Supporting Information

Highly efficient hydrogenation of levulinic acid to 2-methyltetrahydrofuran over Ni-Cu/Al₂O₃-ZrO₂ bifunctional catalysts

Zhenbing Xie,^{a,b} Bingfeng Chen,^{a*} Haoran Wu,^{a,b} Mingyang Liu,^{a,b} Huizhen Liu,^{a,b} Jianling Zhang,^{a,b} Guanying Yang,^a and Buxing Han^{a,b*}

a. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. E-mail: hanbx@iccas.ac.cn;

b. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049 (P.R. China)

* To whom correspondence should be addressed. Email: chenbf@iccas.ac.cn; hanbx@iccas.ac.cn.

Fig. S1 TEM image of Cu-Ni/Al₂O₃.

Fig. S2 XRD patterns of the as-prepared monometallic and bimetallic catalysts.

Fig. S3 XPS survey spectrum of the as-prepared Cu-Ni/Al-Zr(9) catalyst.

Table S1 The catalytic performances of Cu-Ni supporting on the as-prepared different carriers ^a .								
<mark>Entry</mark>	Catalyst	<mark>Zr: Al</mark>	Con. (%)	<mark>Sel. (%)</mark>			MSR _{MTHF} ^b	
		<mark>(mole ratio)</mark>		MTHF	<mark>GVL</mark>	<mark>Others</mark>	<mark>(mmol_{MTHF}.g_{cat.}-¹h⁻¹)</mark>	
<mark>1</mark>	<mark>Cu-Ni/ZrO₂</mark>	<mark>1:0</mark>	<mark>100</mark>	<mark>11.9</mark>	<mark>88.1</mark>	<mark>0</mark>	<mark>0.512</mark>	
<mark>2</mark>	<mark>Cu-Ni/Al-Zr</mark>	<mark>1:1</mark>	<mark>100</mark>	<mark>42.3</mark>	<mark>57.7</mark>	<mark>0</mark>	<mark>1.821</mark>	
<mark>3</mark>	<mark>Cu-Ni/Al-Zr</mark>	<mark>1:3</mark>	<mark>100</mark>	<mark>43.7</mark>	<mark>56.3</mark>	<mark>0</mark>	<mark>1.882</mark>	
<mark>4</mark>	<mark>Cu-Ni/Al-Zr</mark>	<mark>1:6</mark>	<mark>100</mark>	<mark>65.0</mark>	<mark>25.8</mark>	<mark>9.2</mark>	<mark>2.799</mark>	
<mark>5</mark>	<mark>Cu-Ni/Al-Zr</mark>	<mark>1:7</mark>	<mark>100</mark>	<mark>66.4</mark>	<mark>9.4</mark>	<mark>24.2</mark>	<mark>2.859</mark>	
<mark>6</mark>	<mark>Cu-Ni/Al-Zr</mark>	<mark>1:8</mark>	<mark>100</mark>	<mark>94.5</mark>	<mark>0</mark>	<mark>5.5</mark>	<mark>4.069</mark>	
<mark>7</mark>	<mark>Cu-Ni/Al-Zr</mark>	1:9	<mark>100</mark>	<mark>99.8</mark>	<mark>0</mark>	<mark>0</mark>	<mark>4.297</mark>	
8	<mark>Cu-</mark>	<mark>0:1</mark>	<mark>100</mark>	<mark>91.1</mark>	<mark>6.7</mark>	<mark>2.2</mark>	<mark>3.923</mark>	
	<mark>Ni∕Al₂O</mark> ₃							

Reaction conditions: 0.1 g of LA, 0.02 g catalyst, 1.5 mL 2-butanol (solvent), 3 MPa H₂, 220 °C, 10 h; b) MSR: Mass-specific rate of MTHF production (mmol_{MTHF} g_{cat}.¹h⁻¹) (defined as the moles of formed MTHF per gram of catalyst per hour).

Fig. S4 Mass-specific rates of MTHF production as a function of the acid amount of the catalysts.

Entry	Catalyst	Con. (%)	Sel. (%)		
			MTHF	GVL	Others
1	Cu-Ni/α-Al ₂ O ₃	100	9.7	90.3	-
2	Cu-Ni/γ-Al ₂ O ₃	100	8.8	91.2	-
3	Cu-Ni/ Al ₂ O ₃	100	10.1	85.4	4.5
	(neutral)				

Table S1 The catalytic performance of Cu-Ni supporting on the commercial supports.

a) Reaction conditions: 0.1 g of LA, 0.02 g catalyst, 1.5 mL 2-butanol (solvent), 3 MPa H₂, 220 °C, 10 h; b) α -Al₂O₃, γ -Al₂O₃ and Al₂O₃ (neutral) were obtained from the Innochem Sci. &Tech. Co. Ltd. (Beijing, China), and the contents of both Cu and Ni in the catalysts were 10 wt.%.

