipitate is collected by vacuum filtration and washed with DI H₂O (2.5 L). The filter is left to dry overnight in a 105°C oven to obtain hydrotalcite (HTC). The HTC was analyzed by XRPD (Figure S2) and is identical to literature reports¹.

Figure S2: XRPD of HTC catalys

d. Synthesis of Lubineau's ketone 1b

Synthesis of Nonulose **1b** was performed according to a modified procedure by Cavezza et al.² D-(+)-Glucose (10 g, 55.51 mmol, 1 equiv.) and 2,4-pentanedione (6.8 mL, 6.65 g, 66.53 mmol, 1.2 equiv.) were added to a 100 mL round bottom flask equipped with a Teflon coated stir bar. MeOH (20.7 mL) was added by syringe. A solution of NaOH (3.33 g, 83.25 mmol, 15 equiv.) in MeOH (22 mL) and H₂O (10 mL) was prepared. After full dissolution of NaOH, the solution was added to the round bottom flask by pouring. The mixture was allowed to stir at room temperature for two days. Upon completion, the flask was placed in an ice bath and the basic mixture was evaporated *in vacuo* to obtain the crude product. Column chromatography (silica gel, EtOAc:MeOH:H₂O, 30:8:2) furnished pure product **1b** as a brown oil in 82 % yield (11.284 g, 45.46 mmol).

R_f = 0.14 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 3.77 (dd, *J* = 12.0, 2.1 Hz, 1H), 3.61 (ddd, *J* = 20.2, 10.6, 5.7 Hz, 2H), 3.37 − 3.17 (m, 3H), 3.05 (t, *J* = 9.1 Hz, 1H), 2.86 (dd, *J* = 16.0, 3.0 Hz, 1H), 2.57 (dd, *J* = 16.0, 9.1 Hz, 1H), 2.18 (s, 3H). ¹³**C NMR** (101 MHz, cd₃od) δ 208.83, 80.24, 78.19, 75.84, 73.69, 70.30, 61.38, 45.76, 29.19.

Analytical data is identical to that reported in the literature.³

e. General Procedure A for synthesis of C-glycosidic substrates 2a-g

<u>Representative Procedure A</u>: The procedure developed by de Winter et al. was replicated with alterations to afford targeted substrates.⁴ The hygroscopicity of the starting material varied the true amount weighed out. Hence, an internal standard (biphenyl) was utilized to quantify amount of starting material added by ¹H NMR, which is used to correct product yields. It follows that this variation in starting material content affects the relative amounts of reagents and reactants. C-glycoside ketone **1a-b** (1 equiv.) was added to a round bottom flask equipped with a Teflon coated stir bar. MeOH (0.45 M) and biphenyl (0.05 equivalents, internal standard) were added by syringe and the mixture was stirred until complete dissolution of the starting material. An aliquot was removed and analyzed by ¹H NMR to determine the amount of C-glycoside **1a-b** added. L-Proline (1 equiv.), benzylic aldehyde (1.1 equiv.) and MgO (10 wt% of C-glycoside) were added to the stirring mixture. The reaction was allowed to proceed at 50°C with stirring until completion as observed by TLC analysis. The mixture was filtered over filter paper, then mixed with silica gel and concentrated *in vacuo*. Crude product was purified over a short-path silica plug, after dry loading, by first flushing the internal standard (biphenyl) and excess aldehyde with a small amount of ethyl acetate, then collecting product with acetone as liquid phase.

f. <u>General Procedure B for synthesis of C-Glycosidic Substrates 2i-j</u>

<u>Representative Procedure B</u>: The procedure developed by Foley et al. was replicated with minor alterations to afford aliphatic C-glycosidic enones.⁵

C-glycoside ketone **1a** (1 equiv.) and biphenyl (0.05 equiv., internal standard) were added to a round bottom flask equipped with a Teflon coated stir bar. DMF (2.4 M) was added by syringe and the mixture was stirred until complete dissolution of the starting material. An aliquat was removed for ¹H NMR analysis of starting material amount. Then, hexanes (2 M), pyrrolidine (1 equiv.) and aliphatic aldehyde (1 equiv.) were added to the stirring mixture. The reaction was allowed to proceed at room temperature with stirring until completion as observed by TLC

analysis. The mixture was treated with Amberlite IR-120 H+ resin, filtered, and concentrated *in vacuo*. Crude product was purified by column chromatography (silica gel, 450:50 DCM:MeOH).

g. <u>Optimized General Procedure C for the full catalytic hydrogenation of C-glycosidic</u> <u>Enones 2a-j</u>

<u>Representative Procedure C</u>: C-glycosidic enone **2a-j** (0.5 mmol, 1 equiv.) was added to a 25 mL round-bottom flask equipped with a Teflon coated stir bar. H₂O (10 mL, 0.05 M) was added by syringe. Cu-PMO (see below section 1i. for amounts) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) were added to the mixture in single portions. The mixture was allowed to stir at reflux (100°C) for 5 hours. Upon completion, the mixture was cooled and treated with Amberlite IR-120 H+ resin. The heterogeneous mixture was filtered over cellulose filter paper and the retentate was washed with methanol (~ 20 mL). The combined organic fractions were concentrated in vacuo. CHCl₃ (0.04 mL, 59.69 mg, 0.5 mmol, 1 equiv., internal standard) were added to the residue, and the mixture was completely dissolved in deuterated methanol for ¹H and ¹¹B NMR analysis. Once the NMR yield was obtained and the absence of boron salts was confirmed by NMR, the mixture was evaporated in vacuo and placed under high vacuum before weighing (if complete conversion to desired product). If boron salts were present, the mixture was re-dissolved in methanol and evaporated in vacuo, and the process was repeated until the absence of boron salts was confirmed by NMR. Once the NMR yield was obtained and the absence of boron salts was confirmed by NMR, the mixture was evaporated *in vacuo* and placed under high vacuum before weighing (if complete conversion to desired product). When desired, produced diastereomers were separated by column chromatography (silica gel, 450:50 DCM:MeOH).

h. Procedures and Amounts for the optimization of the one-step enone full reduction (c.f. <u>Table 1)</u>

Optimization of the one-step reduction of enone *under H*₂ *pressure* was performed according to the following <u>representative procedure D</u>: C-Glycosidic enone **2a** (1 equiv.) was added to a 100 mL stainless-steel Parr reactor. If required, NaBH₄, LiCl, NaCl, and/or Cu-PMO catalyst were added to the Parr reactor (see Table S2 for amounts). Solvent (30 mL) was added to the reactor by syringe. The reactor was closed once all reaction components were added and subsequently pressurized under H₂ pressure. The reactor was placed on a stand and connected to a temperature controller. Heating was turned on at time t=0. The reactor was closed to room temperature under a stream of water. Once cool, the reactor was depressurized and opened in a fumehood. Caution: flammable gas is released! The mixture was treated with Amberlite IR-120H+ resin and filtered over cellulose paper before concentrating *in vacuo*. DMF or CHCl₃ (1 equiv., internal standard) was added to the residue, and the mixture was completely dissolved in deuterated methanol for ¹H NMR analysis.

Optimization of the one-step reduction of enone *without* H_2 *pressure* was performed according to the following <u>representative procedure E</u>: C-glycosidic enone **2a** (1 equiv.) was added to a 25 mL round-bottom flask equipped with a Teflon coated stir bar. Solvent was added by syringe. If required, NaBH₄, LiCl, NaCl, and/or Cu-PMO catalyst were added to the mixture in single portions. If using CuCl, the mixture was allowed to stir for 15 minutes, then CuCl was added (0.5 eq.). The mixture was allowed to stir at the chosen temperature for a set amount of time (*c.f.* Table 1). Upon completion, the mixture was brought to room temperature and treated with Amberlite IR-120 H+ resin. The heterogeneous mixture was filtered over cellulose filter paper and the retentate was washed with methanol. The combined organic fractions were concentrated *in vacuo*. DMF or CHCl₃ (1 equiv., internal standard) was added to the residue, and the mixture was completely dissolved in deuterated methanol for ¹H NMR analysis.

Table S2	Amounts	in e	each	reaction	towards	the	optimization	of	the	direct	Cu-cata	lyzed	full
reduction	of enones	(c.f.	. Tabl	le 1 in ma	nuscript)								

Entry from Table 1	Compound 2a	Catalyst	Additive	Solvent	Internal Standard
1	0.3 mmol, 83.5	Cu-PMO 10		MeOH (30	DMF (23 μL,
Ŧ	mg	mg	-	mL, 0.01 M)	1 eq.)
2	0.3 mmol, 83.5	Cu-PMO 10		H ₂ O (30 mL,	DMF (23 μL,
	mg	mg	-	0.01 M)	1 eq.)

2	0.3 mmol, 83.5	Cu-PMO 10	LiCl (0.3 mmol,	MeOH (30	DMF (23 μL,
5	mg	mg	12.7 mg)	mL, 0.01 M)	1 eq.)
4	0.3 mmol, 83.5	Cu-PMO 10	NaCl (0.3 mmol,	MeOH (30	DMF (23 μL,
4	mg	mg	17.5 mg)	mL, 0.01 M)	1 eq.)
5	0.38 mmol, 106.7 mg	CuCl 19.0 mg	NaBH₄ (3.8 mmol, 143.8 mg)	MeOH (3.8 mL, 0.1 M)	DMF (28 μL, 1 eq.)
6	0.38 mmol, 106.7 mg	CuCl 19.0 mg	NaBH₄ (3.8 mmol, 143.8 mg)	MeOH (3.8 mL, 0.1 M)	DMF (28 μL, 1 eq.)
7	0.3 mmol, 83.5 mg	Cu-PMO 10 mg	NaBH₄ (0.6 mmol, 22.7 mg)	MeOH (30 mL, 0.01 M)	DMF (23 μL, 1 eq.)
	0.3 mmol. 83.5	Cu-PMO 10	NaBH₄ (0.6	MeOH (30	DMF (23 µL.
8	mg	mg	mmol, 22.7 mg)	mL, 0.01 M)	1 eq.)
<u> </u>	0.3 mmol, 83.5	Cu-PMO 10	NaBH ₄ (0.6	MeOH (30	DMF (23 μL,
9	mg	mg	mmol, 22.7 mg)	mL, 0.01 M)	1 eq.)
10	0.3 mmol, 83.5	Cu-PMO 10	NaBH ₄ (0.6	MeOH (30	DMF (23 μL,
10	mg	mg	mmol, 22.7 mg)	mL, 0.01 M)	1 eq.)
11	1.5 mmol, 417.5 mg	Cu-PMO 55 mg	NaBH₄ (3.0 mmol, 113.5 mg)	MeOH (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
12	1.5 mmol, 417.5 mg	Cu-PMO 55 mg	NaBH₄ (3.0 mmol, 113.5 mg)	MeOH (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
13	1.5 mmol, 417.5 mg	Cu-PMO 55 mg	NaBH₄ (3.0 mmol, 113.5 mg)	MeOH (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
14	1.5 mmol, 417.5 mg	Cu-PMO 55 mg	NaBH₄ (3.0 mmol, 113.5 mg)	MeOH (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
15	1.5 mmol, 417.5 mg	Cu-PMO 25 mg	NaBH₄ (3.0 mmol, 113.5 mg)	MeOH (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
16	0.725 mmol, 201.8 mg	Cu-PMO 26.5 mg	NaBH₄ (1.45 mmol, 55 mg)	H₂O (14.5 mL, 0.05 M)	DMF (56 μL <i>,</i> 1 eq.)
17	1.5 mmol, 417.5 mg	Cu-PMO 55 mg	NaBH₄ (3.0 mmol, 113.5 mg)	H ₂ O (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
18	1.5 mmol, 417.5 mg	Cu-PMO 55 mg	NaBH₄ (3.0 mmol, 113.5 mg)	H₂O (30 mL, 0.05 M)	DMF (110 μL, 1 eq.)
19	0.5 mmol, 139.2 mg	Cu-PMO 16.5 mg	NaBH ₄ (0.25 mmol, 9.5 mg)	H ₂ O (10 mL, 0.05 M)	CHCl ₃ (40 μL, 1 eq.)
20	1.2 mmol, 333.9 mg	-	NaBH₄ (2.4 mmol, 90 mg)	H₂O (24 mL, 0.05 M)	DMF (93 μL, 1 eq.)

i. <u>Procedure for the large-scale reduction of Aromatic Enone 2e</u>

C-glycosidic enone **2e** (8.12 g, 25 mmol, 1 equiv.) and water (500 ml, 0.05 M) were charged to a 1 L double-jacketed reactor equipped with a mechanical stirrer. To this suspension were added Cu-PMO (892 mg, 11 mol%) and NaBH₄ (1.89 g, 50 mmol, 2 equiv.) in single portions. The reaction mixture was allowed to stir at reflux (100°C) for 5 hours. Upon completion, the dark brown homogeneous solution was cooled and treated with Amberlite IR-120 H+ resin (~ 180 g). The suspension was filtered over cellulose filter paper and the retentate was washed with methanol (~ 1 L). The combined organic and aqueous fractions were evaporated to dryness under vacuum. The crude residue was purified by filtration over silica (eluting with EtOAc:MeOH 80:20), followed by a carbon black treatment at reflux in ethanol for one hour. After concentration *in vacuo*, the solid was diluted with water, filtered, and lyophilized, furnishing pure product **3e** (mixture of diastereomers) as a beige powder in 72.9% isolated yield (6 g, 18.27 mmol). ¹H and ¹³C NMR data are consistent with those from the smaller scale results reported in Section 1.j.

j. Catalyst Recycling Studies

C-glycosidic enone **2e** (162.2 mg, 0.5 mmol, 1 equiv.) was added to a 25 mL round-bottom flask equipped with a Teflon coated stir bar. H₂O (10 mL, 0.05 M) was added by syringe. Cu-PMO (Trial 1: 16.5 mg, 10wt% and afterwards as recovered from previous run) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) were added to the mixture in single portions. The mixture was allowed to stir at reflux (100°C) for 5 hours. Upon completion, the mixture was cooled and treated with Amberlite IR-120 H+ resin. The heterogeneous mixture was filtered over cellulose filter paper and the retentate was washed with methanol (~ 20 mL). The combined organic fractions were concentrated *in vacuo*. CHCl₃ (0.04 mL, 59.69 mg, 0.5 mmol, 1 equiv., internal standard) were added to the residue, and the mixture was completely dissolved in deuterated methanol for ¹H and ¹¹B NMR analysis. Once the NMR yield was obtained and the absence of boron salts was confirmed by NMR, the mixture was evaporated *in vacuo* and placed under high vacuum before weighing to obtain the isolated yield. The recovered catalyst was placed in a dessicator until further use.

