Supporting Information for

Ph_3P -Mediated Highly Selective $C(\alpha)$ -P Couplings of Quinone Monoacetals with $R_2P(O)H$: Convenient and Practical Synthesis of *ortho*-Phosphinyl Phenols

Ruwei Shen,^{a,} * Ming Zhang,^a Jing Xiao,^b Chao Dong,^a Li-Biao Han^{b,} *

^a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and

Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

E-mail: shenrw@njtech.edu.cn

^b National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.

E-mail: libiao-han@aist.go.jp

Table of Contents

1.	General information	S2
2.	General synthetic procedure for compounds 3	S2
3.	Experimental details and the characterization data of the products 3	S2-S20
4.	Crystal structure determination	S20-S22
5.	Additional results	S23-S29
6.	Scaled-up experiments	S30
7.	Synthetic transformations of the products	S31-S34
8. (Copies of ¹ H, ¹³ C and ³¹ P NMR spectra	S35-S186

1. General Information

Unless otherwise specified, all reactions were performed under dry N2 atmosphere, and the reaction temperatures are referred to the oil bath used. All solvents were distilled prior to use using the appropriate drying agents. Ouinone monoacetals 1 were prepared following the known procedures.^[1] Secondary phosphine oxides 2 were prepared via a procedure as reported in a previous report.^[2] Thin layer chromatography was performed on precoated glass-backed plates and visualized with UV light at 254 nm. Flash chromatography was performed on silica gel using petroleum ether and EtOAc as eluent. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AscendTM 400 spectrometer or a a JEOL LA-400 spectrometer at 400 MHz. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AscendTM 400 spectrometer or a JEOL LA-400 spectrometer at 100 MHz. Phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded on a Bruker AscendTM 400 spectrometer or a JEOL LA-400 spectrometer at 160 MHz. Spectra were obtained in CDCl₃ or DMSO-d₆. Chemical shifts are expressed in ppm and J values are given in Hz. Proton chemical shifts are reported relative to internal tetramethylsilane (TMS, $\delta 0.0$ ppm), or with the solvent reference relative to TMS employed as an internal standard (CDCl₃, δ 7.26 ppm; DMSO-d₆, δ 2.50 ppm). Carbon chemical shifts were reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, δ 77.0 ppm; DMSO-d₆, δ 39.5 ppm). Phosphorus chemical shifts were recorded using 85% phosphoric acid as the external standard. HRMS analysis was performed at the analytical center of State Key Laboratory of Materials-Oriented Chemical Engineering at NanJingTech (Nanjing, China) and the analytical center of National Institute of Advanced Industrial Science and Technology (AIST, Tsukuba, Japan).

2. General synthetic procedure for compounds 3

To a flame-dried Schlenk tube were added Ph_3P (5.2 mg, 0.02 mmol), QMA **1** (0.2 mmol), SPO **2** (1.2–3.0 equiv) and MeCN (2 mL) under a dry nitrogen atmosphere. The tube was sealed and the resulting mixture was stirred at 100 °C. When the reaction was complete (monitored by TLC), the volatiles were removed in vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc) to afford the pure product **3**. Note: SPOs **2** were flashly prepared, or were pretreated with aq. Na₂CO₃ and dried to remove any acidic impurity.

3. Experimental details and the characterization data of the products

(2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3aa): the reaction of 1a (31.0 mg,

^{[1] (}a) R. M. Moriarty and O. Prakash, *Org. React.*, 2001, **57**, 327; (b) Y. Tamura, T. Yakura, J. Haruta and Y. Kita, *J. Org. Chem.*, 1987, **52**, 3927; (c) A. E. Fleck, J. A. Hobart and G. W. Morrow, *Synth. Commun.*, 1992, **22**, 179.

^[2] R. Shen, J. Yang, H. Zhao, Y. Fu, L. Zhang and L.-B. Han, Chem. Comm. 2016, 52, 11959.

0.2 mmol), **2a** (48.6 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 16 h afforded **3aa** (yield: 63.2 mg, 97%), which was purified by column chromatography (PE/EtOAc = 4/1). ¹H NMR (CDCl₃, 400 MHz): δ = 10.67 (br, 1H), 7.73–7.67 (m, 4H), 7.62–7.57 (m, 2H), 7.52–7.48 (m, 4H), 7.02 (dd, J_I = 8.8 Hz, J_2 =2.8Hz, 1H), 6.94 (dd, J_I = 9.2 Hz, J_2 =5.2Hz, 1H), 6.47 (dd, J_I = 14.0 Hz, J_2 =2.8Hz, 1H), 3.66 (s, 3H). ³¹P NMR (CDCl₃, 160 MHz): δ = 39.0. This is a known compound.^[3]

(2-hydroxy-5-methoxy-3-methylphenyl)diphenylphosphine oxide (3ba): the reaction of 1b (33.6 mg, 0.2 mmol), 2a (48.9 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 30 h afforded 3ba (yield: 64.3 mg, 95%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 110.3–111.4 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.81 (br, 1H), 7.72–7.67 (m, 4H), 7.60–7.56 (m, 2H), 7.51–7.46 (m, 4H), 6.90 (d, J = 2.8 Hz, 1H), 6.30 (dd, J_I = 14.4 Hz, J_2 = 3.2 Hz, 1H), 3.63 (s, 3H) , 2.26 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.2 (d, J_{P-C} = 2.5 Hz), 151.3 (d, J_{P-C} = 17.0 Hz), 132.5 (d, J_{P-C} = 2.5 Hz), 132.0 (d, J_{P-C} = 10.4 Hz), 131.7 (d, J_{P-C} =104.1 Hz), 129.0 (d, J_{P-C} = 8.3 Hz), 128.7 (d, J_{P-C} = 12.3 Hz), 121.6 (d, J_{P-C} = 2.1 Hz), 113.3 (d, J_{P-C} = 11.1 Hz), 110.0 (d, J_{P-C} = 103.3 Hz), 55.7, 16.3 (d, J_{P-C} = 2.4 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 39.5; HRMS (ESI-TOF): m/z = 339.1147, calcd for C₂₀H₂₀O₃P [MH⁺] 339.1150.

(3-(tert-butyl)-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ca): the reaction of 1c (41.5 mg, 0.2 mmol), 2a (48.5 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 72 h afforded 3ca (yield: 52.6 mg, 70%), which was obtained by filtration of the reaction sulution and washing with ether. *Note: this compound is rather insoluable in many solvents including CDCl₃ or DMSO-d*₆. White solid, mp. 328.8–329.4 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.11$ (br, 1H), 8.17 (d, J = 13.6 Hz, 1H), 7.80–7.74 (m, 4H), 7.50–7.46 (m, 2H), 7.42–7.38(m, 4H), 6.79 (d, J = 6.8 Hz, 1H), 3.35 (s, 3H), 1.39 (s, 9H). ¹³C NMR (DMSO-d₆, 100 MHz): $\delta = 152.5$ (d, $J_{P-C} = 2.7$ Hz), 149.8 (d, $J_{P-C} = 12.9$ Hz), 141.5 (d, $J_{P-C} = 1.8$ Hz), 133.7 (d, $J_{P-C} = 101.7$ Hz), 131.3 (d, $J_{P-C} = 2.0$ Hz), 131.1 (d, $J_{P-C} = 10.1$ Hz), 128.2 (d, $J_{P-C} = 12.0$ Hz), 120.3 (d, $J_{P-C} = 7.5$ Hz), 117.7 (d, $J_{P-C} = 102.3$ Hz), 111.4 (d, $J_{P-C} = 10.3$ H

^[3] S. Wu, M. He and X. Zhang, Tetrahedron: Asymmetry, 2004, 15, 2177.

7.9 Hz), 55.6, 34.9, 28.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 29.1$; HRMS (ESI-TOF): m/z = 381.1622, calcd for C₂₃H₂₆O₃P [MH⁺] 381.1620.