Fig. S4 Kinetic profiles (a) and hot filtration test results for the hydrogenation of levulinic acid with Cu-Ni/Al-Zr(9) catalyst. Hot filtration test condition: 0.1 g substrate, 1.5 mL 2-butanol, 20 mg Cu-Ni/Al-Zr(9), 220 °C; catalyst filtered after 30 minutes at 220 °C.

Fig. S5 Ni XPS spectra of the fresh and reused Cu-Ni/Al-Zr(9) catalyst containing 10 wt.% Cu and 10 wt.% Ni.

Fig. S6 Cu XPS spectra of the fresh and reused Cu-Ni/Al-Zr(9) catalyst containing 10 wt.% Cu and 10 wt.% Ni.

Ent	Catalyst	Additive	т	Ha	t	Con (%) /	References
	Catalyst		(°C)	(MPa)	(h)	Sel (%)	
1	Homogeneous	1 mol%	160	10	18	100/92	W Leitner et al
	catalyst	acidic	100	10	10	100/ 52	Angew Chem
		ionic					Int Ed 2010 40
		liquid					EE10 EE14
							5510-5514.
	0.2 1101%	NT4PF6					
	tripnos		450	6 F	25	400/07	
2	Homogeneous	1.0mol	150	6.5	25	100/87	A. Phanopoulos
	catalyst	%					, et al, ACS
	0.5 mol%	HN(Tf) ₂					Catal. 2015,
	[Ru(acac) ₃]						5, 2500-
	0.5 mol% N-						2512.
	triphos ^{Ph} ,						
3	Homogeneous	0.25	140	5.5	30	100/88	M. Beller,
	catalyst	mol%					Angew. Chem.
	0.1 mol%	Al(OTf) ₃					Int. Ed. 2015, 54,
	[Ru(acac)₃]						5196-5200.
	0.15 mol% N-						
	triphos						
4	Heterogeneou	-	200	10	Continuou	100/	D. C. Elliott, J. G.
	s catalyst		-		s flow	up to	Frye, US,
	Pd-Re/C		250		reator	90%	5883266, 1998.
	(Pd: 5 wt.%,						
	Re: 5 wt.%)						
5	Heterogeneou	-	150	30 min	0.5	90/75	J. M. Bermudez,
	s catalyst			microwav			et al, Green
	Cu-MINT (Cu:			е			Chem., 2013, 15,
	0.51 wt.%)			irradiation			2786-2792.
	,			, 300 W			
6	Heterogeneou	-	two-step hydrogenation		90/61	M. G. Al-Shaal,	
	s catalyst		1) H ₂ 1.2 MPa, 190 °C, 45				et al, Green
	Ru/C		min			Chem., 2014, 16,	
	(Ru: 5 wt.%)		2) H ₂ 10 MPa, 190 °C, 4 h				1358-1364.
7	Heterogeneou	-	265	2.5	WHSV=	100/64	P. P. Upare, et al,
	s catalyst				0.513 h ⁻¹ ;		ChemSusChem,
	Cu/SiO ₂ (Cu:				molar		2011, 4, 1749-
	80 wt.%)				ratio		1752.
					H ₂ /LA= 80;		
					TOS= 100		
					h		
8	Heterogeneou	-	250	7	5	100/75	I. Obregon, et al.

 Table S2
 Typically catalytic conversions of LA into MTHF.

	s catalyst						ChemSusChem,
	Cu-Ni/Al ₂ O ₃						2015, 8, 3483-
	(Cu: 12 wt.%						3488.
	Ni: 23 wt.%)						
9	Heterogeneou	-	250	4	20	100/80	I. Obregjn, et al,
	s catalyst						ChemSusChem,
	Ni–Cu/Al ₂ O ₃						2016, 9, 2488-
	(Cu: 12 wt.%						2495
	Ni: 23 wt.%)						
10	Heterogeneou		130	5	24	>99/86	T. Mizugaki, ACS
	s catalyst						Sustainable
	Pt–Mo/H-β						Chem. Eng.,
	(Pt: 2 mol %,						2016, 4, 682-685
	Pt/Mo=15)						
11	Heterogeneou	-	250	fixed be	d reactor	99.9/65.	J, Zheng, Sci.
	s catalyst			WHSV of ethyl		2	Rep., 2016, 6,
	Cu/Al ₂ O ₃ -SiO ₂			levulinate: 0.6 h ⁻¹			28898.
	(Cu: 20.3			molar ratio of H ₂ to EL:			
	wt.%)			50 (mol/mol)			
12	Heterogeneou	-	220	3	10	100/99.8	This work
	s catalyst						
	Cu-Ni/Al-Zr(9)						
	(Cu: 10 wt.%,						
	Ni: 10 wt.%)						

Fig. **S7** GC-MS spectra of the reaction mixture with Cu-Ni/Al-Zr(9) catalyst.