	2e Conversion ^a (%)	NMR Yield 3e/3e' ^a (%)	Isolated Yield 3e/3e' (%)
Cycle 1	100	> 95	93
Cycle 2	100	94	97
Cycle 3	100	> 95	85
Cycle 4	100	> 95	92
Cycle 5	100	> 95	93

Table S3. Product yields after catalyst recycling

^aConversion and NMR yields determined by ¹H NMR using CHCl₃ as internal standard.

k. <u>Amberlite IR-120H⁺ regeneration and reuse</u>

Amberlite IR-120 H⁺ can be recuperated after reaction through a simple vacuum filtration. After recuperation Amberlite IR-120 H⁺ can be reused after treatment to re-generate its acidity. To do so, spent Amberlite IR-120 H+ is placed in an Erlenmeyer containing a Teflon coated stir bar. The solid was covered with concentrated sulfuric acid and allowed to stir at room temperature for 30 minutes. After completion, the resin was filtered out of the solution and washed with DI water. The resin was placed in a dessicator for further drying until use.

Use of recycled resin did not alter reduction results. **2a** (0.5 mmol) was reduced using our optimized conditions with Cu-PMO (11 wt%) and NaBH₄ (2 equiv.) in MeOH (0.05 M) at 100°C for 5 hours. After completion, recycled Amberlite IR-120 H⁺ resin was added to the mixture to acidify until pH = 5. The mixture was filtered, washed with MeOH, and evaporated *in vacuo* to generate product **3a**, as a diastereomeric mixture, in > 95% NMR yield.

Substrates Syntheses, Isolations and Characterizations i. C-Glycosidic Aromatic Enones **2a-h**

2a was synthesized following general procedure A with Octulose **1a** (1125 mg, 5.918 mmol), benzaldehyde (0.85 mL, 921.1 mg, 8.68 mmol), L-Proline (908.5 mg, 7.891 mmol), biphenyl (61.4 mg, internal standard) and MgO (150 mg) in methanol (17.5 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (EtOAc, then acetone) to obtain **2a** as an off-white solid in 85 % isolated yield.

R_f = 0.32 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.65 − 7.56 (m, 3H), 7.42 − 7.33 (m, 3H), 6.84 (d, *J* = 16.3 Hz, 1H), 3.77 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.64 (t, *J* = 9.4, 1H), 3.42 (dd, *J* = 10.5, 8.9, 1H), 3.27 (t, *J* = 3.2, 1H), 3.17 − 3.02 (m, 3H), 2.84 (dd, *J* = 15.8, 9.2 Hz, 1H); ¹³**C NMR** (151 MHz, Methanol-*d*₄) δ 199.98, 143.97, 135.11, 130.85, 129.19, 128.67, 126.66, 78.95, 77.65, 74.31, 70.67, 70.18, 43.36. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₁₉O₅ [M+H]⁺ 279.12325 Found 279.12345.

Analytical data is identical to that reported in the literature.⁶

2b was synthesized following general procedure A with Octulose **1a** (324.9 mg, 1.710 mmol), 2methylbenzaldehyde (0.34 mL, 347.23 mg, 2.89 mmol), L-Proline (302.8 mg, 2.63 mmol), biphenyl (23.6 mg, 0.123 mmol) and MgO (50 mg) in methanol (5.8 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (Ethyl acetate, then acetone) to obtain **2b** as a yellow oil in 86 % isolated yield.

R_f = 0.36 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_4) δ 7.93 (d, J = 16.0 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.34 – 7.24 (m, 1H), 7.24 – 7.11 (m, 2H), 6.77 (d, J = 16.0 Hz, 1H), 3.80 (dd, J = 11.1, 5.4 Hz, 1H), 3.66 (td, J = 9.4, 2.5 Hz, 1H), 3.49 – 3.40 (m, 1H), 3.33 – 3.24 (m, 1H), 3.19 – 3.05 (m, 3H), 2.84 (dd, *J* = 15.8, 9.2 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, cd₃od) δ 199.43, 140.75, 137.97, 133.17, 130.43, 130.06, 126.92, 126.09, 126.01, 78.34, 77.13, 73.69, 70.07, 69.61, 43.09, 18.29. **HR-MS (ESI⁺**, **m**/*z*): Calcd for C₁₆H₂₁O₅ [M+H]⁺ 293.13890 Found 293.13829.

2c was synthesized following general procedure A with Octulose **1a** (349.9 mg, 1.841mmol), 2methoxybenzaldehyde (0.35 mL, 394 mg, 2.89 mmol), L-Proline (302.8 mg, 2.63 mmol), biphenyl (21.0 mg, 0.136 mmol, internal standard) and MgO (50 mg) in methanol (5.8 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (Ethyl acetate, then acetone) to obtain **2c** as a brown solid in 77 % isolated yield.

R_f = 0.60 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_4) δ 7.94 (d, J = 16.4 Hz, 1H), 7.61 (dd, J = 7.7, 1.7 Hz, 1H), 7.38 (ddd, J = 8.8, 7.4, 1.7 Hz, 1H), 7.03 (dd, J = 8.5, 1.0 Hz, 1H), 6.96 (td, J = 7.5, 1.0 Hz, 1H), 6.89 (d, J = 16.3 Hz, 1H), 3.89 (s, 3H), 3.83 – 3.75 (m, 2H), 3.66 (td, J = 9.4, 2.5 Hz, 1H), 3.44 (ddd, J = 10.6, 9.0, 5.4 Hz, 1H), 3.20 – 3.02 (m, 3H), 2.82 (dd, J = 15.9, 9.3 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 199.78, 158.65, 138.52, 131.86, 128.16, 126.18, 122.92, 120.43, 111.02, 78.34, 77.05, 73.70, 70.08, 69.59, 54.68, 42.76. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₁O₆ [M+H]⁺ 309.13381 Found 309.13310.

2d was synthesized following general procedure A with Octulose **1a** (349.9 mg, 1.841 mmol), 4methoxybenzaldehyde (0.35 mL, 394 mg, 2.89 mmol), L-Proline (302.8 mg, 2.63 mmol), biphenyl (20.3 mg, 0.132 mmol, internal standard) and MgO (50 mg) in methanol (5.8 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (Ethyl acetate, then acetone) to obtain **2d** as an off-white solid in 79 % isolated yield.

R_f = 0.34 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_4) δ 7.64 – 7.52 (m, 3H), 6.94 (dd, J = 9.1, 2.5 Hz, 2H), 6.72 (d, J = 16.1, 1H), 3.83 – 3.71 (m, 4H), 3.64 (td, J = 9.4, 2.5 Hz, 1H), 3.53 – 3.40 (m, 1H), 3.30 – 3.21 (m, 1H), 3.19 – 2.98 (m, 3H), 2.87 – 2.73 (m, 1H); ¹³**C NMR** (151 MHz, Methanol- d_4) δ 199.75, 162.17, 143.79, 130.21, 127.19, 123.98, 114.31, 78.61, 77.37, 73.97, 70.32, 69.80, 54.74, 42.89. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₁O₆ [M+H]⁺ 309.13381 Found 309.13324.

Analytical data is identical to that reported in the literature.⁷

2e was synthesized following general procedure A with Octulose **1a** (1500 mg, 7.891 mmol, 1 equiv.), vanillin (1320.2 mg, 8.68 mmol, 1.1 equiv.), L-Proline (908.5 mg, 7.891 mmol, 1 equiv.) and HTC (150 mg, 10 wt%) in methanol (17.5 mL). Pure product precipitated out of the reaction mixture and was filtered to obtain **2e** as an off-white solid in 63 % isolated yield.

R_f = 0.24 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.57 (d, *J* = 16.1 Hz, 1H), 7.21 (d, *J* = 1.9 Hz, 1H), 7.11 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.71 (d, *J* = 16.1 Hz, 1H), 3.88 (s, 3H), 3.79 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.65 (td, *J* = 9.4, 2.6 Hz, 1H), 3.44 (ddd, *J* = 10.5, 8.9, 5.3 Hz, 1H), 3.29 (p, *J* = 1.6 Hz, 1H), 3.17 – 3.00 (m, 3H), 2.82 (dd, *J* = 15.7, 9.3 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 199.58, 147.98, 144.38, 126.30, 123.26, 123.13, 115.11, 110.42, 78.36, 77.20, 73.76, 70.08, 69.58, 54.97, 42.58. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₁O₇ [M+H]⁺ 325.12873 Found 325.12751.

Analytical data is identical to that reported in the literature.⁷

2f was synthesized following general procedure A with Octulose **1a** (624.9 mg, 3.285 mmol), 4trifluoromethylbenzaldehyde (0.67 mL, 854.3 mg, 4.906 mmol), L-Proline (506.6 mg, 4.400 mmol), biphenyl (19.8 mg, 0.128 mmol, internal standard) and MgO (50 mg) in methanol (9.8 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (Ethyl acetate, then acetone) to obtain **2f** as a brown solid in 71 % isolated yield.

R_f = 0.37 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_4) δ 7.81 (d, J = 8.1 Hz, 2H), 7.72 – 7.61 (m, 3H), 6.97 (d, J = 16.3 Hz, 1H), 3.79 (dd, J = 11.1, 5.4 Hz, 1H), 3.67 (td, J = 9.4, 2.7 Hz, 1H), 3.44 (ddd, J = 10.5, 8.9, 5.4 Hz, 1H), 3.20 – 3.05 (m, 4H), 2.87 (dd, J = 15.9, 9.2 Hz, 1H). ¹³**C NMR** (151 MHz, cd₃od) δ 199.01, 141.04, 138.41, 138.40, 128.51, 131.61, 131.39, 131.18, 130.96, 128.48, 125.48, 125.44, 125.41, 125.39, 78.35, 76.98, 73.70, 70.07, 69.60, 43.01. **HR-MS (ESI⁺, m/z):** Calcd for C₁₆H₁₈F₃O₅ [M+H]⁺ 347.11063 Found 347.10976.

2g was synthesized following general procedure A with Octulose **1a** (500 mg, 2.63 mmol), 2-fluorobenzaldehyde (0.45 mL, 530.1 mg, 4.271 mmol), L-Proline (455 mg, 3.952 mmol), biphenyl (19.9 mg, 0.128 mmol, internal standard) and MgO (75 mg) in methanol (8.8 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (Ethyl acetate, then acetone) to obtain **2g** as a yellow solid in 93 % isolated yield.

R_f = 0.37 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_4) δ 7.76 – 7.68 (m, 2H), 7.43 (dddd, *J* = 8.5, 7.2, 5.3, 1.7 Hz, 1H), 7.25 – 7.11 (m, 2H), 6.94 (d, *J* = 16.3 Hz, 1H), 3.79 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.66 (td, *J* = 9.4, 2.6 Hz, 1H), 3.44 (ddd, *J* = 10.5, 8.9, 5.4 Hz, 1H), 3.29 (dt, *J* = 3.1, 1.5)

Hz, 1H), 3.17 - 3.04 (m, 3H), 2.83 (dd, J = 15.9, 9.2 Hz, 1H).¹³**C NMR** (151 MHz, cd₃od) δ 199.14, 162.30, 160.63, 135.03, 135.01, 132.07, 132.01, 128.76, 128.74, 128.21, 128.17, 124.49, 124.47, 122.31, 122.24, 115.72, 115.58, 78.33, 76.99, 73.67, 70.06, 69.59, 43.09. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₁₈FO₅ [M+H]⁺ 297.11383 Found 297.11360.

2h was synthesized following general procedure A with Nonulose **1b** (106.3 mg, 0.483 mmol), benzaldehyde (0.23 mL, 235 mg, 2.21 mmol), L-Proline (232 mg, 2.01 mmol), biphenyl (16.4 mg, 0.106 mmol, internal standard) and MgO (50 mg) in methanol (4.5 mL). Crude product was isolated from internal standard, L-proline and excess aldehyde by short path silica plug (Ethyl acetate, then acetone) to obtain **2h** as a beige powder in 66 % isolated yield.

R_f = 0.18 (silica gel, 9:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.67 − 7.61 (m, 3H), 7.42 − 7.37 (m, 3H), 6.90 (d, *J* = 16.2 Hz, 1H), 3.80 − 3.71 (m, 2H), 3.64 − 3.58 (m, 1H), 3.38 − 3.31 (m, 2H), 3.21 (ddd, *J* = 9.3, 5.1, 2.3 Hz, 1H), 3.18 − 3.06 (m, 2H), 2.89 (dd, *J* = 15.9, 8.9 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 199.56, 143.40, 134.56, 130.24, 128.59, 128.10, 126.03, 80.19, 78.29, 76.03, 73.70, 70.24, 61.3, 42.92.

Analytical data is identical to that reported in the literature.⁴

ii. Aliphatic C-glycosidic Enones 2i-j

2i was synthesized following general procedure B with Octulose **1a** (1000 mg, 5.26 mmol, 1 equiv.), pyrrolidine (0.44 mL, 374.1 mg, 5.26 mmol, 1 equiv.) and hexanal (0.64 mL, 526.8 mg, 5.26 mmol, 1 equiv.) in hexanes (2.68 mL) and DMF (2.2 mL) at room temperature overnight. The crude mixture was purified by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **2i** as an orange oil in 36 % yield.

R_f = 0.43 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_4) δ 6.91 (dt, J = 15.8, 7.0 Hz, 1H), 6.13 (dt, J = 15.9, 1.5 Hz, 1H), 3.76 (dd, J = 11.1, 5.4 Hz, 1H), 3.58 (td, J = 9.4, 2.5 Hz, 1H), 3.42 (ddd, J = 10.6, 8.9, 5.4 Hz, 1H), 3.31 – 3.21 (m, 1H), 3.14 – 3.02 (m, 2H), 2.99 – 2.89 (m, 1H), 2.71 (dd, J = 15.9, 9.3 Hz, 1H), 2.28 – 2.19 (m, 2H), 1.54 – 1.43 (m, 2H), 1.42 – 1.23 (m, 4H), 0.97 – 0.85 (m, 3H). ¹³**C NMR** (101 MHz, cd₃od) δ 201.24, 150.63, 131.87, 79.99, 78.59, 75.30, 71.71, 71.21, 43.61, 33.74, 32.74, 29.12, 23.71, 14.54. **HR-MS (ESI⁺, m/z):** Calcd for C₁₄H₂₅O₅ [M+H]⁺ 273.17020 Found 273.16922.

2j was synthesized following general procedure B with Octulose **1a** (250 mg, 1.315 mmol, 1 equiv.), pyrrolidine (0.11 mL, 93.5 mg, 1.315 mmol, 1 equiv.) and isobutyraldehyde (0.12 mL, 94.8 mg, 1.315 mmol, 1 equiv.) in heptane (0.66 mL) and DMF (0.55 mL) at room temperature overnight. The crude mixture was purified by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **2j** (mixture of trans isomer **2j** and deconjugated isomer **2j'**) as an orange oil in 70% yield. **HR-MS (ESI⁺, m/z)**: Calcd for $C_{12}H_{21}O_5$ [M+H]⁺ 245.13890 Found 245.13824.