(2-hydroxy-5-methoxy-[1,1'-biphenyl]-3-yl)diphenylphosphine oxide (3da): the reaction of 1d (46.1 mg, 0.2 mmol), 2a (48.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 48h afforded 3da (yield: 53.8 mg, 67%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 170.6–171.5 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.01 (br, 1H), 7.77–7.72 (m, 4H), 7.62–7.58 (m, 4H), 7.53–7.49 (m, 4H), 7.45–7.41 (m, 2H), 7.36–7.32 (m, 1H), 7.08 (d, *J* = 3.2 Hz, 1H), 6.50 (dd, *J_I* = 14.4 Hz, *J*₂= 3.2 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.9 (d, *J_{P-C}* = 3.1 Hz), 151.6 (d, *J_{P-C}* = 16.5 Hz), 137.3 (d, *J_{P-C}* = 1.7 Hz), 132.6 (d, *J_{P-C}* = 3.2 Hz), 132.07 (d, *J_{P-C}* = 9.8 Hz), 132.05, 131.9 (d, *J_{P-C}* = 103.8 Hz), 129.4, 128.8 (d, *J_{P-C}* = 102.5 Hz), 56.9. ³¹P NMR (CDCl₃, 160 MHz): δ = 39.6. HRMS (ESI-TOF): *m*/*z* = 401.1311, calcd for C₂₅H₂₂O₃P [MH⁺] 401.1307.

(3-fluoro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ea): the reaction of 1e (34.5 mg, 0.2 mmol), 2a (49.0 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded 3ea (yield: 58.5 mg, 85%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 168.2–169.4 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.85 (br, 1H), 7.72–7.67 (m, 4H), 7.63–7.59 (m, 2H), 7.53–7.49 (m, 4H), 6.87 (dd, J_1 = 12.0 Hz, J_2 = 2.8 Hz, 1H), 6.29 (dq, J_1 = 13.6 Hz, J_2 = 1.2 Hz, 1H), 3.65 (s, 3H). *Due to the F-C and P-C couplings, the* ¹³C NMR spectrum is not easy to be interpreted. A full list of the signals is given. ¹³C NMR (CDCl₃, 100 MHz): δ = 153.40, 153.25, 151.66, 151.58, 151.48, 151.40, 150.92, 150.77, 146.27, 146.24, 146.15, 146.12, 132.86, 132.84, 132.04, 131.93, 131.48, 130.42, 128.90, 128.77, 114.04, 114.01, 111.11, 111.08, 111.00, 110.96, 107.70, 107.69, 107.49, 107.47, 55.93. ³¹P NMR (CDCl₃, 160 MHz): δ = 39.4 (d, J_{F-P} = 10.2); HRMS (ESI-TOF): m/z = 343.0897, calcd for C₁₉H₁₇O₃PF [MH⁺] 343.0899.

(3-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3fa): the reaction of 1f (38.1 mg, 0.2 mmol), 2a (48.9 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 16 h afforded 3fa (yield: 65.2 mg, 90%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 170.6–172.5 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 11.28$ (br, 1H), 7.72–7.67 (m, 4H), 7.63–7.59 (m, 2H), 7.53–7.48 (m, 4H), 7.12 (d, J = 2.8 Hz, 1H), 6.46 (dd, $J_I = 14.0$ Hz, $J_2 = 2.8$ Hz, 1H), 3.66 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 153.1$ (d, $J_{P-C} = 3.6$ Hz), 151.5 (d, $J_{P-C} = 17.7$ Hz), 132.8 (d, $J_{P-C} = 3.3$ Hz), 131.9 (d, $J_{P-C} = 10.2$ Hz), 130.7 (d, $J_{P-C} = 105.3$ Hz), 128.8 (d, $J_{P-C} = 12.6$ Hz), 123.3 (d, $J_{P-C} = 13.0$ Hz), 120.2 (d, $J_{P-C} = 2.6$ Hz), 115.5 (d, $J_{P-C} = 11.1$ Hz), 112.9 (d, $J_{P-C} = 100.7$ Hz), 55.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 39.4$; HRMS (ESI-TOF): m/z = 359.0606, calcd for C₁₉H₁₇O₃PCI [MH⁺] 359.0604.

(3-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ga): the reaction of 1g (46.6 mg, 0.2 mmol), 2a (48.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded 3ga (yield: 61.2 mg, 76%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 147.7–148.8 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 11.39$ (br, 1H), 7.72–7.66 (m, 4H), 7.63–7.59 (m, 2H), 7.53–7.48 (m, 4H), 7.28 (d, J = 2.8 Hz, 1H), 6.50 (dd, $J_I = 14.4$ Hz, $J_2 = 3.2$ Hz, 1H), 3.66 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.0$ (d, $J_{P-C} = 2.6$ Hz), 151.8 (d, $J_{P-C} = 16.0$ Hz), 132.9 (d, $J_{P-C} = 2.5$ Hz), 132.1 (d, $J_{P-C} = 9.78$ Hz), 130.8 (d, $J_{P-C} = 105.4$ Hz), 128.9 (d, $J_{P-C} = 12.6$ Hz), 123.2 (d, $J_{P-C} = 1.8$ Hz), 116.5 (d, $J_{P-C} = 11.8$ Hz), 112.8 (d, $J_{P-C} = 99.5$ Hz), 112.75 (d, $J_{P-C} = 12.4$ Hz), 56.1. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 39.3$; HRMS (ESI-TOF): m/z = 403.0103, calcd for C₁₉H₁₇O₃PBr [MH⁺] 403.0099.

(2-hydroxy-3-iodo-5-methoxyphenyl)diphenylphosphine oxide (3ha): the reaction of 1h (56.0 mg, 0.2 mmol), 2a (48.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2

mL) at 100 °C for 16 h afforded **3ha** (yield: 54.0 mg, 60%), which was purified by column chromatography (PE/EtOAc = 10/1). White solid, mp. 115.6–116.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.61 (br, 1H), 7.71–7.66 (m, 4H), 7.63–7.59 (m, 2H), 7.53–7.48 (m, 5H), 6.53 (dd, J_1 = 14.0 Hz, J_2 = 2.8 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.2 (d, J_{P-C} = 2.7 Hz), 152.1 (d, J_{P-C} = 16.1 Hz), 132.9 (d, J_{P-C} = 12.7 Hz), 132.1 (d, J_{P-C} = 11.0 Hz), 130.7 (d, J_{P-C} = 104.5 Hz), 129.1 (d, J_{P-C} = 1.7 Hz), 128.9 (d, J_{P-C} = 12.1 Hz), 117.6 (d, J_{P-C} = 11.6 Hz), 111.5 (d, J_{P-C} = 99.8 Hz), 87.2 (d, J_{P-C} = 8.2 Hz), 56.1. ³¹P NMR (CDCl₃, 160 MHz): δ = 39.0; HRMS (ESI-TOF): m/z = 450. 9965, calcd for C₁₉H₁₇O₃PI [MH⁺] 450.9960.

(2-hydroxy-5-methoxy-3-(phenylethynyl)phenyl)diphenylphosphine oxide (3ia): the reaction of **1i** (50.9 mg, 0.2 mmol), **2a** (48.3 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24h afforded **3ia** (yield: 43.7 mg, 51%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 182.2–184.2 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.13 (br, 1H), 7.73–7.68 (m, 4H), 7.61–7.57 (m, 4H), 7.52–7.47 (m, 4H), 7.35–7.32 (m, 3H), 7.20 (d, *J* = 2.8 Hz, 1H), 6.55 (dd, *J*₁ = 14.0 Hz, *J*₂= 3.2 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.1 (d, *J*_{P-C} = 2.9 Hz), 151.2 (d, *J*_{P-C} = 15.8 Hz), 132.7 (d, *J*_{P-C} = 2.2 Hz), 132.0 (d, *J*_{P-C} = 10.8 Hz), 131.7, 131.0 (d, *J*_{P-C} = 105.4 Hz), 128.7 (d, *J*_{P-C} = 11.1 Hz), 111.4 (d, *J*_{P-C} = 102.2 Hz), 94.7, 84.5 (d, *J*_{P-C} = 3.3 Hz), 55.8. ³¹P NMR (CDCl₃, 160 MHz): δ = 38.7; HRMS (ESI-TOF): *m*/*z* = 425.1309, calcd for C₂₇H₂₂O₃P [MH⁺] 425.1307.

