Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

## **Anaerobic Conversion of Hydrothermal Liquefaction Aqueous phase:**

## Fate of Organics and Intensification with Granule Activated

## **Carbon/Ozone Pretreatment**

Buchun Si<sup>1,2</sup>, Libin Yang <sup>3</sup>, Xuefei Zhou<sup>3</sup>, Jamison Watson<sup>2</sup>, Giovana Tommaso<sup>4</sup>, Wan-Ting Chen<sup>2,5</sup>,

Qiang Liao <sup>6</sup>, Na Duan<sup>1</sup>, Zhidan Liu<sup>1\*</sup>, Yuanhui Zhang<sup>1,2\*</sup>

- <sup>1</sup> Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China (E-mail: *zdliu@cau.edu.cn*)
- <sup>2</sup> Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA (E-mail: *yzhang1@illinois.edu*)
- <sup>3</sup> State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- <sup>4</sup>Laboratory of Environmental Biotechnology, Department of Food Engineering, University of Sao Paulo, 225, Duque de Caxias Norte, Pirassununga, Sao Paulo 13635-900, Brazil
- <sup>5</sup> Department of Plastic Engineering, University of Massachusetts Lowell, Lowell, MA, 01851, USA
- <sup>6</sup> Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China

Fig. 1S The changes of ammonia and COD concentrations in GAC added HTL aqueous phase (10 g COD/L).

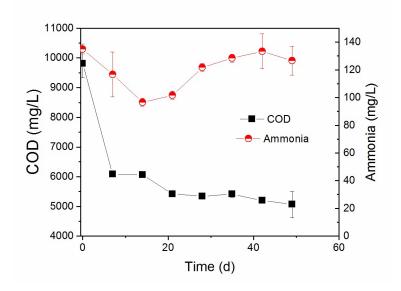



Fig. 2S MALDI-TOF-MS analysis of ozone pretreated HTL aqueous phase.

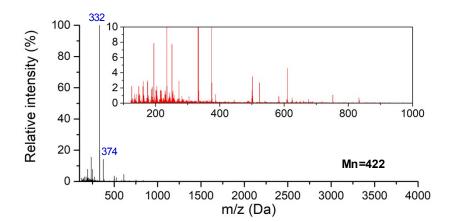



Table 1S The kinetic parameters from the modified Gompertz model

| <b>Experimental set</b> | Mm       | Rm                | λ    | R <sup>2</sup> |
|-------------------------|----------|-------------------|------|----------------|
|                         | mL/g COD | $mL/d{\cdot}gCOD$ | d    |                |
| OP <sub>1</sub>         | 217      | 17.9              | 9.0  | 0.984          |
| $\mathbf{OG_1}$         | 215      | 17.6              | 7.7  | 0.986          |
| GAC <sub>1</sub>        | 213      | 17.3              | 6.5  | 0.993          |
| $C_1$                   | 219      | 15.7              | 5.9  | 0.995          |
| OP <sub>2</sub>         | 193      | 10.4              | 13.4 | 0.989          |
| $OG_2$                  | 209      | 12.1              | 11.1 | 0.992          |
| $GAC_2$                 | 219      | 11.9              | 9.5  | 0.993          |
| $C_2$                   | 180      | 9.3               | 12.2 | 0.994          |
| $OP_r$                  | 146      | 7.5               | 14.0 | 0.983          |
| $\mathbf{OG_r}$         | 208      | 11.4              | 6.1  | 0.983          |
| $GAC_r$                 | 217      | 11.3              | 3.7  | 0.978          |
| $C_{r}$                 | 114      | 5.7               | 12.9 | 0.923          |
| OP <sub>3</sub>         | 111      | 2.4               | 36.9 | 0.974          |
| $OG_3$                  | 202      | 6.3               | 28.1 | 0.987          |
| GAC <sub>3</sub>        | 212      | 5.8               | 19.3 | 0.991          |
| $C_3$                   | 53       | 1.1               | 36.3 | 0.853          |