2j: $\mathbf{R}_{f} = 0.5$ (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol- d_{4}) δ 6.87 (dd, J = 16.0, 6.8 Hz, 1H), 6.09 (dd, J = 16.0, 1.4 Hz, 1H), 3.77 (dt, J = 11.1, 5.5 Hz, 1H), 3.57 (dtd, J = 14.5, 9.4, 2.7 Hz, 1H), 3.41 (dddd, J = 10.7, 8.9, 5.4, 1.9 Hz, 1H), 3.24 (dt, J = 8.9, 4.5 Hz, 1H), 3.08 (m, 2H), 2.94 (dd, J = 16.0, 2.5 Hz, 1H), 2.72 (dd, J = 16.0, 9.3 Hz, 1H), 2.59 – 2.42 (m, 1H), 1.07 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, cd₃od) δ 201.26, 156.10, 128.85, 79.77, 78.29, 75.07, 71.48, 70.99, 43.49, 32.44, 21.62.

2j': $\mathbf{R}_{f} = 0.5$ (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol- d_{4}) δ 5.26 (dddd, J = 8.6, 7.2, 2.9, 1.5 Hz, 1H), 3.77 (dt, J = 11.1, 5.5 Hz, 1H), 3.57 (dtd, J = 14.5, 9.4, 2.7 Hz, 1H), 3.41 (dddd, J = 10.7, 8.9, 5.4, 1.9 Hz, 1H), 3.17 (d, J = 7.3 Hz, 2H), 3.08 (m, 2H) 2.83 (dd, J = 15.9, 2.9 Hz, 1H), 2.59 – 2.42 (m, 1H), 1.67 (dd, J = 46.4, 1.4 Hz, 6H). ¹³C NMR (101 MHz, cd₃od) δ 210.04, 136.69, 117.02, 79.71, 78.18, 75.05, 71.46, 70.97, 45.83, 44.04, 25.83, 18.08.

iii. C-Glycosidic Alcohols 3a-j and 3a'-j'

3a and **3a'** were synthesized following general procedure C with **2a** (139.2 mg, 0.5 mmol, 1 equiv.), Cu-PMO (16.5 mg, 11 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at reflux for 5 hours. The mixture containing only **3a** and **3a'** was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show 89% isolated yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3a** and **3a'** as clear oils in 10% yield for each.

Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₂₃O₅ [M+H]⁺ 283.15455 Found 283.15364.

3a \mathbf{R}_{f} = 0.6 (silica gel, 8:1 DCM:MeOH, developed with CAM); ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.26 – 7.15 (m, 5H), 3.82 (dd, *J* = 11.1, 5.6 Hz, 3H), 3.51 – 3.37 (m, 1H), 3.37 – 2.95 (m, 2H), 2.76 (ddd, *J* = 15.1, 10.0, 5.3 Hz, 2H), 2.62 (ddd, *J* = 13.6, 9.8, 6.5 Hz, 2H), 2.01 (ddd, *J* = 14.4, 5.9, 2.8 Hz, 1H), 1.78 (dddd, *J* = 14.1, 10.4, 6.4, 4.1 Hz, 1H), 1.59 (ddd, *J* = 15.0, 9.0, 6.6 Hz, 1H); ¹³C NMR (101 MHz, Methanol-*d*₄) δ 142.25, 128.00, 127.89, 125.26, 78.95, 78.30, 74.37, 70.02, 69.49, 68.71, 39.19, 38.42, 31.36. HR-MS (ESI⁺, m/z): Calcd for C₁₅H₂₂O₅ [M+H]⁺ 283.15455 Found 283.15347.

3a' R_f = 0.49 (silica gel, 8:1 DCM:MeOH, developed with CAM); ¹H NMR (400 MHz, Methanol-*d*₄) 7.22 (t, *J* = 7.5 Hz, 2H), 7.17 (d, *J* = 6.7 Hz, 2H), 7.14 – 7.07 (m, 1H), 3.87 – 3.70 (m, 2H), 3.43 (ddd, *J* = 11.0, 9.0, 5.4 Hz, 1H), 3.38 − 3.20 (m, 2H), 3.12 (t, *J* = 10.9 Hz, 1H), 3.00 (t, *J* = 9.1 Hz, 1H), 2.80 − 2.54 (m, 2H), 1.92 (ddd, *J* = 14.8, 9.9, 2.3 Hz, 1H), 1.76 − 1.66 (m, 2H), 1.45 (ddd, *J* = 14.7, 9.6, 2.5 Hz, 1H); ¹³**C NMR** (101 MHz, Methanol-*d*₄) 142.25, 127.99, 127.87, 125.24, 78.49, 77.21, 74.33, 70.21, 69.48, 66.67, 39.73, 39.67, 31.65. **HR-MS (ESI**⁺, **m/z**): Calcd for C₁₅H₂₂O₅ [M+H]⁺ 283.15455 Found 283.15411.

3b and **3b'** were synthesized following general procedure C with **2b** (146.2 mg, 0.5 mmol, 1 equiv.), Cu-PMO (16.5 mg, 11 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at reflux for 5 hours. The crude mixture containing only **3b** and **3b'** was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show quantitative yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3b** and **3b'** as clear oils in 17.6 % and 4.5 %, respectively.

Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₅O₅ [M+H]⁺ 297.17020 Found 297.16939.

3b $\mathbf{R}_{f} = 0.32$ (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.05 (dqd, *J* = 19.4, 8.0, 7.2, 3.8 Hz, 4H), 3.84 (td, *J* = 11.3, 5.9 Hz, 2H), 3.43 (ddd, *J* = 10.5, 8.8, 5.3 Hz, 1H), 3.27 – 3.16 (m, 2H), 3.15 – 2.99 (m, 2H), 2.76 (ddd, *J* = 14.0, 10.6, 5.2 Hz, 1H), 2.61 (ddd, *J* = 13.8, 10.5, 6.0 Hz, 1H), 2.37 – 2.30 (m, 1H), 2.28 (s, 3H), 2.02 (ddd, *J* = 14.4, 6.0, 2.8 Hz, 1H), 1.72 (tdd, *J* = 14.9, 7.2, 4.1 Hz, 1H), 1.61 (ddt, *J* = 17.9, 9.4, 6.5 Hz, 2H). ¹³C NMR (101 MHz, cd₃od) δ 140.28, 135.40, 129.62, 128.39, 125.51, 125.41, 78.94, 78.29, 74.37, 70.02, 69.51, 69.01, 39.14, 37.09, 28.72, 17.95. HR-MS (ESI⁺, m/z): Calcd for C₁₆H₂₃O₅Na [M+Na]⁺ 319.15214 Found 319.13670. **3b'** \mathbf{R}_{f} = 0.23 (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.12 – 6.99 (m, 4H), 3.82 (dddd, *J* = 14.6, 9.1, 6.6, 3.6 Hz, 2H), 3.44 (dddd, *J* = 12.7, 7.7, 5.4, 2.3 Hz, 1H), 3.38 – 3.06 (m, 4H), 3.05 – 2.97 (m, 1H), 2.75 (dt, *J* = 13.7, 8.2 Hz, 1H), 2.61 (dt, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 2.61 (dt, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 2.61 (dt, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 2.61 (dt, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 3.84 (ddd, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 2.61 (dt, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 2.61 (dt, *J* = 13.6, 8.0 Hz, 1H), 2.31 (d, *J* = 13.7, 8.2 Hz, 1H), 3.84 Hz, 1H), 3.84 Hz, 1H), 3.84 Hz, 1H), 3.85 Hz, 1H)

2.7 Hz, 1H), 2.28 (s, 3H), 2.00 – 1.87 (m, 1H), 1.70 – 1.58 (m, 2H), 1.47 (ddd, J = 14.4, 9.7, 2.6 Hz,

1H).¹³**C NMR** (101 MHz, cd₃od) δ 140.26, 135.38, 129.64, 128.43, 125.53, 125.43, 78.44, 77.17, 74.32, 70.20, 69.48, 66.98, 39.63, 38.47, 29.01, 17.97. **HR-MS** (ESI⁺, m/z): Calcd for C₁₆H₂₄O₅ [M+H]⁺ 297.17020 Found 297.17004.

3c and **3c'** were synthesized following general procedure C with **2c** (154.2 mg, 0.5 mmol, 1 equiv.), Cu-PMO (16.5 mg, 11 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at reflux for 5 hours. The mixture containing only **3c** and **3c'** was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show quantitative yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3c** and **3c'** as clear oils in 22 % and 35 % yield, respectively.

Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₅O₆ [M+H]⁺ 313.16511 Found 313.16422.

3c R_f = 0.41 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.15 – 7.06 (m, 2H), 6.89 – 6.84 (m, 1H), 6.81 (td, *J* = 7.4, 1.1 Hz, 1H), 3.85 – 3.74 (m, 5H), 3.43 (ddd, *J* = 10.6, 8.9, 5.4 Hz, 1H), 3.27 – 3.14 (m, 2H), 3.06 (dt, *J* = 17.3, 10.0 Hz, 2H), 2.75 (ddd, *J* = 13.5, 10.1, 5.4 Hz, 1H), 2.60 (ddd, *J* = 13.4, 9.9, 6.2 Hz, 1H), 2.01 (ddd, *J* = 14.3, 5.8, 2.9 Hz, 1H), 1.75 (dddd, *J* = 14.2, 10.4, 6.2, 4.4 Hz, 1H), 1.68 – 1.51 (m, 2H). ¹³**C NMR** (101 MHz, cd₃od) δ 157.43, 130.27, 129.40, 126.68, 120.00, 109.94, 79.05, 78.30, 74.38, 70.02, 69.51, 69.14, 54.28, 39.08, 36.61, 25.98. **HR-MS (ESI⁺**, **m/z):** Calcd for C₁₆H₂₄O₆ [M+H]⁺ 313.16511 Found 313.14989.

3c' R_f = 0.38 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.16 – 7.05 (m, 2H), 6.88 – 6.84 (m, 1H), 6.81 (td, *J* = 7.4, 1.1 Hz, 1H), 3.86 – 3.73 (m, 5H), 3.44 (ddd, *J* = 10.6, 8.9, 5.4 Hz, 1H), 3.37 – 3.20 (m, 2H), 3.13 (t, *J* = 10.8 Hz, 1H), 3.06 – 2.96 (m, 1H), 2.78 – 2.66 (m, 1H), 2.60 (dt, *J* = 13.5, 7.7 Hz, 1H), 1.91 (ddd, *J* = 14.5, 10.0, 2.4 Hz, 1H), 1.73 – 1.60 (m, 2H), 1.47 (ddd, *J* = 14.5, 9.7, 2.5 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 157.40, 130.25, 129.40, 126.68, 120.00, 109.94, 78.48, 77.21, 74.36, 70.21, 69.47, 67.04, 54.28, 39.59, 37.99, 26.24. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₄O₆ [M+H]⁺ 313.16511 Found 313.16446.

3d and **3d'** were synthesized following general procedure C with **2d** (308.33 mg, 1.0 mmol, 1 equiv.), Cu-PMO (33 mg, 11 mol%) and NaBH₄ (75.6 mg, 2.0 mmol, 2 equiv.) in H₂O (20 mL) at reflux for 5 hours. The crude mixture containing only **3d** and **3d'** was fully dissolved in MeOD and an internal standard (CHCl₃, 80 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show quantitative yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3d** and **3d'** as clear oils in 14% and 30% yield, respectively. Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₅O₆ [M+H]⁺ 313.16511 Found 313.16428.

3d $\mathbf{R}_{f} = 0.55$ (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol- d_{4}) δ 7.11 – 7.06 (m, 2H), 6.82 – 6.76 (m, 2H), 3.80 (ddd, J = 13.7, 10.3, 4.3 Hz, 2H), 3.73 (s, 3H), 3.42 (ddd, J = 10.5, 9.0, 5.4 Hz, 1H), 3.25 – 3.15 (m, 2H), 3.10 (d, J = 10.9 Hz, 1H), 3.08 – 2.98 (m, 1H), 2.69 (ddd, J = 13.7, 10.0, 5.3 Hz, 1H), 2.56 (ddd, J = 13.7, 9.8, 6.5 Hz, 1H), 1.99 (ddd, J = 14.4, 5.9, 2.8 Hz, 1H), 1.81 – 1.53 (m, 3H). ¹³C NMR (101 MHz, cd₃od) δ 157.80, 134.18, 128.86, 113.29, 78.94, 78.26, 74.37, 70.01, 69.49, 68.63, 54.18, 39.20, 38.58, 30.42. HR-MS (ESI⁺, m/z): Calcd for C₁₆H₂₄O₆ [M+H]⁺ 313.16511 Found 313.16445.

3d' $\mathbf{R}_{f} = 0.45$ (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol- d_{4}) δ 7.12 – 7.02 (m, 2H), 6.86 – 6.73 (m, 2H), 3.88 – 3.73 (m, 2H), 3.43 (ddd, J = 10.5, 8.9, 5.4 Hz, 1H), 3.37 – 3.21 (m, 3H), 3.12 (t, J = 10.8 Hz, 1H), 3.00 (t, J = 9.1 Hz, 1H), 2.74 – 2.63 (m, 1H), 2.56 (dt, J = 13.8, 8.2 Hz, 1H), 1.99 – 1.82 (m, 1H), 1.67 (td, J = 8.1, 5.8 Hz, 2H), 1.44 (ddd, J = 14.5, 9.7, 2.6 Hz, 1H). ¹³C NMR (101 MHz, cd₃od) δ ¹³C NMR (101 MHz, cd₃od) δ 157.78, 134.18, 128.88, 113.30, 78.45, 77.15, 74.32, 70.20, 69.47, 66.53, 54.19, 39.94, 39.69, 30.73. HR-MS (ESI⁺, m/z): Calcd for C₁₆H₂₄O₆ [M+H]⁺ 313.16511 Found 313.16386.

3e and **3e'** were synthesized following general procedure C with **2e** (162.2 mg, 0.5 mmol, 1 equiv.), Cu-PMO (16.5 mg, 11 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at reflux for 5 hours. The crude mixture containing only **3e** and **3e'** was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show 93 % isolated yield. Attempts to separate diastereomers by column chromatography (silica gel, 15:4:1 EtOAc:MeOH:H₂O), precipitation/recrystallization and preparatory thin layer chromatography (silica gel, 9:1 DCM:MeOH) were unsuccessful. Characterization data reported below is assessed from analysis of a mixture of **3e** and **3e'**. Mixture **HR-MS (ESI⁺, m/z):** Calcd for C₁₆H₂₅O₇ [M+H]⁺ 329.16003 Found 329.15889.

3e R_f = 0.64 (silica gel, 15:4:1 EtOAc:MeOH:H₂O); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 6.73 (dd, *J* = 3.3, 1.9 Hz, 1H), 6.68 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.60 (dt, *J* = 8.0, 2.0 Hz, 1H), 3.90 – 3.73 (m, 5H), 3.52 – 3.39 (m, 1H), 3.31 – 2.98 (m, 4H), 2.66 (ddt, *J* = 15.2, 10.1, 5.8 Hz, 1H), 2.53 (ddd, *J* = 13.8, 9.0, 6.9 Hz, 1H), 2.01 (ddd, *J* = 14.4, 5.8, 2.7 Hz, 1H), 1.81 – 1.53 (m, 3H). ¹³**C NMR** (101 MHz, cd₃od) δ 147.35, 143.93, 133.84, 120.36, 114.67, 111.74, 78.97, 77.18, 74.32, 70.01, 69.48, 68.71, 66.61, 54.93, 39.19, 38.63, 30.94.