(2-hydroxy-5-methoxy-4-methylphenyl)diphenylphosphine oxide (3ja): the reaction of 1j (33.6 mg, 0.2 mmol), 2a (49.0 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 30 h afforded 3ja (yield: 60.9 mg, 90%), which was purified by column chromatography (PE/EtOAc = 10/1). White solid, mp. 204.1–205.0 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.60$ (br, 1H), 7.73–7.68 (m, 4H), 7.60–7.57 (m, 2H), 7.51–7.48 (m, 4H), 6.81 (d, J = 5.2 Hz, 1H), 6.30 (d, J = 14.0 Hz, 1H), 3.57 (s, 3H) , 2.20 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.8$ (d, $J_{P-C} = 3.2$ Hz), 150.6 (d, $J_{P-C} = 14.8$ Hz), 135.0 (d, $J_{P-C} = 2.5$ Hz), 131.90 (d, $J_{P-C} = 11.2$ Hz), 131.87 (d, $J_{P-C} = 104.7$ Hz), 128.6 (d, $J_{P-C} = 12.2$

Hz), 120.8 (d, $J_{P-C} = 9.8$ Hz), 111.5 (d, $J_{P-C} = 11.7$ Hz), 106.9 (d, $J_{P-C} = 106.9$ Hz), 55.8, 16.6. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 39.2$. HRMS (ESI-TOF): m/z = 339.1151, calcd for C₂₀H₂₀O₃P [MH⁺] 339.1150. The structure of this compound was further confirmed by an X-ray crystallographic analysis.

(2-hydroxy-4,5-dimethoxyphenyl)diphenylphosphine oxide (3ka): the reaction of 1k (37.2 mg, 0.2 mmol), 2a (80.8 mg, 0.4 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 48 h afforded 3ka (yield: 56.7 mg, 80%), which was purified by column chromatography (PE/EtOAc = 3/1). White solid, mp. 232.6–233.4 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.98$ (br, 1H), 7.72–7.69 (m, 4H), 7.61–7.57 (m, 2H), 7.52–7.48 (m, 4H), 6.53 (d, J = 4.4 Hz, 1H), 6.35 (d, J = 13.2 Hz, 1H), 3.89 (s, 3H) , 3.64 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 160.1$ (d, $J_{P-C} = 3.0$ Hz), 154.6 (d, $J_{P-C} = 1.5$ Hz), 142.3 (d, $J_{P-C} = 15.0$ Hz), 132.5 (d, $J_{P-C} = 12.5$ Hz), 132.1 (d, $J_{P-C} = 105.3$ Hz), 128.7 (d, $J_{P-C} = 12.3$ Hz), 113.4 (d, $J_{P-C} = 12.6$ Hz), 102.0 (d, $J_{P-C} = 9.6$ Hz), 99.6 (d, $J_{P-C} = 110.3$ Hz), 55.7, 56.0. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 39.4$; HRMS (ESI-TOF): m/z = 355.1097, calcd for C₂₀H₂₀O₄P [MH⁺] 355.1099.

The reaction of **11** (37.8 mg, 0.2 mmol), **2a** (49.1 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24 h afforded **3la** (yield: 47.3 mg, 66%) and **3la'** (yield: 23.0 mg, 32%). The **3la** and **3la'** was seperated by column chromatography (PE/EtOAc = 10/1-4/1). (**4-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3la):** white solid, mp. 239.3–240.5 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.86 (br, 1H), 7.72–7.67 (m, 4H), 7.64–7.60 (m, 2H), 7.54–7.50 (m, 4H), 7.06 (d, *J* = 4.8 Hz, 1H), 6.44 (d, *J* = 13.6 Hz, 1H), 3.64 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.3 (d, *J*_{P-C} = 3.1 Hz), 148.1 (d, *J*_{P-C} = 5.9 Hz), 132.8 (d, *J*_{P-C} = 12.3 Hz), 132.0 (d, *J*_{P-C} = 9.7 Hz), 131.2 (d, *J*_{P-C} = 105.3 Hz), 129.8 (d, *J*_{P-C} = 3.0 Hz), 128.9 (d, *J*_{P-C} = 12.3 Hz), 120.6 (d, *J*_{P-C} = 9.1 Hz), 114.4 (d, *J*_{P-C} = 12.0 Hz), 109.3 (d, *J*_{P-C} = 104.2 Hz), 57.0. ³¹P NMR (CDCl₃, 160 MHz): δ = 38.9; HRMS (ESI-TOF): *m*/*z* = 359.0608, calcd for C₁₉H₁₇O₃PC1 [MH⁺] 359.0604.

(2-chloro-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3la'): white solid, mp. 107.9–108.8 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 12.42$ (br, 1H), 7.86–7.80 (m, 4H), 7.62–7.58 (m, 2H), 7.53–7.48 (m, 4H), 7.13 (d, J = 8.8 Hz, 1H), 6.96 (dd, $J_I = 9.2$ Hz, $J_2 = 4.8$ Hz,

1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 160.2$ (d, $J_{P-C} = 11.9$ Hz), 148.1 (d, $J_{P-C} = 10.6$ Hz), 132.5 (d, $J_{P-C} = 3.2$ Hz), 132.3 (d, $J_{P-C} = 10.1$ Hz), 130.8 (d, $J_{P-C} = 108.8$ Hz), 128.5 (d, $J_{P-C} = 12.9$ Hz), 123.3 (d, $J_{P-C} = 4.0$ Hz), 119.3 (d, $J_{P-C} = 2.7$ Hz), 118.1 (d, $J_{P-C} = 8.9$ Hz), 109.6 (d, $J_{P-C} = 102.8$ Hz), 56.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 43.1$; HRMS (ESI-TOF): m/z = 359.0608, calcd for C₁₉H₁₇O₃PCl [MH⁺] 359.0604.

The reaction of **1m** (47.3 mg, 0.2 mmol), **2a** (48.3 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24 h afforded **3ma** (yield: 51.0 mg, 63%) and **3ma'** (yield: 19.0 mg, 23%). **3ma** and **3ma'** were seperated by column chromatography (PE/EtOAc = 10/1-4/1). (**4-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ma):** white solid, mp. 227.9–229.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.81 (br, 1H), 7.72–7.67 (m, 4H), 7.63–7.60 (m, 2H), 7.53–7.50 (m, 4H), 7.25 (d, *J* = 4.4 Hz, 1H), 6.41 (d, *J* = 13.6 Hz, 1H), 3.63 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.2 (d, *J*_{P-C} = 1.7 Hz), 148.9 (d, *J*_{P-C} = 14.1 Hz), 132.8, 131.9 (d, *J*_{P-C} = 10.3 Hz), 131.1 (d, *J*_{P-C} = 105.3 Hz), 128.8 (d, *J*_{P-C} = 12.2 Hz), 123.7 (d, *J*_{P-C} = 9.4 Hz), 119.2, 113.9 (d, *J*_{P-C} = 11.5 Hz), 110.0 (d, *J*_{P-C} = 101.7 Hz), 56.9. ³¹P NMR (CDCl₃, 160 MHz): δ = 38.9; HRMS (ESI-TOF): *m*/*z* = 403. 0101, calcd for C₁₉H₁₇O₃PBr [MH⁺] 403.0099. The structure of this compound was further confirmed by an X-ray crystallographic analysis.