3e' R_f = 0.64 (silica gel, 15:4:1 EtOAc:MeOH:H₂O); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 6.73 (dd, *J* = 3.3, 1.9 Hz, 1H), 6.68 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.60 (dt, *J* = 8.0, 2.0 Hz, 1H), 3.90 – 3.73 (m, 5H), 3.52 – 3.39 (m, 1H), 3.31 – 2.98 (m, 4H), 2.66 (ddt, *J* = 15.2, 10.1, 5.8 Hz, 1H), 2.53 (ddd, *J* = 13.8, 9.0, 6.9 Hz, 1H), 1.96 – 1.86 (m, 1H), 1.81 – 1.53 (m, 2H), 1.47 (ddd, *J* = 14.7, 9.7, 2.5 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 147.34, 143.93, 133.84, 120.36, 114.67, 111.72, 78.45, 78.26, 74.36, 70.20, 69.48, 68.71, 54.95, 39.95, 39.65, 31.25.

3f and **3f'** were synthesized following general procedure C with **2f** (173.15 mg, 0.5 mmol, 1 equiv.), Cu-PMO (33 mg, 22 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at reflux for 5 hours. The crude mixture was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show 87 % isolated yield. Diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3f** and **3f'** as clear oils in 44% and 18% yield, respectively. Mixture **HR-MS (ESI⁺, m/z):** Calcd for C₁₆H₂₂F₃O₅ [M+H]⁺ 351.14193 Found 351.14087

3f \mathbf{R}_{f} = 0.31 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (600 MHz, Methanol-*d*₄) δ ¹H NMR (600 MHz, Methanol-*d*₄) δ 7.56 – 7.53 (m, 2H), 7.41 – 7.36 (m, 2H), 3.87 – 3.77 (m, 2H), 3.42 (ddd, *J* = 10.6, 8.9, 5.4 Hz, 1H), 3.26 – 3.16 (m, 3H), 3.14 – 3.07 (m, 1H), 3.02 (dt, *J* = 11.9, 9.4 Hz, 1H), 2.86 (ddd, *J* = 14.7, 10.1, 5.0 Hz, 1H), 2.73 (ddd, *J* = 13.7, 10.1, 6.7 Hz, 1H), 2.06 – 1.95 (m, 1H), 1.88 – 1.78 (m, 1H), 1.70 (dddd, *J* = 13.6, 10.0, 8.4, 5.1 Hz, 1H), 1.60 (ddd, *J* = 14.3, 9.1, 6.4 Hz, 1H). ¹³**C NMR** (151 MHz, cd₃od) δ 147.06, 128.67, 124.78, 124.75, 124.73, 124.70, 78.76, 78.26, 74.37, 70.00, 69.48, 68.36, 39.20, 37.89, 31.15. **HR-MS (ESI⁺, m/z):** Calcd for C₁₆H₂₂F₃O₅ [M+H]⁺ 351.14193 Found 351.14106.

3f' R_f = 0.38 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.86 – 3.72 (m, 2H), 3.43 (ddd, *J* = 10.6, 9.0, 5.3 Hz, 1H), 3.37 – 3.19 (m, 2H), 3.18 – 3.07 (m, 1H), 3.00 (t, *J* = 9.1 Hz, 1H), 2.91 – 2.80 (m, 1H), 2.72 (dt, *J* = 13.8, 8.1 Hz, 1H), 1.94 (ddd, *J* = 14.5, 10.0, 2.4 Hz, 1H), 1.80 – 1.68 (m, 2H), 1.45 (ddd, *J* = 14.4, 9.8, 2.7 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 147.03, 128.68, 124.80, 124.77, 124.73, 124.69, 78.42, 77.09, 74.29, 70.18, 69.46, 66.40, 39.65, 39.24, 31.46. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₆H₂₂F₃O₅ [M+H]⁺ 351.14193 Found 351.14075.

3g and **3g'** were synthesized following general procedure C with **2g** (173.15 mg, 0.5 mmol, 1 equiv.), Cu-PMO (33 mg, 22 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at reflux for 5 hours. The crude mixture containing **3g** and **3g'** was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show 92% yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3g'** as a clear oil in 1% yield. Unfortunately, diastereomer **3g** could not be isolated separately from **3g'**. Further optimization of separation of the diastereomers is required. Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₂₂FO₅ [M+H]⁺ 301.14513 Found 301.14436.

3g' R_f = 0.52 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (600 MHz, Methanol-*d*₄) δ 7.23 (td, *J* = 7.6, 1.8 Hz, 1H), 7.16 (tdt, *J* = 10.3, 7.0, 3.4 Hz, 1H), 7.05 (td, *J* = 7.5, 1.3 Hz, 1H), 6.99 (ddd, *J* = 9.8, 8.3, 1.2 Hz, 1H), 3.86 – 3.73 (m, 2H), 3.43 (ddd, *J* = 10.6, 9.0, 5.3 Hz, 1H), 3.35 – 3.30 (m, 1H), 3.25 (t, *J* = 8.9 Hz, 1H), 3.17 – 3.07 (m, 1H), 3.04 – 2.96 (m, 1H), 2.84 – 2.73 (m, 1H), 2.72 – 2.63 (m, 1H), 1.98 – 1.88 (m, 1H), 1.75 – 1.66 (m, 2H), 1.45 (ddd, *J* = 14.4, 9.8, 2.6 Hz, 1H). ¹³**C NMR** (151 MHz, cd₃od) δ 130.45, 130.41, 128.89, 128.79, 127.28, 127.22, 123.74, 123.71, 114.64, 114.49, 78.44, 77.10, 74.32, 70.20, 69.47, 66.65, 39.63, 38.18, 24.93, 24.91. **HR-MS** (ESI⁺, m/z): Calcd for C₁₅H₂₂FO₅ [M+H]⁺ 301.14513 Found 301.14439.

3h and **3h'** were synthesized following general procedure C with **2h** (154.2 mg, 0.5 mmol, 1 equiv.), Cu-PMO (16.5 mg, 11 wt%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL) at

reflux for 5 hours. The crude mixture was fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was weighed to show 92% yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3h** and **3h'** as clear oils in 11.7% and 36% yield, respectively. Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₂₅O₆ [M+H]⁺ 313.16511 Found 313.16428

3h $\mathbf{R}_{f} = 0.22$ (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol- d_{4}) δ 7.25 – 7.14 (m, 4H), 7.12 (d, J = 7.1 Hz, 1H), 3.90 – 3.71 (m, 2H), 3.57 (dd, J = 11.8, 5.4 Hz, 1H), 3.31 – 3.15 (m, 4H), 3.06 (t, J = 9.0 Hz, 1H), 2.76 (ddd, J = 13.6, 10.1, 5.4 Hz, 1H), 2.63 (ddd, J = 13.6, 9.8, 6.5 Hz, 1H), 2.09 – 1.96 (m, 1H), 1.85 – 1.64 (m, 2H), 1.60 (ddd, J = 14.5, 9.2, 7.3 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 142.26, 128.01, 127.89, 125.25, 80.20, 78.51, 78.21, 74.33, 70.48, 69.17, 61.61, 38.93, 38.67, 31.34. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₂₅O₆ [M+H]⁺ 313.16511 Found 313.16406.

3h' R_f = 0.18 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.25 – 7.15 (m, 4H), 7.15 – 7.07 (m, 1H), 3.93 – 3.74 (m, 2H), 3.61 (dd, *J* = 11.7, 5.2 Hz, 1H), 3.40 (td, *J* = 9.5, 2.5 Hz, 1H), 3.36 – 3.18 (m, 3H), 3.04 (t, *J* = 9.1 Hz, 1H), 2.77 (dt, *J* = 13.5, 7.9 Hz, 1H), 2.62 (dt, *J* = 13.6, 8.1 Hz, 1H), 1.93 (ddd, *J* = 14.4, 9.9, 2.5 Hz, 1H), 1.72 (td, *J* = 8.3, 6.4 Hz, 2H), 1.53 (ddd, *J* = 14.4, 9.6, 2.6 Hz, 1H). ¹³**C NMR** (101 MHz, cd₃od) δ 142.35, 128.00, 127.89, 125.25, 80.05, 78.39, 76.26, 74.30, 70.58, 66.65, 61.68, 39.73, 39.53, 31.78. **HR-MS (ESI⁺, m/z)**: Calcd for C₁₅H₂₅O₆ [M+H]⁺ 313.16511 Found 313.16411.

3i and **3i'** were synthesized following general procedure C with **2i** (136.1 mg, 0.5 mmol), Cu-PMO (16.5 mg, 11 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL, 0.05 M) at reflux for 5 hours. Because the starting material is very hygroscopic, we verified the true added amount of starting material **2i** present in a stock solution by NMR using CHCl₃ (0.04 mL, 0.5 mmol) as internal standard. After reaction, the crude mixture fully dissolved in MeOD and an internal standard (CHCl₃, 40 μ L, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. After evaporation *in vacuo*, the product was

weighed to show quantitative yield. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3i'** as a clear oil in 8.2% yield. Unfortunately, diastereomer **3i** could not be isolated separately from **3i'**. Further optimization of separation of the diastereomers is required. Mixture **HR-MS (ESI⁺, m/z)**: Calcd for $C_{14}H_{28}O_5Na$ [M+Na]⁺ 299.18344 Found 299.14731.

3i' R_f = 0.42 (silica gel, 8:1 DCM:MeOH); ¹**H NMR** (400 MHz, Methanol-*d*₄) 3.84 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.78 (dd, *J* = 7.1, 4.2 Hz, 1H), 3.43 (ddd, *J* = 10.3, 9.0, 5.4 Hz, 1H), 3.27 – 3.15 (m, 2H), 3.11 (t, *J* = 10.8 Hz, 1H), 3.03 (t, *J* = 9.1 Hz, 1H), 1.96 (ddd, *J* = 14.4, 5.8, 2.8 Hz, 1H), 1.54 (ddd, *J* = 15.1, 9.0, 6.7 Hz, 1H), 1.50 – 1.23 (m, 12H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³**C NMR** (151 MHz, cd₃od) δ 79.08, 78.28, 74.41, 70.01, 69.52, 69.34, 39.25, 36.35, 31.60, 29.34, 29.00, 25.09, 22.30, 13.01. **HR-MS** (**ESI⁺**, **m/z**): Calcd for C₁₄H₂₈O₅Na [M+Na]⁺ 299.18344 Found 299.16790.

3j and **3j'** were synthesized following general procedure C with **2j** (122.2 mg, 0.5 mmol, 1 equiv.), Cu-PMO (16.5 mg, 11 mol%) and NaBH₄ (37.8 mg, 1.0 mmol, 2 equiv.) in H₂O (10 mL, 0.05 M) at reflux for 5 hours. Because the starting material is very hygroscopic, we verified the true added amount of starting material **2j** present in a stock solution by NMR using CHCl₃ (0.04 mL, 0.5 mmol) as internal standard. After reaction, the crude mixture fully dissolved in MeOD and an internal standard (CHCl₃, 40 µL, 1 equiv.) was added to obtain the NMR yield. Boron NMR was measured to verify the absence of boron salts in the crude mixture. The diastereomers were separated by column chromatography (silica gel, DCM:MeOH, 450:50) to afford **3j'** as a clear oil in 10.2% yield. Unfortunately, diastereomer **3j** could not be isolated separately from **3j'**. Further optimization of separation of the diastereomers is required. Mixture **HR-MS (ESI⁺, m/z)**: Calcd for C₁₂H₂₅O₅ [M+H]⁺ 249.17020 Found 249.16894.

3j' R_f = 0.25 (silica gel, 8:1 DCM:MeOH); ¹H NMR (400 MHz, Methanol-*d*₄) δ 3.82 (dd, *J* = 11.0, 5.4 Hz, 2H), 3.75 – 3.65 (m, 1H), 3.43 (ddd, *J* = 10.5, 8.9, 5.4 Hz, 2H), 3.35 – 3.20 (m, 13H), 3.18 – 3.07 (m, 1H), 3.00 (q, *J* = 9.2, 8.8 Hz, 1H), 1.91 – 1.78 (m, 1H), 1.57 – 1.46 (m, 1H), 1.46 – 1.37 (m, 2H), 1.36 – 1.22 (m, 2H), 1.23 – 1.10 (m, 2H), 1.01 – 0.93 (m, 2H), 0.88 (dd, *J* = 6.6, 2.5 Hz, 7H).¹³C NMR

(151 MHz, cd₃od) δ 78.46, 77.19, 74.38, 70.21, 69.48, 67.46, 39.63, 35.55, 34.66, 27.84, 21.68,
21.53. HR-MS (ESI⁺, m/z): Calcd for C₁₂H₂₄O₅ [M+Na]⁺ 271.15214 Found 271.12140.

2. Procedures and tables for calculated geometries

The proton and carbon NMR shifts were calculated computationally in methanol and compared with experimental data of the separated isomers in methanol using Smith and Goodman's CP3 parameter and related probability factor.⁸ The full procedure for the calculations of the NMR chemical shifts can be found in the ESI. Several conformers of each diastereomer were generated using the Tinker 8.2 program,⁹ and the most stable geometries of all conformers were calculated using Gaussian 16. Ground state geometries were optimized in methanol by using the self-consistent reaction field (SCRF) method combined with the polarized continuum (PCM) solvation model¹⁰ with ω B97XD¹¹ and the def2TZVP^{12,13} basis set. NMR shielding constants for proton and carbon nuclei were calculated using GIAO method as implemented in Gaussian 16.

To obtain the conformers for the two diastereomers of the compound, **3a** and **3a'**, for the NMR shift calculations, we have performed conformational search using Tinker 8.2 program. Initial structures for the conformational search, DA1 and DB1, were obtained from the gas phase optimization of the two diastereomers (Figure S3). MMFF force field in gas phase with rms gradient cutoff of 1 kcal/mol was used to obtain ten structures for each diastereomer with sufficiently different conformations. For each of the conformers ground state geometries were optimized using ω B97XD/def2TZVP method in methanol, and then energies and GIAO shielding constants were calculated.