(2-bromo-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3ma'): white solid, mp. 141.3–142.8 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 12.58 (br, 1H), 7.89–7.84 (m, 4H), 7.62–7.58 (m, 2H), 7.53–7.48 (m, 4H), 7.12 (d, *J* = 9.2 Hz, 1H), 7.02 (dd, *J_I* = 9.2 Hz, *J₂*= 4.8 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 161.1 (d, *J_{P-C}* = 2.7 Hz), 149.0 (d, *J_{P-C}* = 10.0 Hz), 132.6 (d, *J_{P-C}* = 10.8 Hz), 132.5 (d, *J_{P-C}* = 3.0 Hz), 130.8 (d, *J_{P-C}* = 8.1 Hz), 128.5 (d, *J_{P-C}* = 12.4 Hz), 119.1 (d, *J_{P-C}* = 8.6 Hz), 119.0, 114.0 (d, *J_{P-C}* = 5.9 Hz), 111.0 (d, *J_{P-C}* = 104.1 Hz), 57.2. ³¹P NMR (CDCl₃, 160 MHz): δ = 45.2; HRMS (ESI-TOF): *m/z* = 403. 0103, calcd for C₁₉H₁₇O₃PBr [MH⁺] 403.0099. The structure of this compound was further confirmed by an X-ray crystallographic analysis.

(1-hydroxy-4-methoxynaphthalen-2-yl)diphenylphosphine oxide (3na): the reaction of 1n (40.8 mg, 0.2 mmol), 2a (48.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24 h afforded 3na (yield: 58.4 mg, 78%), which was purified by column

chromatography (PE/EtOAc = 6/1). White solid, mp. 161.0–161.8 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.86 (br, 1H), 8.38 (d, *J* = 7.6 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.76 (dd, *J*₁ = 12.0 Hz, *J*₂= 6.8 Hz, 4H), 7.63–7.55 (m, 4H), 7.52–7.47 (m, 4H), 6.19 (d, *J* = 12.4 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.8 (d, *J*_{P-C} = 1.5 Hz), 147.7 (d, *J*_{P-C} = 15.4 Hz), 132.5 (d, *J*_{P-C} = 1.8 Hz), 132.0 (d, *J*_{P-C} = 10.6 Hz), 131.9 (d, *J*_{P-C} = 104.2 Hz), 128.8 (d, *J*_{P-C} = 2.6 Hz), 128.7 (d, *J*_{P-C} = 12.2 Hz), 128.5, 126.6, 126.5, 123.1, 121.7, 102.6 (d, *J*_{P-C} = 12.4 Hz), 100.3 (d, *J*_{P-C} = 106.6 Hz), 55.6. ³¹P NMR (CDCl₃, 160 MHz): δ = 40.6; HRMS (ESI-TOF): *m*/*z* = 375.1154, calcd for C₂₃H₂₀O₃P [MH⁺] 375.1150.

6-(**diphenylphosphoryl**)-**5**-hydroxy-**8**-methoxynaphthalen-1-yl acetate (**3oa**): the reaction of **1oa** (53.2 mg, 0.2 mmol), **2a** (49.0 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 48 h afforded **3oa** (yield: 75.4 mg, 86%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 239.0–240.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.92 (br, 1H), 8.34 (dd, J_I = 8.4 Hz, J_2 = 1.2 Hz, 1H), 7.77–7.71 (m, 4H), 7.62–7.58 (m, 2H), 7.55–7.48 (m, 5H), 7.22 (dd, J_I = 7.2 Hz, J_2 = 0.8 Hz, 1H), 6.25 (d, J = 12.8 Hz, 1H) 3.65 (s, 3H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 170.3, 156.7 (d, J_{P-C} = 1.8 Hz), 147.2 (d, J_{P-C} = 13.9 Hz), 146.1, 132.7 (d, J_{P-C} = 3.4 Hz), 132.0 (d, J_{P-C} = 10.7 Hz), 131.5 (d, J_{P-C} = 104.5 Hz), 128.83 (d, J_{P-C} = 9.9 Hz), 128.80 (d, J_{P-C} = 12.4 Hz), 126.5, 122.9, 122.2 (d, J_{P-C} = 2.7 Hz), 121.9 (d, J_{P-C} = 1.4 Hz), 105.6 (d, J_{P-C} = 11.9 Hz), 101.5 (d, J_{P-C} = 105.4 Hz), 56.6, 20.9. ³¹P NMR (CDCl₃, 160 MHz): δ = 40.1; HRMS (ESI-TOF): m/z = 433.1207, calcd for C₂₅H₂₂O₅P [MH⁺] 433.1205.

The reaction of **1p** (67.6 mg, 0.4 mmol), **2a** (96.6 mg, 0.48 mmol) and Ph₃P (10.5 mg, 0.04 mmol) in MeCN (4 mL) at 100 °C for 72 h afforded **3pa** (yield: 16.5 mg, 12%) and **3pa'** (yield: 118.4 mg, 80%), which were purified after column chromatography (PE/EtOAc = 3/1-1/1). (6-hydroxybenzo[d][1,3]dioxol-5-yl)diphenylphosphine oxide (**3pa**): ¹H NMR (CDCl₃, 400 MHz): $\delta = 11.15$ (br, 1H), 7.71–7.66 (m, 4H), 7.61–7.57 (m, 2H), 7.52–7.47 (m, 4H), 6.50 (d, J = 4.0 Hz, 1H), 6.32 (t, J = 12.4 Hz, 1H), 5.92 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 161.3$ (d, $J_{P-C} = 4.2$ Hz), 152.7 (d, $J_{P-C} = 2.3$ Hz), 140.8 (d, $J_{P-C} = 18.2$ Hz), 132.5 (d, $J_{P-C} = 2.0$ Hz), 132.0 (d, $J_{P-C} = 10.5$ Hz), 131.9 (d, $J_{P-C} = 104.9$ Hz), 128.8 (d, $J_{P-C} = 12.3$

Hz), 108.7 (d, $J_{P-C} = 12.7$ Hz), 101.6, 100.5 (d, $J_{P-C} = 108.9$ Hz), 100.2 (d, $J_{P-C} = 9.0$ Hz). ³¹P NMR (CDCl₃, 160 MHz): $\delta = 39.9$. HRMS (ESI-TOF): m/z = 339.0787, calcd for C₁₉H₁₆O₄P [MH⁺] 339.0786.

7-(diphenylphosphoryl)-7a-methoxy-7,7a-dihydrobenzo[**d**][**1,3**]**dioxol-5(6H)-one** (**3pa'):** White solid, mp. 207.7–209.4 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.84–7.78 (m, 2H), 7.74– 7.69 (m, 2H), 7.54–7.47 (m, 6H), 5.57 (s, 1H), 5.49 (s, 1H), 5.40 (s, 1H), 3.71 (t, *J* = 6.6 Hz, 1H), 3.40 (s, 3H), 2.91–2.77 (m, 1H), 2.52 (dd, *J*₁ = 18.0 Hz, *J*₂= 10.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 194.7, 168.6, 133.0 (d, *J*_{P-C} = 101.4 Hz), 132.1 (d, *J*_{P-C} = 1.5 Hz), 131.7 (d, *J*_{P-C} = 3.3 Hz), 130.9 (d, *J*_{P-C} = 10.0 Hz), 130.8, 130.6 (d, *J*_{P-C} = 8.6 Hz), 128.9 (d, *J*_{P-C} = 11.6 Hz), 128.5 (d, *J*_{P-C} = 11.5 Hz), 102.6, 101.6, 99.5, 50.4, 38.6 (d, *J*_{P-C} = 70.3 Hz), 34.6. ³¹P NMR (CDCl₃, 160 MHz): δ = 28.4. HRMS (ESI-TOF): *m*/*z* = 371.1050, calcd for C₂₀H₂₀O₅P [MH⁺] 371.1048. The structure of this compound was further confirmed by an X-ray crystallographic analysis.

(2-hydroxy-5-methoxyphenyl)di-p-tolylphosphine oxide (3ab): the reaction of 1a (30.8 mg, 0.2 mmol), 2b (55.2 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24 h afforded 3ab (yield: 66.9 mg, 95%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 170.5–172.3 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.74$ (br, 1H), 7.60–7.55 (m, 4H), 7.30–7.27 (m, 4H), 6.99 (dd, $J_I = 8.8$ Hz, $J_2 = 2.8$ Hz, 1H), 6.91 (dd, $J_I = 8.8$ Hz, $J_2 = 5.2$ Hz, 1H), 6.47 (dd, $J_I = 14.0$ Hz, $J_2 = 3.2$ Hz, 1H), 3.64 (s, 3H) , 2.41 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.8$ (d, $J_{P-C} = 1.8$ Hz), 151.8 (d, $J_{P-C} = 14.3$ Hz), 143.2 (d, $J_{P-C} = 3.2$ Hz), 132.1 (d, $J_{P-C} = 10.3$ Hz), 129.5 (d, $J_{P-C} = 12.7$ Hz), 128.4 (d, $J_{P-C} = 107.4$ Hz), 120.3 (d, $J_{P-C} = 2.0$ Hz), 119.3 (d, $J_{P-C} = 8.5$ Hz), 116.2 (d, $J_{P-C} = 10.8$ Hz), 111.9 (d, $J_{P-C} = 103.8$ Hz), 55.8, 21.7. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 39.2$. HRMS (ESI-TOF): m/z = 353.1305, calcd for C₂₁H₂₂O₃P [MH⁺] 353.1307.

(2-hydroxy-5-methoxyphenyl)bis(4-methoxyphenyl)phosphine oxide (3ac): the reaction of 1a (31.7 mg, 0.21 mmol), 2c (100.0 mg, 0.38 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12h afforded 3ac (yield: 73.1 mg, 92%), which was purified by column chromatography (PE/EtOAc = 2/1). White solid, mp. 167.1–168.0 °C. ¹H NMR (CDCl₃, 400

MHz): $\delta = 10.77$ (br, 1H), 7.64–7.58 (m, 4H), 7.00–6.97 (m, 5H), 6.91 (dd, $J_I = 9.2$ Hz, $J_{2} = 5.6$, 1H), 6.46 (dd, $J_I = 14.0$ Hz, $J_2 = 2.8$, 1H), 3.84 (s, 6H), 3.65 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 162.8$ (d, $J_{P-C} = 3.3$ Hz), 157.5 (d, $J_{P-C} = 1.6$ Hz), 151.7 (d, $J_{P-C} = 15.4$ Hz), 133.9 (d, $J_{P-C} = 11.5$ Hz), 122.8 (d, $J_{P-C} = 111.3$ Hz), 120.1 (d, $J_{P-C} = 2.1$ Hz), 119.2 (d, $J_{P-C} = 8.2$ Hz), 116.2 (d, $J_{P-C} = 10.8$ Hz), 114.2 (d, $J_{P-C} = 13.6$ Hz), 112.2 (d, $J_{P-C} = 103.9$ Hz), 55.7, 55.3. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 38.7$. HRMS (ESI-TOF): m/z = 385.1208, calcd for $C_{21}H_{22}O_5P$ [MH⁺] 385.1205.

bis(4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3ad): the reaction of 1a (30.7 mg, 0.2 mmol), 2d (57.2 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24 h afforded 3ad (yield: 64.8 mg, 90%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 182.7–184.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.44 (br, 1H), 7.72–7.66 (m, 4H), 7.21–7.17 (m, 4H), 7.03 (dd, J_I = 8.8 Hz, J_2 = 2.8 Hz, 1H), 6.94 (dd, J_I = 8.8 Hz, J_2 = 5.6 Hz, 1H), 6.46 (d, J = 14.4 Hz, 1H), 3.67 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 165.4 (dd, J_{F-C} = 252.9 Hz, J_{P-C} = 3.1 Hz), 157.4 (d, J_{P-C} = 2.4 Hz), 152.0 (d, J_{P-C} = 15.3 Hz), 134.5 (dd, J_{F-C} = 11.6 Hz, J_{P-C} = 8.7Hz), 127.2 (dd, J_{P-C} = 21.2 Hz, J_{P-C} = 3.5 Hz), 120.7 (d, J_{P-C} = 2.3 Hz), 119.6 (d, J_{P-C} = 105.0 Hz), 55.7. ³¹P NMR (CDCl₃, 160 MHz): δ = 37.1; HRMS (ESI-TOF): m/z = 361.0807, calcd for C₁₉H₁₆O₃PF₂ [MH⁺] 361.0805.

(2-hydroxy-5-methoxyphenyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3ae): the reaction of 1a (30.6 mg, 0.2 mmol), 2e (81.2 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12h afforded 3ae (yield: 77.6 mg, 85%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 154.8–155.9 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.12 (br, 1H), 7.85–7.74 (m, 8H), 7.06 (dd, J_I = 8.8 Hz, J_2 = 2.8 Hz, 1H), 6.97 (dd, J_I = 9.2 Hz, J_2 = 6.0 Hz, 1H), 6.57–6.53 (m, 1H), 3.68 (s, 3H). Due to the F-C and P-C couplings, the ¹³C NMR spectrum is not easy to be interpreted. A full list of the signals is given. ¹³C NMR (CDCl₃, 100 MHz): δ = 157.02, 157.00, 152.40, 152.25, 135.72, 134.98, 134.96, 134.68, 134.66, 134.63, 134.33, 134.30, 134.00, 133.98, 132.44, 132.33,

127.34, 125.77, 125.73, 125.70, 125.66, 125.60, 125.57, 125.52, 124.62, 121.91, 121.29, 121.27, 119.74, 119.64, 119.20, 115.91, 115.80, 110.66, 109.60, 55.77. ³¹P NMR (CDCl₃, 160 MHz): δ = 35.5; HRMS (ESI-TOF): m/z = 461.0746, calcd for C₂₁H₁₆O₃PF₆ [MH⁺] 461.0741.

bis(3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3af): the reaction of **1a** (31.3 mg, 0.2 mmol), **2f** (65.1 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12h afforded **3af** (yield: 55.7 mg, 70%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 191.5–192.7 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.29$ (br, 1H), 7.67 (d, J = 12.8 Hz, 2H), 7.59–7.52 (m, 4H), 7.48–7.43 (m, 2H), 7.05 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.8$ Hz, 1H), 6.96 (dd, $J_1 = 8.8$ Hz, $J_2 = 5.2$ Hz, 1H), 6.46 (dd, $J_1 = 14.4$ Hz, $J_2 = 2.8$ Hz, 1H), 3.69 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.6$ (d, $J_{P-C} = 2.0$ Hz), 152.1 (d, $J_{P-C} = 15.7$ Hz), 135.4 (d, $J_{P-C} = 15.7$ Hz), 133.3 (d, $J_{P-C} = 102.5$ Hz), 133.0 (d, $J_{P-C} = 3.0$ Hz), 131.7 (d, $J_{P-C} = 11.6$ Hz), 130.3 (d, $J_{P-C} = 12.5$ Hz), 129.9 (d, $J_{P-C} = 9.9$ Hz), 121.1 (d, $J_{P-C} = 2.9$ Hz), 119.8 (d, $J_{P-C} = 9.5$ Hz), 115.8 (d, $J_{P-C} = 11.3$ Hz), 109.9 (d, $J_{P-C} = 104.8$ Hz), 55.8. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 36.5$; HRMS (ESI-TOF): m/z = 393.0215, calcd for C₁₉H₁₆O₃P Cl₂ [MH⁺] 393.0214.

(2-hydroxy-5-methylphenyl)di-o-tolylphosphine oxide (3ag): the reaction of 1a (30.8 mg, 0.2 mmol), 2g (138.1 mg, 0.6 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 48 h afforded 3ag (yield: 61.3 mg, 87%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 177.7–178.6 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.80$ (br, 1H), 7.49–7.45 (m, 2H), 7.36–7.33 (m, 2H), 7.21–7.16 (m, 2H), 7.14–7.08 (m, 2H), 7.06–7.03 (m, 1H), 6.99–6.95 (m, 1H), 6.16 (dd, $J_1 = 17.2$ Hz, $J_2 = 2.8$ Hz, 1H), 3.60 (s, 3H) , 2.58 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 158.3$ (d, $J_{P-C} = 1.7$ Hz), 151.8 (d, $J_{P-C} = 15.6$ Hz), 143.4 (d, $J_{P-C} = 8.3$ Hz), 132.6 (d, $J_{P-C} = 2.0$ Hz), 132.5 (d, $J_{P-C} = 13.3$ Hz), 132.0 (d, $J_{P-C} = 2.8$ Hz), 132.3 (d, $J_{P-C} = 10.8$ Hz), 120.5 (d, $J_{P-C} = 2.2$ Hz), 119.5 (d, $J_{P-C} = 9.3$ Hz), 116.2 (d, $J_{P-C} = 10.5$ Hz), 111.1 (d, $J_{P-C} = 101.9$ Hz), 55.7, 21.6 (d, $J_{P-C} = 5.4$ Hz). ³¹P NMR (CDCl₃, 160 MHz): $\delta = 46.2$; HRMS (ESI-TOF): m/z = 353.1310, calcd for C₂₁H₂₂O₃P [MH⁺] 353.1307.