Figure S3. Initial structures of the two diastereomers used for the conformational search with the numbering of the atoms; white – hydrogen, red – oxygen, gray – carbon.

a. <u>Coordinates for the optimized geometries</u>

The following geometries were optimized by Gaussian 16 using ω B97XD/def2TZVP method in methanol:

	DA1						
#	Atom	Х	Y	Z			
1	С	4.28515	0.178973	0.357223			
2	С	5.075972	-0.96701	0.375162			
3	С	6.325913	-0.98155	-0.22697			
4	С	6.807443	0.155907	-0.85984			
5	С	6.029495	1.304995	-0.88435			
6	С	4.78007	1.313288	-0.28102			
7	Н	4.707272	-1.85889	0.869883			
8	Н	6.926703	-1.88232	-0.19903			
9	н	7.783727	0.147884	-1.32792			
10	Н	6.397657	2.199041	-1.37248			
11	н	4.178574	2.21542	-0.30294			
12	С	2.910011	0.17536	0.968693			
13	Н	2.885884	-0.50415	1.82223			

14	Н	2.67107	1.173379	1.345701
15	С	1.837998	-0.24542	-0.03736
16	Н	1.851129	0.441547	-0.88811
17	Н	2.076814	-1.2394	-0.43409
18	С	0.432428	-0.26907	0.550497
19	Н	0.200556	0.712943	0.96417
20	С	-0.59898	-0.6253	-0.51761
21	Н	-0.46238	0.023065	-1.38708
22	Н	-0.4052	-1.64953	-0.85173
23	С	-2.04641	-0.56527	-0.0541
24	Н	-2.10677	-0.89674	0.991608
25	С	-2.67094	0.826803	-0.16433
26	Н	-2.59508	1.150928	-1.21185
27	С	-4.14111	0.780132	0.215644
28	Н	-4.21453	0.504466	1.277258
29	С	-4.86978	-0.26956	-0.59887
30	Н	-4.87545	0.043211	-1.64897
31	С	-4.13	-1.59735	-0.47035
32	Н	-4.19369	-1.94645	0.569585
33	Н	-4.58147	-2.35152	-1.11526
34	0	-2.78523	-1.46313	-0.87085
35	0	-1.97225	1.723495	0.673467
36	Н	-2.48268	2.537791	0.70415
37	0	-4.66667	2.078435	0.018185
38	Н	-5.58933	2.068215	0.284651
39	0	-6.19071	-0.35308	-0.09734
40	Н	-6.75142	-0.7695	-0.75452
41	0	0.345962	-1.15666	1.660781
42	Н	0.566246	-2.04145	1.356249

#	Atom	Х	Y	Z
1	С	4.368153	-0.312942	0.298696
2	С	5.019186	-0.790124	-0.83608
3	С	6.268212	-0.307235	-1.198915
4	С	6.889416	0.666055	-0.428707
5	С	6.251614	1.150075	0.704874
6	С	5.002172	0.663665	1.062297
7	Н	4.540729	-1.552386	-1.441159
8	Н	6.759035	-0.694158	-2.08352
9	Н	7.865441	1.042334	-0.708229
10	Н	6.729463	1.906978	1.314719
11	Н	4.510837	1.04535	1.950598

12	С	2.993453	-0.806392	0.661417
13	Н	2.882455	-1.848479	0.358387
14	Н	2.863475	-0.770195	1.74656
15	С	1.894011	0.027255	0.00072
16	Н	2.00016	1.071234	0.307813
17	Н	2.014222	-0.002908	-1.08703
18	С	0.492851	-0.442305	0.352308
19	Н	0.376083	-0.394306	1.446079
20	С	-0.571848	0.448698	-0.280574
21	Н	-0.346982	1.491156	-0.050095
22	Н	-0.537539	0.33598	-1.368978
23	С	-1.978684	0.165821	0.209948
24	Н	-2.006552	0.252425	1.306298
25	С	-3.012114	1.128349	-0.372218
26	Н	-2.969515	1.060722	-1.468104
27	С	-4.40917	0.738439	0.080366
28	Н	-4.466407	0.871187	1.170159
29	С	-4.690795	-0.71856	-0.233402
30	Н	-4.716624	-0.844926	-1.321303
31	С	-3.575672	-1.580572	0.349
32	Н	-3.593746	-1.511958	1.444289
33	Н	-3.704857	-2.623936	0.063588
34	0	-2.322031	-1.167065	-0.155237
35	0	-2.694547	2.436124	0.052198
36	Н	-3.434236	3.001993	-0.186213
37	0	-5.317583	1.611661	-0.55987
38	Н	-6.20261	1.390875	-0.258686
39	0	-5.945802	-1.036675	0.336077
40	Н	-6.295502	-1.822057	-0.088908
41	0	0.363592	-1.793427	-0.071302
42	Н	-0.581096	-1.99122	-0.07958

#	Atom	Х	Y	Z
1	С	-4.07347	0.302679	-0.22945
2	С	-4.43612	-0.39215	-1.37993
3	С	-5.74147	-0.82184	-1.57179
4	С	-6.70841	-0.56205	-0.61093
5	С	-6.35934	0.130067	0.540475
6	С	-5.05264	0.557001	0.727214
7	Н	-3.686	-0.59694	-2.13586
8	Н	-6.00446	-1.35825	-2.47517

9	Н	-7.72816	-0.89413	-0.75958
10	Н	-7.10755	0.340653	1.294716
11	Н	-4.78723	1.098282	1.628689
12	С	-2.64613	0.724505	-0.00344
13	Н	-2.17189	0.919527	-0.96739
14	Н	-2.63559	1.662984	0.557504
15	С	-1.8574	-0.34397	0.759616
16	Н	-2.37079	-0.56274	1.699565
17	Н	-1.85413	-1.27012	0.177417
18	С	-0.41153	0.024575	1.086858
19	Н	0.035293	-0.82204	1.607258
20	С	0.417484	0.327461	-0.15942
21	Н	0.225215	-0.43291	-0.92125
22	Н	0.092143	1.283949	-0.57822
23	С	1.912908	0.437668	0.098639
24	Н	2.077137	0.862979	1.098662
25	С	2.650019	-0.89943	0.00642
26	Н	2.472084	-1.31559	-0.9952
27	С	4.145098	-0.69355	0.178892
28	Н	4.327567	-0.32139	1.197037
29	С	4.656307	0.340798	-0.80367
30	Н	4.556682	-0.0607	-1.81825
31	С	3.813771	1.605863	-0.67469
32	Н	3.977094	2.047951	0.317861
33	Н	4.102581	2.337377	-1.42948
34	0	2.447543	1.321903	-0.87599
35	0	2.152779	-1.77873	0.992969
36	Н	2.736048	-2.54294	1.011176
37	0	4.764753	-1.9534	0.008254
38	Н	5.708871	-1.83993	0.143253
39	0	6.01644	0.581737	-0.49513
40	Н	6.444373	0.985694	-1.25235
41	0	-0.33816	1.096625	2.022955
42	Н	-0.61061	1.907508	1.586305

#	Atom	Х	Y	Z
1	С	3.726994	0.189311	0.084951
2	С	3.840012	-0.809781	1.04865
3	С	4.682777	-1.894881	0.856603
4	С	5.429378	-1.999387	-0.308911
5	С	5.325953	-1.010821	-1.277346
6	С	4.481057	0.072102	-1.07959

7	Н	3.260729	-0.733589	1.962323
8	Н	4.759181	-2.659336	1.620086
9	Н	6.089859	-2.843983	-0.459765
10	Н	5.906848	-1.081304	-2.188786
11	Н	4.40676	0.841764	-1.839984
12	С	2.775802	1.339155	0.277828
13	Н	2.710095	1.592104	1.337603
14	Н	3.155473	2.222994	-0.241947
15	С	1.373682	1.017186	-0.2401
16	Н	1.422894	0.799532	-1.311612
17	Н	1.007892	0.111579	0.252084
18	С	0.380974	2.153923	-0.006329
19	Н	0.823443	3.073768	-0.400071
20	С	-0.938788	1.966033	-0.761552
21	Н	-1.624506	2.762396	-0.459782
22	Н	-0.731731	2.111046	-1.824627
23	С	-1.6697	0.630667	-0.663827
24	Н	-0.987812	-0.194205	-0.913602
25	С	-2.312074	0.325617	0.692432
26	Н	-2.9515	1.172421	0.972905
27	С	-3.16423	-0.929344	0.618107
28	Н	-2.499682	-1.781856	0.41835
29	С	-4.166771	-0.84142	-0.513228
30	Н	-4.886216	-0.046205	-0.28891
31	С	-3.41839	-0.501183	-1.796827
32	Н	-2.748689	-1.332115	-2.057313
33	Н	-4.116154	-0.349083	-2.620202
34	0	-2.694673	0.698556	-1.644944
35	0	-1.298919	0.139736	1.668187
36	Н	-1.721688	-0.203482	2.461692
37	0	-3.778208	-1.083821	1.88238
38	Н	-4.275426	-1.905452	1.873698
39	0	-4.816604	-2.095019	-0.596894
40	Н	-5.633537	-1.994379	-1.089057
41	0	0.191676	2.409887	1.375419
42	Н	-0.272455	1.639624	1.738557

#	Atom	Х	Y	Z
1	С	-3.737352	-0.050669	0.305211
2	С	-4.613741	0.370725	-0.691266
3	С	-5.481804	-0.522408	-1.302917
4	С	-5.487144	-1.857909	-0.925514

5	С	-4.618878	-2.290846	0.067022
6	С	-3.752612	-1.393323	0.674357
7	Н	-4.616921	1.413378	-0.989497
8	Н	-6.157972	-0.173819	-2.073882
9	Н	-6.16573	-2.556056	-1.399202
10	Н	-4.617915	-3.330297	0.371422
11	Н	-3.077993	-1.738452	1.450242
12	С	-2.763582	0.910316	0.932133
13	Н	-3.192805	1.913028	0.953511
14	Н	-2.575154	0.619792	1.969261
15	С	-1.432981	0.945993	0.178654
16	Н	-1.019142	-0.06513	0.151206
17	Н	-1.605042	1.243501	-0.862627
18	С	-0.410626	1.884494	0.807081
19	Н	-0.234408	1.569514	1.837484
20	С	0.922126	1.909558	0.061192
21	Н	0.758343	2.281249	-0.953937
22	Н	1.581239	2.620971	0.566203
23	С	1.628196	0.571646	-0.035798
24	Н	1.015911	-0.137801	-0.610929
25	С	2.982818	0.683212	-0.736171
26	Н	3.599427	1.40682	-0.185162
27	С	3.691137	-0.6604	-0.723064
28	Н	3.104172	-1.364383	-1.330171
29	С	3.773023	-1.208715	0.688109
30	Н	4.42468	-0.55718	1.280858
31	С	2.376122	-1.219175	1.301413
32	Н	1.744362	-1.929835	0.751023
33	Н	2.417667	-1.530794	2.345024
34	0	1.811323	0.072542	1.277562
35	0	2.771452	1.126026	-2.059902
36	Н	3.605085	1.032127	-2.529387
37	0	4.966578	-0.471592	-1.303502
38	Н	5.413946	-1.321539	-1.316543
39	0	4.317454	-2.512142	0.601536
40	Н	4.657006	-2.769588	1.460651
41	0	-0.917473	3.210426	0.919003
42	Н	-1.101648	3.537406	0.034214

#	Atom	Х	Y	Z
1	С	4.077917	0.254556	0.337274
2	С	5.015965	-0.567662	0.955943

3	С	6.363849	-0.474209	0.641256
4	С	6.79653	0.446957	-0.302596
5	С	5.871469	1.272183	-0.926261
6	С	4.524544	1.174476	-0.60721
7	Н	4.685103	-1.288457	1.695574
8	Н	7.078464	-1.120244	1.136231
9	Н	7.8483	0.523229	-0.548031
10	Н	6.199456	1.996501	-1.661658
11	Н	3.80744	1.824063	-1.096888
12	С	2.610956	0.119133	0.647976
13	Н	2.482241	-0.161984	1.696633
14	Н	2.126681	1.088854	0.516086
15	С	1.938482	-0.93101	-0.238188
16	Н	2.034366	-0.64631	-1.290747
17	Н	2.46181	-1.883243	-0.118075
18	С	0.470712	-1.170149	0.0819
19	Н	0.375399	-1.333024	1.166328
20	С	-0.418863	0.007641	-0.304816
21	Н	-0.011989	0.926814	0.117562
22	Н	-0.416032	0.116141	-1.394308
23	С	-1.848239	-0.114627	0.186435
24	Н	-1.847704	-0.252182	1.277887
25	С	-2.690676	1.117167	-0.140093
26	Н	-2.672246	1.270504	-1.227973
27	С	-4.131265	0.900145	0.291184
28	Н	-4.15208	0.812648	1.386891
29	С	-4.681786	-0.385527	-0.295914
30	Н	-4.740245	-0.277906	-1.384532
31	С	-3.741047	-1.535546	0.048095
32	Н	-3.735653	-1.692003	1.13443
33	Н	-4.064296	-2.457259	-0.434291
34	0	-2.437244	-1.25943	-0.42187
35	0	-2.131228	2.230472	0.522507
36	Н	-2.754135	2.957615	0.436378
37	0	-4.867611	2.035688	-0.115921
38	Н	-5.776291	1.918212	0.17262
39	0	-5.969073	-0.582715	0.256083
40	Н	-6.465597	-1.181132	-0.305236
41	0	0.088024	-2.355404	-0.604474
42	Н	-0.877226	-2.370875	-0.615389

Y

#

Ζ

1	С	-4.038816	-0.059869	-0.369022
2	С	-4.538426	-1.340479	-0.147702
3	С	-5.90142	-1.561278	-0.009362
4	С	-6.790733	-0.498992	-0.090065
5	С	-6.305699	0.782736	-0.310616
6	С	-4.941926	0.997327	-0.447767
7	Н	-3.849589	-2.175853	-0.08579
8	Н	-6.269916	-2.565777	0.158923
9	Н	-7.854863	-0.669072	0.01488
10	Н	-6.991784	1.618061	-0.378872
11	Н	-4.570108	2.001205	-0.621165
12	С	-2.557124	0.182743	-0.471826
13	Н	-2.077732	-0.699107	-0.901998
14	Н	-2.363243	1.018334	-1.146694
15	С	-1.939639	0.492454	0.894873
16	Н	-2.483484	1.323489	1.352555
17	Н	-2.065571	-0.369426	1.556006
18	С	-0.463782	0.863705	0.858084
19	Н	-0.135519	0.995584	1.899345
20	С	0.412323	-0.215979	0.226804
21	Н	0.148994	-1.185362	0.653586
22	Н	0.222501	-0.265686	-0.849147
23	С	1.895485	0.001882	0.45439
24	Н	2.092558	0.077097	1.534071
25	С	2.752137	-1.129447	-0.110924
26	Н	2.536453	-1.224122	-1.184168
27	С	4.227659	-0.808072	0.056282
28	Н	4.453567	-0.77939	1.131819
29	С	4.552055	0.552259	-0.530917
30	Н	4.406049	0.510484	-1.615852
31	С	3.610055	1.592469	0.065951
32	Н	3.80378	1.686999	1.14221
33	Н	3.762194	2.564795	-0.401191
34	0	2.265189	1.22773	-0.168319
35	0	2.418342	-2.322589	0.564664
36	Н	3.066208	-2.986113	0.311446
37	0	4.957935	-1.848267	-0.561995
38	Н	5.893205	-1.665267	-0.441185
39	0	5.902839	0.833477	-0.21923
40	Н	6.232392	1.505019	-0.819301
41	0	-0.342219	2.104504	0.173786
42	Н	0.594331	2.216504	-0.02983