(4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ah): the reaction of **1a** (30.8 mg, 0.2 mmol), **2h** (52.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24 h afforded **3ah** (yield: 62.7 mg, 92%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 185.9–186.8 °C. ¹H NMR $(CDCl_3, 400 \text{ MHz}): \delta = 10.56 \text{ (br, 1H)}, 7.73-7.66 \text{ (m, 4H)}, 7.60 \text{ (t, } J = 7.6 \text{ Hz}, 1\text{H}), 7.53-7.48 \text{ (cd)}$ (m, 2H), 7.21–7.16 (m, 2H), 7.02 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.8$ Hz, 1H), 6.94 (dd, $J_1 = 9.2$ Hz, $J_2 = 1.0$ 5.6 Hz, 1H), 6.46 (dd, $J_1 = 14.4$ Hz, $J_2 = 2.8$ Hz, 1H), 3.58 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 165.3$ (dd, $J_{F-C} = 253.7$ Hz, $J_{P-C} = 3.6$ Hz), 157.6 (d, $J_{P-C} = 1.8$ Hz), 151.9 (d, $J_{P-C} = 1.8$ Hz) 15.2 Hz), 134.5 (dd, $J_{F-C} = 12.2$ Hz, $J_{P-C} = 9.3$ Hz), 132.7 (d, $J_{P-C} = 3.0$ Hz), 131.9 (d, $J_{P-C} = 12.2$ Hz, J_{P-C} 11.0 Hz), 132.2 (d, $J_{P-C} = 105.3$ Hz), 128.8 (d, $J_{P-C} = 12.3$ Hz), 127.5 (dd, $J_{P-C} = 107.1$ Hz, J_{F-C} =3.4 Hz), 120.6 (d, J_{P-C} = 1.9 Hz), 119.5 (d, J_{P-C} = 8.7 Hz), 116.1 (dd, J_{F-C} = 21.0 Hz, J_{P-C} = 13.4 Hz), 116.0 (d, $J_{P-C} = 10.6$ Hz), 111.0 (d, $J_{P-C} = 104.4$ Hz), 55.7. ³¹P NMR (CDCl₃, 160 MHz): δ = 38.1; HRMS (ESI-TOF): m/z = 343.0901, calcd for C₁₉H₁₇O₃PF [MH⁺] 343.0899.

(2-hydroxy-5-methoxyphenyl)(4-methoxyphenyl)(phenyl)phosphine oxide (3ai): the reaction of 1a (30.9 mg, 0.2 mmol), 2i (56.1 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 30 h afforded 3ai (yield: 69.6 mg, 98%), which was purified by column chromatography (PE/EtOAc = 2/1). ¹H NMR (CDCl₃, 400 MHz): δ = 10.73 (br, 1H), 7.73–7.67 (m, 2H), 7.63–7.56 (m, 3H), 7.51–7.46 (m, 2H), 7.02–6.98 (m, 3H), 6.93 (dd, J_1 = 9.2 Hz, J_2 = 5.6 Hz, 1H), 6.47 (dd, J_1 = 14.0 Hz, J_2 = 2.8 Hz, 1H), 3.85 (s, 3H), 3.65 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 163.0 (d, J_{P-C} = 2.6 Hz), 157.7 (d, J_{P-C} = 3.1 Hz), 151.8 (d, J_{P-C} = 104.7 Hz), 128.7 (d, J_{P-C} = 12.3 Hz), 122.5 (d, J_{P-C} = 110.5 Hz), 120.3 (d, J_{P-C} = 3.1 Hz), 119.4 (d, J_{P-C} = 8.6 Hz), 116.2 (d, J_{P-C} = 10.5 Hz), 114.3 (d, J_{P-C} = 13.1 Hz), 111.7 (d, J_{P-C} = 103.5 Hz), 55.8, 55.4. ³¹P NMR (CDCl₃, 160 MHz): δ = 38.9; HRMS (ESI-TOF): m/z = 355.1097, calcd for C₂₀H₂₀O₄P [MH⁺] 355.1099.

(3,5-dimethylphenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3aj): the reaction of **1a** (31.0 mg, 0.2 mmol), **2j** (55.3 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded **3aj** (yield: 68.6 mg, 97%), which was purified by column chromatography (PE/EtOAc = 4/1). ¹H NMR (CDCl₃, 400 MHz): δ = 7.72–7.66 (m, 2H), 7.59–7.56 (m, 1H), 7.51–7.46 (m, 2H), 7.29 (d, *J* = 13.2 Hz, 2H), 7.20 (s, 1H), 7.01 (dd, *J*₁ = 8.8 Hz, *J*₂= 2.8 Hz, 1H), 6.93 (dd, *J*₁ = 9.2 Hz, *J*₂= 5.2 Hz, 1H), 6.49 (dd, *J*₁ = 14.4 Hz, *J*₂= 3.2 Hz, 1H), 3.66 (s, 3H), 2.32 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ = 157.7 (d, *J*_{P-C} = 12.5 Hz), 151.7 (d, *J*_{P-C} = 15.5 Hz), 138.5 (d, *J*_{P-C} = 7.0 Hz), 134.3 (d, *J*_{P-C} = 3.2 Hz), 132.4 (d, *J*_{P-C} = 9.9 Hz), 128.6 (d, *J*_{P-C} = 12.3 Hz), 120.2 (d, *J*_{P-C} = 2.4 Hz), 119.3 (d, *J*_{P-C} = 8.4 Hz), 116.3 (d, *J*_{P-C} = 11.4 Hz), 110.5 (d, *J*_{P-C} = 103.1 Hz), 55.7, 21.3. ³¹P NMR (CDCl₃, 160 MHz): δ = 39.4. HRMS (ESI-TOF): *m*/*z* = 353.1304, calcd for C₂₁H₂₂O₃P [MH⁺] 353.1307. The structure of this compound was further confirmed by an X-ray crystallographic analysis.

(3,5-dimethylphenyl)(2-hydroxy-5-methoxy-3-methylphenyl)(phenyl)phosphine oxide (3bj): the reaction of 1b (34.0 mg, 0.2 mmol), 2j (56.0 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 48 h afforded 3bj (yield: 68.8 mg, 93%), which was purified by column chromatography (PE/EtOAc = 15/1). ¹H NMR (CDCl₃, 400 MHz): δ = 10.87 (br, 1H), 7.72–7.66 (m, 2H), 7.59–7.55 (m, 1H), 7.50–7.45 (m, 2H), 7.29 (d, *J* = 12.8 Hz, 2H), 7.19 (s, 1H), 6.89 (d, *J* = 2.8 Hz, 1H), 6.32 (dd, *J*₁ = 13.6 Hz, *J*₂= 2.8 Hz, 1H), 3.64 (s, 3H), 2.32 (s, 6H), 2.26 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.2 (d, *J*_{P-C} = 2.9 Hz), 151.2 (d, *J*_{P-C} = 15.6 Hz), 138.5 (d, *J*_{P-C} = 13.0 Hz), 134.3 (d, *J*_{P-C} = 2.8 Hz), 132.4 (d, *J*_{P-C} = 3.3 Hz), 132.02 (d, *J*_{P-C} = 9.9 Hz), 131.97 (d, *J*_{P-C} = 103.9 Hz), 131.3 (d, *J*_{P-C} = 104.5 Hz), 129.5 (d, *J*_{P-C} = 10.4 Hz), 128.9 (d, *J*_{P-C} = 8.2 Hz), 128.7 (d, *J*_{P-C} = 12.5 Hz), 121.5 (d, *J*_{P-C} = 2.7 Hz), 113.5 (d, *J*_{P-C} = 12.2 Hz), 110.4 (d, *J*_{P-C} = 103.3 Hz), 55.8, 21.4, 16.4 (d, *J*_{P-C} = 2.7 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 39.8; HRMS (ESI-TOF): *m*/*z* = 367.1465, calcd for C₂₂H₂₄O₃P [MH⁺] 367.1463.