DA8					
#	Atom	Х	Y	Z	
1	С	4.014283	-0.502404	-0.331745	
2	С	4.313913	0.567672	-1.167505	
3	С	5.115965	1.613841	-0.731923	
4	С	5.635818	1.604591	0.55385	
5	С	5.350759	0.537873	1.396357	
6	С	4.550893	-0.504289	0.954009	
7	Н	3.907087	0.586667	-2.172231	
8	Н	5.333482	2.438826	-1.399351	
9	Н	6.260954	2.419472	0.896785	
10	Н	5.756212	0.516673	2.400598	
11	Н	4.338852	-1.33397	1.619459	
12	С	3.156295	-1.648668	-0.805056	
13	Н	2.940494	-1.523908	-1.869382	
14	Н	3.739346	-2.569587	-0.715783	
15	С	1.837814	-1.858449	-0.051535	
16	Н	1.459271	-2.849713	-0.311981	
17	Н	2.013944	-1.860938	1.028369	
18	С	0.741163	-0.853091	-0.366471	
19	Н	0.618882	-0.811982	-1.46026	
20	С	-0.593202	-1.279142	0.242878	
21	Н	-0.796106	-2.316433	-0.027266	
22	Н	-0.524755	-1.228873	1.334406	
23	С	-1.77435	-0.450957	-0.225672	
24	Н	-1.82549	-0.479827	-1.324336	
25	С	-3.105366	-0.956085	0.328686	
26	Н	-3.047825	-0.949435	1.425969	
27	С	-4.23745	-0.037721	-0.099456	
28	Н	-4.334067	-0.098633	-1.192819	
29	С	-3.932646	1.401765	0.26812	
30	Н	-3.91523	1.489385	1.359947	
31	С	-2.565815	1.782663	-0.290799	
32	Н	-2.600733	1.765213	-1.387699	
33	Н	-2.281274	2.783496	0.032464	
34	0	-1.575688	0.896468	0.190062	
35	0	-3.318759	-2.268276	-0.144496	
36	Н	-4.221954	-2.509891	0.079223	
37	0	-5.418597	-0.510851	0.515872	
38	Н	-6.144888	0.050396	0.23254	
39	0	-4.961368	2.202552	-0.280724	
40	Н	-4.984491	3.044737	0.177297	
41	0	1.138829	0.425038	0.108008	
DA9

#	Atom	Х	Y	Z
1	С	-4.038655	-0.059964	-0.368915
2	С	-4.538256	-1.340407	-0.146557
3	С	-5.901267	-1.561176	-0.008444
4	С	-6.790632	-0.499015	-0.090391
5	С	-6.305609	0.782541	-0.311896
6	С	-4.941796	0.9971	-0.448831
7	Н	-3.849376	-2.175673	-0.083635
8	Н	-6.269751	-2.565548	0.160626
9	н	-7.854783	-0.669091	0.014353
10	Н	-6.991708	1.617777	-0.381081
11	н	-4.570013	2.000862	-0.622967
12	С	-2.556935	0.182542	-0.471542
13	н	-2.07754	-0.699589	-0.901158
14	н	-2.362919	1.017746	-1.146859
15	С	-1.939635	0.492907	0.895033
16	Н	-2.483442	1.324196	1.352307
17	Н	-2.065684	-0.368656	1.556554
18	С	-0.463726	0.864006	0.858281
19	Н	-0.135493	0.995921	1.899541
20	С	0.412248	-0.215731	0.226928
21	Н	0.148806	-1.18516	0.653524
22	Н	0.222395	-0.265187	-0.849042
23	С	1.895431	0.00191	0.454547
24	Н	2.092512	0.076875	1.534243
25	С	2.751915	-1.129416	-0.111012
26	Н	2.536063	-1.223974	-1.184228
27	С	4.227521	-0.808268	0.055969
28	Н	4.45368	-0.779976	1.131452
29	С	4.551992	0.55219	-0.530887
30	Н	4.405836	0.510716	-1.615817
31	С	3.610177	1.592339	0.066369
32	Н	3.803994	1.686543	1.142643
33	Н	3.762397	2.564791	-0.40049
34	0	2.265244	1.227847	-0.16789
35	0	2.4181	-2.32259	0.564535
36	Н	3.065281	-2.986423	0.310384
37	0	4.957478	-1.848408	-0.562831
38	Н	5.892807	-1.66605	-0.441552
39	0	5.902838	0.833191	-0.219299

40	Н	6.232122	1.505498	-0.818667
41	0	-0.341959	2.104792	0.173975
42	Н	0.594555	2.216409	-0.02997

DA10

#	Atom	Х	Y	Z
1	С	-3.233047	0.071892	0.440079
2	С	-4.554639	0.485668	0.305698
3	С	-5.545422	-0.407221	-0.079926
4	С	-5.226583	-1.732343	-0.339135
5	С	-3.910967	-2.157328	-0.209087
6	С	-2.925734	-1.261149	0.176622
7	Н	-4.811512	1.519621	0.507912
8	Н	-6.569168	-0.066815	-0.175909
9	Н	-5.998261	-2.430608	-0.63797
10	Н	-3.652729	-3.190539	-0.406562
11	Н	-1.898682	-1.593889	0.277594
12	С	-2.143215	1.039791	0.814053
13	н	-2.564513	1.869828	1.387171
14	н	-1.420309	0.532246	1.454142
15	С	-1.42799	1.584278	-0.422336
16	н	-1.036053	0.751461	-1.011482
17	н	-2.148614	2.112609	-1.052162
18	С	-0.296903	2.547587	-0.100746
19	н	-0.702966	3.365658	0.508831
20	С	0.874974	1.94161	0.673384
21	н	1.635196	2.717794	0.787063
22	н	0.559326	1.667556	1.68291
23	С	1.516533	0.73007	0.021373
24	н	1.483277	0.842178	-1.072081
25	С	2.978672	0.550493	0.43046
26	н	3.027006	0.466818	1.525169
27	С	3.540757	-0.722845	-0.177822
28	н	3.555808	-0.600325	-1.270281
29	С	2.661521	-1.913681	0.149893
30	н	2.70648	-2.097201	1.229187
31	С	1.223499	-1.594908	-0.247015
32	н	1.16194	-1.485472	-1.338471
33	н	0.554941	-2.401032	0.056315
34	0	0.781824	-0.42405	0.400005
35	0	3.710433	1.676103	-0.008283
36	Н	4.642609	1.479418	0.119316
37	0	4.860222	-0.878412	0.307067

38	Н	5.228952	-1.671158	-0.090875
39	0	3.172885	-3.022732	-0.565568
40	Н	2.847114	-3.832052	-0.167439
41	0	0.143886	3.071617	-1.350631
42	Н	0.857418	3.692221	-1.186082

#	Atom	Х	Y	Z
1	С	4.294699	-0.36284	-0.15292
2	С	4.895617	0.186247	-1.28254
3	С	6.170219	0.731219	-1.21973
4	С	6.866828	0.737117	-0.01947
5	С	6.279069	0.193242	1.114264
6	С	5.004821	-0.351	1.045036
7	Н	4.358037	0.183531	-2.2244
8	Н	6.621399	1.149809	-2.11097
9	Н	7.86244	1.159566	0.031509
10	Н	6.815985	0.189543	2.054927
11	Н	4.553033	-0.7769	1.934215
12	С	2.894947	-0.91246	-0.21165
13	Н	2.696493	-1.31106	-1.21025
14	Н	2.793227	-1.74207	0.489655
15	С	1.847461	0.152383	0.114523
16	Н	2.039343	0.564039	1.113004
17	Н	1.946975	0.983016	-0.58956
18	С	0.414146	-0.36855	0.054313
19	С	-0.58096	0.746167	0.379061
20	Н	-0.68523	0.803236	1.467382
21	Н	-0.16639	1.704603	0.059199
22	С	-1.98187	0.664797	-0.21746
23	Н	-1.93359	0.855648	-1.30005
24	С	-2.714	-0.66813	-0.0283
25	Н	-2.60845	-0.98729	1.016356
26	С	-4.19665	-0.54304	-0.35343
27	Н	-4.28749	-0.39189	-1.4387
28	С	-4.83391	0.647534	0.32772
29	Н	-4.81741	0.496178	1.412821
30	С	-4.01715	1.883459	-0.02157
31	Н	-4.05831	2.056014	-1.10595
32	н	-4.41273	2.765261	0.482869
33	0	-2.68941	1.720822	0.416305

	34	0	-2.13228	-1.617	-0.89935
	35	Н	-2.60922	-2.44249	-0.78352
	36	0	-4.80569	-1.7667	0.012099
	37	Н	-5.7375	-1.70814	-0.21411
	38	0	-6.16566	0.737194	-0.14432
	39	Н	-6.6742	1.289941	0.451998
	40	0	0.239224	-1.48604	0.918934
	41	Н	0.451804	-1.20314	1.812449
_	42	Н	0.2227	-0.76042	-0.94553

#	Atom	Х	Y	Z
1	С	3.487878	-0.314061	-0.331546
2	С	3.056219	0.482323	-1.388424
3	С	3.316421	1.845668	-1.408015
4	С	4.016799	2.43622	-0.366193
5	С	4.454811	1.652924	0.693253
6	С	4.190981	0.291422	0.707614
7	Н	2.50095	0.026522	-2.200066
8	Н	2.971456	2.44761	-2.239758
9	Н	4.222658	3.499127	-0.380098
10	Н	5.006306	2.103612	1.509277
11	Н	4.537547	-0.313903	1.538225
12	С	3.162985	-1.784222	-0.282235
13	Н	2.96219	-2.150484	-1.289765
14	Н	4.026804	-2.335446	0.095688
15	С	1.9599	-2.096425	0.615221
16	Н	1.81756	-3.179844	0.663047
17	Н	2.168949	-1.751007	1.631443
18	С	0.664191	-1.456036	0.146907
19	С	-0.481923	-1.757482	1.108172
20	Н	-0.664952	-2.835286	1.11682
21	Н	-0.179575	-1.479637	2.120319
22	С	-1.794812	-1.050545	0.805633
23	Н	-2.533469	-1.352301	1.561107
24	С	-1.706751	0.48103	0.825726
25	Н	-0.978236	0.817155	0.080175
26	С	-3.056568	1.080109	0.46758
27	Н	-3.778026	0.798766	1.248064
28	С	-3.544387	0.52665	-0.85784
29	Н	-2.857659	0.86323	-1.645449
30	С	-3.53156	-0.992937	-0.808976

31	Н	-4.269535	-1.341847	-0.075381
32	Н	-3.786668	-1.40683	-1.782997
33	0	-2.247495	-1.47606	-0.475853
34	0	-1.364669	0.969504	2.109564
35	Н	-0.410458	1.00638	2.195523
36	0	-2.993585	2.486222	0.352028
37	Н	-2.660831	2.832802	1.184347
38	0	-4.862788	0.93775	-1.144824
39	Н	-4.892974	1.894973	-1.066067
40	0	0.388102	-1.928475	-1.165158
41	Н	-0.544715	-1.753799	-1.339787
42	Н	0.82105	-0.369169	0.108021

#	Atom	Х	Y	Z
1	С	-3.767125	-0.316259	0.186337
2	С	-3.514108	0.90246	0.809928
3	С	-3.90832	2.098297	0.226311
4	С	-4.56568	2.094038	-0.995554
5	С	-4.824887	0.885497	-1.627766
6	С	-4.42745	-0.306389	-1.040134
7	Н	-2.992705	0.910248	1.759988
8	Н	-3.70138	3.035771	0.727793
9	Н	-4.876072	3.025694	-1.451707
10	Н	-5.340852	0.871083	-2.579997
11	Н	-4.635221	-1.246642	-1.539326
12	С	-3.300696	-1.61277	0.795178
13	Н	-3.200925	-1.495079	1.875198
14	Н	-4.05218	-2.386327	0.623061
15	С	-1.966921	-2.095335	0.215657
16	Н	-1.729092	-3.08086	0.632224
17	Н	-2.069508	-2.227516	-0.864988
18	С	-0.796806	-1.151148	0.478243
19	С	0.495551	-1.705895	-0.120547
20	Н	0.940658	-2.395918	0.603555
21	Н	0.258611	-2.299308	-1.006363
22	С	1.574129	-0.714042	-0.542233
23	Н	1.24606	-0.173858	-1.44295
24	С	1.954979	0.342398	0.500963
25	Н	2.097636	-0.150084	1.471127
26	С	3.243838	1.06123	0.124667
27	Н	3.031989	1.685077	-0.755535

28	С	4.346739	0.097842	-0.253624
29	Н	4.625551	-0.49664	0.623645
30	С	3.813641	-0.825705	-1.339761
31	Н	3.561228	-0.235675	-2.231697
32	Н	4.561008	-1.568857	-1.618501
33	0	2.691929	-1.529651	-0.862988
34	0	0.906845	1.288186	0.572427
35	Н	1.162129	1.950827	1.218925
36	0	3.594951	1.883638	1.221218
37	Н	4.393489	2.361933	0.983652
38	0	5.443892	0.871926	-0.702557
39	Н	6.236979	0.333	-0.685915
40	0	-0.652267	-0.892746	1.871352
41	Н	-0.523081	-1.734776	2.316028
42	Н	-1.018433	-0.178236	0.040171

#	Atom	Х	Y	Z
1	С	-2.42523	-0.00765	-0.52919
2	С	-2.18392	-1.29937	-0.07009
3	С	-3.2263	-2.11468	0.349953
4	С	-4.53208	-1.64889	0.315864
5	С	-4.78701	-0.36325	-0.14313
6	С	-3.7421	0.446822	-0.56035
7	Н	-1.1684	-1.679	-0.03933
8	Н	-3.01592	-3.11698	0.702286
9	Н	-5.34684	-2.28349	0.640942
10	Н	-5.80378	0.008145	-0.17886
11	Н	-3.94992	1.448388	-0.92065
12	С	-1.29524	0.894746	-0.94685
13	Н	-0.41026	0.300226	-1.17677
14	Н	-1.56118	1.416217	-1.87027
15	С	-0.96274	1.944944	0.119949
16	Н	-1.8041	2.63605	0.197489
17	Н	-0.86154	1.474812	1.10154
18	С	0.281606	2.771235	-0.20827
19	С	1.569195	2.359984	0.514257
20	Н	2.336398	3.088643	0.236353
21	Н	1.411553	2.459117	1.590208
22	С	2.150052	0.977345	0.244989
23	Н	3.199281	0.99282	0.576212
24	С	1.478233	-0.16701	1.010819

25	Н	0.416105	-0.21308	0.758201
26	С	2.101411	-1.49672	0.623495
27	Н	3.143777	-1.5072	0.97271
28	С	2.106006	-1.6688	-0.88297
29	Н	1.069402	-1.73762	-1.23352
30	С	2.773906	-0.45596	-1.52225
31	Н	3.829987	-0.42348	-1.22133
32	Н	2.725908	-0.51966	-2.60922
33	0	2.110723	0.730559	-1.14898
34	0	1.633138	0.081609	2.392069
35	Н	1.31463	-0.69365	2.862341
36	0	1.362493	-2.51085	1.275453
37	Н	1.746106	-3.3578	1.033553
38	0	2.804662	-2.8655	-1.16616
39	Н	2.579572	-3.16153	-2.0502
40	0	-0.0213	4.119188	0.155249
41	Н	0.742887	4.666191	-0.04096
42	Н	0.453933	2.726332	-1.28912

#	Atom	Х	Y	Z
1	С	-3.86344	-0.40234	0.060083
2	С	-3.78529	0.590768	1.03221
3	С	-4.20972	1.885571	0.767018
4	С	-4.7217	2.208472	-0.48115
5	С	-4.80664	1.226959	-1.45962
6	С	-4.38028	-0.06457	-1.1888
7	Н	-3.38056	0.344923	2.007446
8	Н	-4.14012	2.643394	1.537712
9	Н	-5.05496	3.217219	-0.69021
10	Н	-5.20876	1.467998	-2.43601
11	Н	-4.45129	-0.82578	-1.95815
12	С	-3.36139	-1.79631	0.331113
13	Н	-3.33684	-1.97353	1.407044
14	Н	-4.05372	-2.5228	-0.10012
15	С	-1.96674	-2.0537	-0.24954
16	Н	-1.68852	-3.0957	-0.0649
17	Н	-1.99244	-1.91775	-1.33408
18	С	-0.88302	-1.15347	0.319292
19	С	0.454202	-1.40109	-0.37176
20	Н	0.729114	-2.4522	-0.25931
21	Н	0.341755	-1.20225	-1.44162

22	С	1.5879	-0.55028	0.161967
23	Н	1.720945	-0.74697	1.238503
24	С	2.919963	-0.84119	-0.53879
25	Н	2.78763	-0.70358	-1.61529
26	С	3.996247	0.120909	-0.05083
27	Н	4.186493	-0.08136	1.014733
28	С	3.528044	1.557947	-0.17451
29	Н	3.402862	1.790604	-1.23992
30	С	2.18456	1.707494	0.521903
31	Н	2.310337	1.535456	1.599597
32	Н	1.79291	2.713235	0.376259
33	0	1.240772	0.811764	-0.01954
34	0	3.343093	-2.18188	-0.37539
35	Н	3.413537	-2.37402	0.564584
36	0	5.194865	-0.01314	-0.78646
37	Н	5.45802	-0.93699	-0.75543
38	0	4.433943	2.459693	0.424092
39	Н	5.303979	2.288131	0.054226
40	0	-0.79608	-1.40727	1.720273
41	Н	-0.45871	-0.62302	2.155878
42	Н	-1.17054	-0.10936	0.16365

#	Atom	Х	Y	Z
1	С	3.701258	0.180996	0.357074
2	С	3.727133	-0.94712	1.173277
3	С	4.595704	-1.99702	0.912944
4	С	5.455876	-1.93601	-0.1747
5	С	5.439828	-0.81775	-0.9964
6	С	4.569368	0.229704	-0.73036
7	Н	3.058858	-1.00118	2.025735
8	Н	4.602919	-2.86384	1.562305
9	Н	6.136187	-2.75323	-0.3787
10	Н	6.109294	-0.75906	-1.8458
11	Н	4.564136	1.101416	-1.37543
12	С	2.723785	1.295755	0.615454
13	Н	2.549012	1.38909	1.690919
14	Н	3.143874	2.243807	0.276099
15	С	1.386565	1.052375	-0.08549
16	Н	1.543915	0.973541	-1.16757
17	Н	0.978156	0.091337	0.233307
18	С	0.35671	2.139787	0.188619

19	С	-1.00579	1.873299	-0.4486
20	Н	-1.64394	2.729017	-0.22419
21	Н	-0.90397	1.816167	-1.53733
22	С	-1.70667	0.61303	0.027252
23	Н	-1.47092	0.437441	1.090885
24	С	-3.23219	0.705661	-0.10871
25	Н	-3.47774	0.928789	-1.15044
26	С	-3.87909	-0.61838	0.2801
27	Н	-3.69951	-0.78792	1.353367
28	С	-3.25514	-1.77173	-0.48128
29	Н	-3.49163	-1.65157	-1.54639
30	С	-1.7456	-1.72612	-0.30623
31	Н	-1.49212	-1.90797	0.74709
32	Н	-1.27027	-2.4954	-0.91316
33	0	-1.23626	-0.48478	-0.73658
34	0	-3.78615	1.76436	0.649212
35	Н	-3.54828	1.64377	1.573515
36	0	-5.26738	-0.62367	0.01889
37	Н	-5.65398	0.137394	0.460419
38	0	-3.71483	-3.02085	-0.01174
39	Н	-4.67537	-3.00311	-0.02752
40	0	0.831964	3.421719	-0.20791
41	Н	1.014034	3.395013	-1.15119
42	Н	0.218065	2.223347	1.27135

#	Atom	Х	Y	Z
1	С	2.973505	-0.13611	0.449475
2	С	2.817109	-1.21587	-0.417
3	С	3.89987	-2.00262	-0.77834
4	С	5.164133	-1.71962	-0.27799
5	С	5.333301	-0.64605	0.583984
6	С	4.245027	0.138274	0.942671
7	Н	1.831657	-1.43672	-0.81156
8	Н	3.757272	-2.84018	-1.45011
9	Н	6.010993	-2.33395	-0.55683
10	Н	6.314935	-0.41851	0.98111
11	Н	4.384538	0.974456	1.61882
12	С	1.794006	0.728893	0.803031

13	Н	0.924406	0.09224	0.964872
14	Н	1.989022	1.254508	1.740935
15	С	1.493752	1.757946	-0.29079
16	Н	2.355035	2.42537	-0.37552
17	Н	1.380543	1.250717	-1.25283
18	С	0.265121	2.629323	-0.01507
19	С	-1.06286	2.072606	-0.52984
20	Н	-1.83299	2.808147	-0.29365
21	Н	-1.01983	1.984089	-1.62081
22	С	-1.50782	0.732682	0.02529
23	Н	-1.24118	0.661889	1.093207
24	С	-3.02536	0.533744	-0.09236
25	Н	-3.31379	0.653297	-1.14011
26	С	-3.41273	-0.86516	0.372145
27	Н	-3.19827	-0.94217	1.449636
28	С	-2.59061	-1.92055	-0.34145
29	Н	-2.85296	-1.90104	-1.40705
30	С	-1.1147	-1.58801	-0.19517
31	Н	-0.82137	-1.66991	0.860875
32	Н	-0.51156	-2.28652	-0.77384
33	0	-0.84555	-0.29665	-0.69079
34	0	-3.76197	1.509191	0.61986
35	Н	-3.5131	1.472225	1.548421
36	0	-4.77703	-1.14175	0.133027
37	Н	-5.29684	-0.44584	0.544253
38	0	-2.8053	-3.20729	0.196418
39	Н	-3.75228	-3.37009	0.195266
40	0	0.445632	3.939175	-0.54745
41	Н	0.546362	3.86433	-1.50006
42	Н	0.182669	2.785328	1.064839

#	Atom	Х	Y	Z
1	С	-3.59617	-0.26452	-0.86901
2	С	-4.55498	-1.11986	-0.32692
3	С	-5.70699	-0.61913	0.257662
4	С	-5.92286	0.752225	0.312911
5	С	-4.98043	1.614372	-0.2252
6	С	-3.8278	1.107654	-0.81308
7	Н	-4.39199	-2.19115	-0.36275
8	Н	-6.43978	-1.30007	0.67233
9	Н	-6.82203	1.144099	0.770933

10	Н	-5.14005	2.684777	-0.19053
11	Н	-3.09468	1.787923	-1.23154
12	С	-2.32226	-0.81591	-1.45664
13	Н	-2.56318	-1.65686	-2.11075
14	Н	-1.85313	-0.05248	-2.08192
15	С	-1.30497	-1.29262	-0.41254
16	Н	-1.72611	-2.10533	0.186695
17	Н	-0.449	-1.70921	-0.9488
18	С	-0.81305	-0.20926	0.547667
19	С	0.486619	-0.6109	1.236639
20	Н	0.60943	0.003101	2.13234
21	Н	0.401924	-1.64751	1.571142
22	С	1.722196	-0.49989	0.352129
23	Н	1.44004	-0.61588	-0.70517
24	С	2.45636	0.839342	0.496492
25	Н	2.751493	0.96132	1.545173
26	С	3.707681	0.843004	-0.3651
27	Н	3.400529	0.775416	-1.41877
28	С	4.573871	-0.35918	-0.04298
29	Н	4.943825	-0.25168	0.984886
30	С	3.736271	-1.62554	-0.13523
31	Н	3.429726	-1.78215	-1.17853
32	Н	4.319421	-2.48731	0.186443
33	0	2.608389	-1.54952	0.707214
34	0	1.667877	1.938536	0.075311
35	Н	1.126424	2.242814	0.805722
36	0	4.483857	2.006226	-0.16284
37	Н	3.919677	2.765154	-0.33443
38	0	5.653305	-0.48497	-0.94366
39	Н	6.11843	0.355607	-0.96032
40	0	-1.74691	0.043957	1.592777
41	Н	-2.58715	0.290815	1.195541
42	Н	-0.64695	0.715959	-0.01897

#	Atom	Х	Y	Z
1	С	3.673742	-0.21094	0.147739
2	С	4.604789	-0.45109	-0.85843
3	С	5.499575	0.534184	-1.25256
4	С	5.474692	1.780965	-0.6445
5	С	4.549931	2.033482	0.359813
6	С	3.659052	1.044894	0.750244

7	Н	4.630904	-1.42358	-1.33747
8	Н	6.219068	0.326271	-2.03498
9	Н	6.172914	2.550448	-0.94893
10	Н	4.524237	3.002731	0.842451
11	Н	2.939289	1.248566	1.535553
12	С	2.671933	-1.26125	0.545698
13	Н	3.07156	-2.25556	0.329021
14	Н	2.495045	-1.21336	1.621228
15	С	1.343233	-1.08054	-0.19
16	Н	0.946181	-0.08529	0.020901
17	Н	1.517584	-1.13145	-1.2675
18	С	0.313973	-2.14601	0.15849
19	С	-0.99634	-2.01673	-0.62822
20	Н	-0.75946	-1.65945	-1.63312
21	Н	-1.43319	-3.0103	-0.74881
22	С	-2.12538	-1.13669	-0.0815
23	Н	-2.54297	-1.58718	0.831522
24	С	-1.75403	0.318738	0.262977
25	Н	-1.17224	0.736734	-0.57081
26	С	-2.99848	1.178434	0.445033
27	Н	-3.48044	0.863691	1.382105
28	С	-4.00008	0.980093	-0.67424
29	Н	-3.56777	1.348864	-1.61121
30	С	-4.29378	-0.50415	-0.8116
31	Н	-4.74727	-0.88112	0.115362
32	Н	-4.98309	-0.69173	-1.63503
33	0	-3.10171	-1.19109	-1.10943
34	0	-1.01507	0.406875	1.463825
35	Н	-0.61783	-0.45581	1.665673
36	0	-2.60074	2.531176	0.539138
37	Н	-3.40644	3.056119	0.550349
38	0	-5.15334	1.727488	-0.33061
39	Н	-5.67295	1.886755	-1.12064
40	0	0.099341	-2.10444	1.574182
41	Н	-0.44986	-2.84765	1.834518
42	Н	0.75194	-3.11828	-0.09074

#	Atom	Х	Y	Z
1	С	-2.01762	-1.56247	-0.02527
2	С	-1.48471	-2.04159	-1.21624
3	С	-0.42146	-2.93514	-1.2169

4	С	0.119498	-3.37461	-0.01902
5	С	-0.42123	-2.92597	1.179164
6	С	-1.47996	-2.03285	1.17222
7	Н	-1.89653	-1.7031	-2.16025
8	Н	-0.01339	-3.28318	-2.15765
9	Н	0.953464	-4.06491	-0.01689
10	Н	-0.01264	-3.26916	2.121427
11	Н	-1.88638	-1.68008	2.113625
12	С	-3.13032	-0.54201	-0.00105
13	Н	-3.51857	-0.39243	-1.01161
14	Н	-3.95587	-0.95163	0.58457
15	С	-2.73715	0.810597	0.618854
16	Н	-3.61036	1.243955	1.109731
17	Н	-1.99431	0.655272	1.402278
18	С	-2.25014	1.866658	-0.37277
19	С	-1.09244	1.497488	-1.30099
20	Н	-1.28008	0.499299	-1.69461
21	Н	-1.12593	2.169849	-2.16168
22	С	0.359373	1.512077	-0.80323
23	Н	0.743238	2.543326	-0.79657
24	С	0.618277	0.929348	0.592984
25	Н	0.106509	-0.03627	0.675663
26	С	2.104264	0.693333	0.822161
27	Н	2.600527	1.672733	0.869546
28	С	2.723587	-0.08978	-0.31264
29	Н	2.254963	-1.08191	-0.36128
30	С	2.436378	0.654412	-1.60417
31	Н	2.912995	1.643801	-1.57261
32	Н	2.832418	0.106882	-2.45869
33	0	1.047336	0.767345	-1.79886
34	0	0.206608	1.8003	1.630666
35	Н	-0.54395	2.339264	1.331463
36	0	2.335806	-0.01739	2.024601
37	Н	1.972125	0.500052	2.74756
38	0	4.122664	-0.20793	-0.16387
39	Н	4.291323	-0.51004	0.732869
40	0	-1.95456	3.030528	0.410765
41	Н	-1.75088	3.762859	-0.17652
42	Н	-3.09968	2.095686	-1.02549

b. <u>Procedure for calculating NMRs</u>

To calculate NMR shifts for each of the diastereomers, following the procedure by Smith and Goodman⁸, we have averaged the shielding constants in each conformer using Boltzmann averaging over the conformers *i* using following equation:

$$\sigma^{x} = \frac{\sum_{i} \sigma_{i}^{x} \exp(-E_{i}/RT)}{\sum_{i} \exp(-E_{i}/RT)}$$

where σ^x is the Boltzmann averaged shielding constant for nucleus x, σ_i^x is the shielding constant for nucleus x in conformer i, and E is the potential energy of conformer i (relative to the global minimum), obtained from the calculation. The temperature T was taken as 298 K.

Averaged shielding constants for each nuclei of the two diastereomers were then scaled using following equation:

$$\delta_{scaled} = \frac{\sigma_{calc} - intercept}{slope}$$

where the slope and intercept (Table S4) were obtained from a plot of the calculated vs experimental data for a test set of molecules used by Pierens¹⁴.

Table S4. Intercept and slope values calculated for the test set of molecules¹⁴ using ω B97XD/def2TZVP method in methanol.

	intercept	slope	R
¹ H	32.041	-1.081	0.9947
¹³ C	188.78	-1.048	0.9987

Table S5. NMR shielding constants calculated using GIAO method with ω B97XD/def2TZVP in methanol for the conformers of DA with scaled values

		DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	DA	Scale d
1	С	35.418	35.213	35.710	35.068	35.296	35.880	34.978	34.336	34.980	35.019	35.210	146.550
2	С	53.531	53.380	53.265	53.419	53.510	53.200	53.242	52.479	53.239	53.696	53.323	129.265
3	С	53.269	53.310	53.227	53.274	53.276	53.174	53.344	54.067	53.344	53.364	53.352	129.237
4	С	56.806	56.866	56.696	56.912	56.773	56.658	56.920	57.624	56.920	56.874	56.893	125.858
5	С	53.234	53.253	53.152	53.291	53.169	53.312	53.190	54.041	53.190	53.452	53.314	129.274
6	С	53.132	53.224	53.372	53.205	53.067	53.392	53.299	54.199	53.301	53.083	53.302	129.285
7	Н	24.218	24.207	24.210	24.212	24.206	24.164	24.209	24.219	24.209	24.215	24.208	7.249
8	Н	24.118	24.117	24.117	24.112	24.111	24.100	24.126	24.224	24.126	24.131	24.126	7.324
9	Н	24.254	24.256	24.245	24.254	24.240	24.242	24.259	24.331	24.259	24.258	24.259	7.202
10	Н	24.117	24.118	24.104	24.118	24.095	24.118	24.111	24.143	24.111	24.107	24.115	7.335
11	н	24.181	24.183	24.200	24.184	24.153	24.206	24.203	24.140	24.203	24.122	24.178	7.276
12	С	151.360	151.625	157.817	150.687	151.524	151.978	156.559	149.623	156.559	152.913	152.801	34.334
13	Н	28.812	28.857	29.309	28.772	28.772	29.368	29.281	29.281	29.280	29.525	29.077	2.743
14	н	29.341	29.391	29.328	29.410	29.367	29.302	29.011	28.797	29.011	28.949	29.220	2.611
15	С	140.036	141.652	142.654	143.498	143.913	142.647	143.517	146.063	143.522	146.041	142.937	43.748
16	Н	30.241	30.407	30.095	30.335	30.017	30.483	30.163	30.133	30.163	30.204	30.241	1.666
17	Н	30.645	30.418	30.298	30.251	30.775	30.212	30.313	29.999	30.313	30.229	30.376	1.541
18	С	114.962	111.499	116.847	115.453	115.309	110.637	112.987	108.473	112.988	114.429	113.334	71.998
19	Н	27.837	27.956	27.677	28.240	28.139	27.984	27.802	27.907	27.802	27.866	27.917	3.816
20	С	139.021	146.634	141.975	141.124	144.145	149.039	149.373	146.294	149.371	149.873	145.215	41.574
21	Н	30.062	29.972	29.943	30.044	30.242	29.466	29.852	29.986	29.851	29.804	29.938	1.946
22	Н	30.479	30.556	30.175	29.918	30.068	30.654	30.234	30.588	30.234	30.002	30.329	1.585
23	С	109.999	102.739	109.250	109.816	108.624	102.576	102.628	102.749	102.633	110.445	106.177	78.827
24	Н	28.259	28.394	28.356	28.525	28.776	28.398	28.427	28.467	28.427	28.249	28.411	3.359
25	С	107.099	110.986	107.017	109.583	110.141	110.869	110.822	111.002	110.822	111.855	109.859	75.313
26	Н	28.532	28.653	28.509	28.573	28.702	28.570	28.567	28.707	28.567	28.597	28.597	3.187
27	С	106.158	106.512	106.201	106.661	106.215	106.495	106.490	106.578	106.487	105.784	106.355	78.658
28	Н	28.426	28.474	28.430	28.478	28.565	28.448	28.458	28.522	28.458	28.425	28.465	3.309
29	С	112.925	113.609	112.911	113.319	113.175	113.605	113.570	113.712	113.568	112.977	113.326	72.005
30	Н	28.328	28.291	28.297	28.325	28.324	28.276	28.273	28.380	28.273	28.215	28.300	3.462
31	С	114.715	115.319	114.671	115.141	114.912	115.341	115.300	115.446	115.300	115.403	115.132	70.281
32	Н	28.661	28.606	28.643	28.801	28.766	28.603	28.613	28.715	28.613	28.578	28.656	3.133
33	Н	28.097	27.983	28.060	28.131	28.038	27.990	27.980	28.140	27.980	27.805	28.024	3.718
34	0	276.811	278.871	276.281	277.675	283.299	278.289	279.229	279.458	279.237	276.586	278.453	
35	0	301.618	301.084	301.983	291.476	301.318	300.815	301.059	301.024	301.050	300.357	300.372	
36	Н	29.729	29.858	29.777	29.046	29.909	29.776	29.799	29.865	29.799	29.808	29.746	2.124
37	0	300.850	300.417	300.873	300.742	300.338	300.365	300.366	300.389	300.358	299.661	300.468	
38	Н	29.601	29.571	29.604	29.576	29.616	29.541	29.544	29.595	29.545	29.538	29.575	2.282
39	0	304.728	305.014	304.747	304.758	304.725	305.172	305.120	305.157	305.102	304.579	304.904	
40	н	30.635	30.571	30.618	30.644	30.627	30.557	30.558	30.632	30.559	30.529	30.595	1.339
41	0	282.471	279.035	286.101	279.502	276.535	274.885	281.411	273.449	281.411	276.442	279.392	
42	Н	32.235	28.324	31.349	27.673	31.870	28.450	28.669	28.895	28.668	31.472	29.844	2.033

Table S6. NMR shielding constants calculated using GIAO method with ω B97XD/def2TZVP in methanol for the conformers of DB with scaled values

		DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8	DB9	DB10	DB	Scaled
1	С	35.378	37.066	37.182	36.493	37.026	35.188	35.626	37.046	35.872	35.128	36.201	145.604
2	с	53.148	51.512	51.328	53.741	51.678	53.093	53.216	52.440	53.377	50.930	52.445	130.103
3	с	53.226	53.971	54.066	53.142	53.949	53.193	53.405	52.142	53.203	53.312	53.361	129.229
4	с	56.839	56.663	56.721	56.463	56.662	56.841	56.722	55.411	56.681	55.964	56.497	126.237
5	с	53.300	53.152	53.235	53.087	53.096	53.296	53.284	52.267	53.243	52.120	53.008	129.566
6	с	53.497	53.307	53.356	53.065	53.360	53.605	53.711	53.672	53.184	51.642	53.240	129.345
7	Н	24.183	24.059	24.082	23.967	24.137	24.157	24.091	24.040	24.195	24.223	24.113	7.336
8	н	24.118	24.116	24.150	24.121	24.138	24.100	24.102	24.015	24.116	24.144	24.112	7.338
9	н	24.256	24.231	24.246	24.232	24.241	24.248	24.252	24.165	24.240	24.208	24.232	7.227
10	н	24.117	24.087	24.093	24.082	24.089	24.118	24.127	24.072	24.092	24.019	24.090	7.358
11	н	24.218	24.191	24.197	24.147	24.190	24.220	24.196	24.129	24.161	24.010	24.166	7.288
12	С	151.244	154.774	154.385	151.544	154.244	151.070	151.570	149.957	151.447	155.040	152.530	34.593
13	н	29.366	28.967	28.926	28.913	28.878	29.368	29.156	28.782	29.420	29.555	29.133	2.691
14	н	28.862	29.138	29.169	29.123	29.104	28.823	29.352	29.289	28.797	28.744	29.040	2.777
15	С	138.919	145.718	143.272	144.909	147.124	141.593	139.987	147.007	143.772	150.505	144.286	42.461
16	н	30.475	30.164	30.214	29.958	30.163	30.734	30.114	30.371	29.580	29.580	30.135	1.763
17	н	30.327	30.552	30.419	30.221	30.451	29.889	30.118	29.731	30.424	29.818	30.195	1.708
18	С	116.779	121.735	121.637	116.042	122.481	110.833	112.337	113.397	114.781	112.965	116.302	69.165
19	С	138.613	150.169	139.272	147.005	145.128	145.416	144.005	142.856	144.150	149.632	144.633	42.129
20	н	30.632	30.159	30.662	29.954	30.056	29.418	29.323	30.263	30.460	30.013	30.093	1.802
21	Н	29.940	30.421	30.087	29.850	30.851	30.735	30.589	30.391	29.429	29.742	30.204	1.700
22	С	107.873	104.470	108.024	107.530	108.929	106.129	107.086	108.304	108.536	109.096	107.595	77.474
23	Н	28.550	28.555	28.869	28.412	28.735	28.993	28.745	28.991	28.414	28.757	28.702	3.090
24	С	110.682	113.472	110.884	114.787	108.429	109.517	109.309	105.870	111.256	113.993	110.820	74.397
25	н	28.253	28.626	28.329	27.774	29.090	29.056	28.949	28.654	28.581	30.173	28.749	3.046
26	С	104.871	106.394	104.967	105.426	103.714	103.615	103.618	106.144	104.940	103.431	104.712	80.225
27	н	28.450	28.588	28.596	28.427	28.678	28.663	28.598	28.484	28.449	28.884	28.582	3.201
28	С	113.595	114.365	113.632	113.052	114.066	114.146	114.153	113.971	113.336	115.879	114.021	71.342
29	Н	28.353	28.259	28.406	27.858	28.362	28.315	28.103	28.247	28.427	29.156	28.349	3.417
30	С	116.126	116.255	116.190	114.735	116.707	117.078	116.786	116.052	116.120	117.398	116.345	69.124
31	Н	28.749	28.717	28.862	28.627	28.744	28.770	28.569	28.627	28.745	28.997	28.741	3.054
32	Н	28.165	27.914	28.221	27.938	28.109	28.181	27.676	27.972	28.167	28.303	28.064	3.680
33	0	277.171	280.739	277.358	280.987	283.220	276.278	278.248	276.673	276.848	279.114	278.667	
34	0	294.824	304.884	294.746	300.218	299.916	297.959	297.636	305.825	285.610	292.277	297.399	
35	Н	29.877	30.981	30.015	29.816	31.930	31.823	31.781	30.291	26.828	27.175	30.054	1.839
36	0	299.772	300.740	299.797	299.262	300.016	299.231	299.204	301.272	296.751	302.594	299.866	
37	Н	29.592	29.696	29.653	29.393	29.609	29.591	29.544	29.513	29.600	30.062	29.625	2.236
38	0	304.195	303.840	304.278	303.703	303.586	303.334	303.135	303.304	304.996	306.911	304.128	
39	н	30.626	29.994	30.674	30.479	30.069	30.054	29.958	29.998	30.603	30.209	30.266	1.643
40	0	269.833	282.227	271.289	270.523	298.437	272.454	257.246	269.539	278.286	270.583	274.059	
41	н	32.160	28.700	32.205	31.558	30.741	31.797	31.325	32.164	30.295	30.491	31.141	0.833
42	Н	27.882	28.324	28.323	27.945	28.435	28.398	28.450	27.975	27.673	27.736	28.114	3.634

c. <u>Calculation of the CP3 and the probability parameters</u>

Using the applet available at <u>http://www-jmg.ch.cam.ac.uk/tools/nmr/</u> we have calculated the values of the CP3 parameter and corresponding probability for the assignment of the pair of diastereoisomers developed by Smith and Goodman⁸. The CP3 parameter is based on comparing differences in experimental and calculated NMR shifts and combined with Bayes' theorem to obtain quantifiable confidence of diastereomer assignment. Values for the CP3 parameter obtained from the applet are shown in Table S7.

Table S7. CP3 parameter and the probability factor obtained from the Smith and Goodman calculations.

СРЗ	C data	H data	All data		
3a-DA & 3a'-DB	0.36	0.29	0.33		
3a-DB & 3a'-DA	-0.57	-0.45	-0.51		
probability					
3a-DA & 3a'-DB	100.0%	98.3%	100.0%		
3a-DB & 3a'-DA	0.0%	1.7%	0.0%		

3. NMRs

a. ¹H and ¹¹B NMRs of crude reaction mixtures (Schemes 3-5)

All of the following NMRs are taken in MeOD using quartz NMR tubes unless otherwise reported, and use CHCl₃ as internal standard (1 equivalent).

90 80 70 60 50 40 30 20 10 0 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90

s2pul_01 LP05-33crude

0 f1 (ppm)

			-			1												
90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
									f1 (ppn	n)								

s2pul_01 LP05-46crude

անորի իրանինչը, որը ընդերանինը անդիներ, իրանինչը, որը հետուն իրանին, որ քորութի առողիները կարերանությանը անդին Հայ հետուն է հետունը հետունը հետունը, որը հետունը հետունը հետունը հետունը հետունը հետունը հետունը հետունը հետուն

b. ¹H and ¹³C NMRs of purified compounds

f1 (ppm)

S113

S117

4. Bibliography

- 1. G. Warner, T. S. Hansen, A. Riisager, E. S. Beach, K. Barta and P. T. Anastas, *Bioresour. Technol.*, 2014, **161**, 78-83.
- 2. A. Cavezza, C. Boulle, A. Gueguiniat, P. Pichaud, S. Trouille, L. Ricard and M. Dalko-Csiba, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 845-849.
- 3. F. Rodrigues, Y. Canac and A. Lubineau, *Chem. Commun.*, 2000, **0**, 2049-2050.
- 4. T. M. de Winter, L. Petitjean, H. C. Erythropel, M. Moreau, J. Hitce, P. Coish, J. B. Zimmerman and P. T. Anastas, *ACS Sus. Chem. & Eng.*, 2018, **6**, 7810-7817.
- 5. P. M. Foley, A. Phimphachanh, E. S. Beach, J. B. Zimmerman and P. T. Anastas, *Green Chem.*, 2011, **13**, 321-325.
- 6. T. M. de Winter, Y. Balland, A. E. Neski, L. Petitjean, H. C. Erythropel, M. Moreau, J. Hitce, P. Coish, J. B. Zimmerman and P. T. Anastas, *ACS Sustainable Chem. Eng.*, 2018, **6**, 11196-11199.
- 7. J.-f. Wang, M. Lei, Q. Li, Z.-m. Ge, X. Wang and R.-t. Li, *Tetrahedron*, 2009, **65**, 4826-4833.
- 8. S. G. Smith and J. M. Goodman, J. Org. Chem., 2009, 74, 4597-4607.
- 9. J. W. Ponder and F. M. Richards, J. Comput. Chem., 1987, **8**, 1016-1024.
- 10. J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999-3094.
- 11. J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.
- 12. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
- 13. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 14. G. K. Pierens, J. Comput. Chem., 2014, **35**, 1388-1394.