(2-hydroxy-5-methoxyphenyl)(phenyl)(o-tolyl)phosphine oxide (3ak): the reaction of 1a (30.3 mg, 0.2 mmol), 2k (51.9 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 $^{\circ}$ C for 24h afforded 3ak (yield: 55.9 mg, 84%), which was purified by column

chromatography (PE/EtOAc = 4/1). White solid, mp. 188.4–190.1 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.68 (br, 1H), 7.74–7.69 (m, 2H), 7.61–7.57 (m, 1H), 7.53–7.44 (m, 3H), 7.32–7.29 (m, 1H), 7.20–7.10 (m, 2H), 7.02 (dd, J_I = 8.8 Hz, J_2 = 3.2 Hz, 1H), 6.95 (dd, J_I = 9.2 Hz, J_2 = 5.6 Hz, 1H), 6.35 (dd, J_I = 14.4 Hz, J_2 = 3.2 Hz, 1H), 3.63 (s, 3H), 2.48 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 157.6 (d, J_{P-C} = 3.1 Hz), 151.8 (d, J_{P-C} = 15.1 Hz), 143.3 (d, J_{P-C} = 7.7 Hz), 133.2 (d, J_{P-C} = 13.4 Hz), 132.7 (d, J_{P-C} = 2.6 Hz), 132.3 (d, J_{P-C} = 2.8 Hz), 132.1 (d, J_{P-C} = 11.3 Hz), 131.54 (d, J_{P-C} = 103.9 Hz), 131.48 (d, J_{P-C} = 10.6 Hz), 129.4 (d, J_{P-C} = 105.5 Hz), 128.8 (d, J_{P-C} = 12.3 Hz), 125.4 (d, J_{P-C} = 13.3 Hz), 120.2 (d, J_{P-C} = 2.34 Hz), 119.4 (d, J_{P-C} = 8.4 Hz), 116.0 (d, J_{P-C} = 11.3 Hz), 111.5 (d, J_{P-C} = 102.5 Hz), 55.7, 21.2 (d, J_{P-C} = 5.2 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 41.4; HRMS (ESI-TOF): m/z = 339.1157, calcd for C₂₀H₂₀O₃P [MH⁺] 339.1150.

(3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3al): the reaction of 1a (30.9 mg, 0.2 mmol), 2l (56.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded **3al** (yield: 55.3 mg, 77%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 171.0–171.8 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.47$ (br, 1H), 7.71–7.66 (m, 3H), 7.63–7.50 (m, 5H), 7.43 (td, $J_1 =$ 7.6 Hz, J_2 = 3.2 Hz, 1H), 7.03 (dd, J_1 = 8.8 Hz, J_2 = 5.4 Hz, 1H), 6.95 (dd, J_1 = 9.2 Hz, J_2 = 5.6 Hz, 1H), 6.47(dd, $J_1 = 14.0$ Hz, $J_2 = 2.8$ Hz, 1H), 3.67 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 157.7 (d, J_{P-C} = 2.0 Hz), 151.9 (d, J_{P-C} = 15.1 Hz), 135.2 (d, J_{P-C} = 16.1 Hz), 134.9 (d, J_{P-C} = 102.2 Hz), 132.8 (d, $J_{P-C} = 2.5$ Hz), 132.7 (d, $J_{P-C} = 2.6$ Hz), 131.9 (d, $J_{P-C} = 10.6$ Hz), 131.7 (d, $J_{P-C} = 10.5$ Hz), 130.7 (d, $J_{P-C} = 105.5$ Hz), 130.1 (d, $J_{P-C} = 13.9$ Hz), 130.0 (d, $J_{P-C} = 10.0$ Hz), 128.8 (d, $J_{P-C} = 12.5$ Hz), 120.8 (d, $J_{P-C} = 2.2$ Hz), 119.6 (d, $J_{P-C} = 10.1$ Hz), 115.9 (d, $J_{P-C} = 11.1$ Hz), 110.5 (d, $J_{P-C} = 104.5$ Hz), 55.8. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 37.8$; HRMS (ESI-TOF): m/z = 359.0605, calcd for C₁₉H₁₇O₃PCl [MH⁺] 359.0604.

(2-hydroxy-5-methoxyphenyl)di(thiophen-2-yl)phosphine oxide (3am): the reaction of 1a (30.5 mg, 0.2 mmol), 2m (51.8 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded 3am (yield: 53.3 mg, 80%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 190.8–191.7 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.51$ (br, 1H), 7.81 (td, $J_1 = 4.4$ Hz, $J_2 = 0.8$ Hz, 2H), 7.64–7.61 (m, 2H), 7.25–

7.22 (m, 2H), 7.04 (dd, $J_I = 8.8$ Hz, $J_2 = 2.8$ Hz, 1H), 6.94 (dd, $J_I = 9.2$ Hz, $J_2 = 6.4$ Hz, 1H), 6.64 (dd, $J_I = 16.2$ Hz, $J_2 = 6.2$ Hz, 1H), 3.68 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.3$ (d, $J_{P-C} = 3.8$ Hz), 152.0 (d, $J_{P-C} = 16.4$ Hz), 137.6 (d, $J_{P-C} = 12.1$ Hz), 135.0 (d, $J_{P-C} = 6.0$ Hz), 133.2 (d, $J_{P-C} = 121.5$ Hz), 128.5 (d, $J_{P-C} = 14.6$ Hz), 121.6 (d, $J_{P-C} = 2.2$ Hz), 119.6 (d, $J_{P-C} = 10.3$ Hz), 115.3 (d, $J_{P-C} = 11.9$ Hz), 111.9 (d, $J_{P-C} = 115.2$ Hz), 55.9. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 23.2$; HRMS (ESI-TOF): m/z = 337.0125, calcd for C₁₅H₁₄O₃PS₂ [MH⁺] 337.0122.

(2-hydroxy-5-methoxyphenyl)(methyl)(phenyl)phosphine oxide (3an): the reaction of 1a (31.0 mg, 0.2 mmol), 2n (33.6 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 36h afforded **3an** (yield: 48.0 mg, 91%), which was purified by column chromatography (PE/EtOAc = 2/1). White solid, mp. 188.1–188.9 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.63$ (br, 1H), 7.80–7.74 (m, 2H), 7.59–7.48 (m, 3H), 7.00 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.8$ Hz, 1H), 6.90 (dd, $J_1 = 8.8$ Hz, $J_2 = 5.2$ Hz, 1H), 6.54 (dd, $J_1 = 14.4$ Hz, $J_2 = 3.2$ Hz, 1H), 3.71 (s, 3H), 2.10 (d, J = 13.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.1$ (d, $J_{P-C} = 2.3$ Hz), 152.2 (d, $J_{P-C} = 15.6$ Hz), 133.4 (d, $J_{P-C} = 101.1$ Hz), 132.4 (d, $J_{P-C} = 2.5$ Hz), 130.2 (d, $J_{P-C} = 10.1$ Hz), 128.9 (d, $J_{P-C} = 11.5$ Hz), 120.4 (d, $J_{P-C} = 2.4$ Hz), 119.3 (d, $J_{P-C} = 8.5$ Hz), 114.6 (d, $J_{P-C} = 11.8$ Hz), 112.8 (d, $J_{P-C} = 100.9$ Hz), 55.9, 16.9 (d, $J_{P-C} = 72.5$ Hz). ³¹P NMR (CDCl₃, 160 MHz): $\delta = 41.9$; HRMS (ESI-TOF): m/z = 263.0838, calcd for C₁₄H₁₆O₃P [MH⁺] 263.0837.

butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ao): the reaction of 1a (31.2 mg, 0.2 mmol), 2o (54.7 mg, 0.3 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12h afforded 3ao (yield: 56.7 mg, 92%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 129.3–131.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.74 (br, 1H), 7.81–7.76 (m, 2H), 7.56–7.46 (m, 3H), 6.97 (dd, J_I = 9.2 Hz, J_2 = 2.8 Hz, 1H), 6.88 (dd, J_I = 8.8 Hz, J_2 = 4.8 Hz, 1H), 6.34 (dd, J_I = 13.6 Hz, J_2 = 2.8 Hz, 1H), 3.71 (s, 3H), 2.34–2.27 (m, 2H), 1.76–1.55 (m, 2H), 1.47–1.41 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 157.2 (d, J_{P-C} = 2.4 Hz), 152.2 (d, J_{P-C} = 14.8 Hz), 132.6 (d, J_{P-C} = 97.7 Hz), 132.2 (d, J_{P-C} = 1.9 Hz), 130.4 (d, J_{P-C} = 10.0 Hz), 128.9 (d, J_{P-C} = 11.7 Hz), 120.1 (d, J_{P-C} = 2.1 Hz), 119.1 (d, J_{P-C} = 8.6 Hz), 114.7 (d, J_{P-C} = 11.0 Hz), 112.1 (d, J_{P-C} = 97.1 Hz), 55.9, 29.5 (d, J_{P-C} = 71.7 Hz), 23.9 (d, J_{P-C} = 15.7 Hz), 23.1 (d, J_{P-C} = 4.6 Hz),

13.6. ³¹P NMR (CDCl₃, 160 MHz): δ = 44.2; HRMS (ESI-TOF): m/z = 305.1312, calcd for C₁₇H₂₂O₃P [MH⁺] 305.1307.

tert-butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ap): the reaction of 1a (15.4 mg, 0.1 mmol), 2p (54.6 mg, 0.3 mmol) and Ph₃P (2.6 mg, 0.01 mmol) in MeCN (1 mL) at 100 °C for 16 h afforded 3ap (yield: 25.0 mg, 81%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 174.5–175.8 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.39 (br, 1H), 7.97–7.92 (m, 2H), 7.55–7.49 (m, 3H), 7.00–6.97 (m, 1H), 6.92–6.85 (m, 2H), 3.74 (s, 3H), 1.29 (d, *J* = 1.6 Hz, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.7, 151.5 (d, *J*_{P-C} = 14.0 Hz), 132.1 (d, *J*_{P-C} = 2.0 Hz), 131.8 (d, *J*_{P-C} = 9.0 Hz), 130.4 (d, *J*_{P-C} = 90.0 Hz), 128.7 (d, *J*_{P-C} = 11.0 Hz), 119.9 (d, *J*_{P-C} = 1.0 Hz), 119.5 (d, *J*_{P-C} = 8.0 Hz), 116.1 (d, *J*_{P-C} = 10.0 Hz), 110.0 (d, *J*_{P-C} = 89.0 Hz), 56.0, 35.3 (d, *J*_{P-C} = 69.0 Hz), 24.8. ³¹P NMR (CDCl₃, 160 MHz): δ = 50.9; HRMS (ESI-TOF): *m*/*z* = 305.1309, calcd for C₁₇H₂₂O₃P [MH⁺] 305.1307.

(2-hydroxy-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (3aq): the reaction of 1a (31.3 mg, 0.2 mmol), 2q (47.3 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded 3aq (yield: 58.0 mg, 90%), which was purified by column chromatography (PE/EtOAc = 3/1). White solid, mp. 129.7–132.1 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.76$ (br, 1H), 7.81–7.75 (m, 2H), 7.58–7.48 (m, 3H), 6.98 (dd, $J_I = 9.2$ Hz, $J_2= 2.8$ Hz, 1H), 6.88 (dd, $J_I = 9.2$ Hz, $J_2= 5.2$ Hz, 1H), 6.56 (dd, $J_I = 13.6$ Hz, $J_2= 3.2$ Hz, 1H), 5.78–5.68 (m, 2H), 5.04–5.00 (m, 1H), 3.71 (s, 3H), 2.33–2.16 (m, 4H), 1.89–1.71 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.6$, 152.2 (d, $J_{P-C} = 14.3$ Hz), 137.1, 132.5 (d, $J_{P-C} = 98.2$ Hz), 132.3 (d, $J_{P-C} = 2.4$ Hz), 130.4 (d, $J_{P-C} = 9.3$ Hz), 128.9 (d, $J_{P-C} = 11.5$ Hz), 120.1 (d, $J_{P-C} = 2.1$ Hz), 119.3 (d, $J_{P-C} = 8.9$ Hz), 116.2, 114.6 (d, $J_{P-C} = 10.4$ Hz), 111.7 (d, $J_{P-C} = 96.9$ Hz), 55.9, 34.4 (d, $J_{P-C} = 16.0$ Hz), 29.1 (d, $J_{P-C} = 71.5$ Hz), 20.3 (d, $J_{P-C} = 3.4$ Hz). ³¹P NMR (CDCl₃, 160 MHz): $\delta = 44.6$; HRMS (ESI-TOF): m/z = 317.1311, calcd for C₁₈H₂₂O₃P [MH⁺] 317.1307.

cyclohexyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ar): the reaction of **1a** (30.8 mg, 0.2 mmol), **2r** (124.8 mg, 0.6 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 8 h afforded **3ar** (yield: 63.4 mg, 96%), which was purified by column chromatography (PE/EtOAc = 3/1). White solid. ¹H NMR (CDCl₃, 400 MHz): δ = 10.92 (br, 1H), 7.85–7.80 (m, 2H), 7.55–7.49 (m, 3H), 6.96 (dd, J_1 = 9.2 Hz, J_2 = 2.8 Hz, 1H), 6.86 (dd, J_1 = 9.2 Hz, J_2 = 4.8 Hz, 1H), 6.63 (dd, J_1 = 12.8 Hz, J_2 = 3.2 Hz, 1H), 3.73 (s, 3H), 2.28–2.20 (m, 1H), 1.84–1.51 (m, 6H), 1.33–1.26 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.1 (d, J_{P-C} = 2.2 Hz), 152.0 (d, J_{P-C} = 14.6 Hz), 132.1 (d, J_{P-C} = 1.8 Hz), 130.9 (d, J_{P-C} = 94.8 Hz), 130.7 (d, J_{P-C} = 8.9 Hz), 128.9 (d, J_{P-C} = 10.4 Hz), 119.5 (d, J_{P-C} = 2.1 Hz), 119.2 (d, J_{P-C} = 8.3 Hz), 114.7 (d, J_{P-C} = 8.0 Hz), 25.7 (d, J_{P-C} = 1.6 Hz), 24.4 (d, J_{P-C} = 2.1 Hz), 23.8 (d, J_{P-C} = 2.6 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 46.7; HRMS (ESI-TOF): m/z = 331.1467, calcd for C₁₉H₂₄O₃P [MH⁺] 331.1463.

dicyclohexyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3as): the reaction of **1a** (31.3 mg, 0.2 mmol), **2s** (128.6 mg, 0.6 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 72h afforded **3as** (yield: 62.9 mg, 92%), which was purified by column chromatography (PE/EtOAc = 3/1). White solid, mp. 204.8–205.5 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.08 (br, 1H), 6.99 (dd, J_I = 8.8 Hz, J_2 = 2.4 Hz, 1H), 6.86 (dd, J_I = 9.2 Hz, J_2 = 4.8 Hz, 1H), 6.50 (dd, J_I = 11.6 Hz, J_2 = 3.2 Hz, 1H), 3.78 (s, 3H), 2.05–1.97 (m, 4H), 1.87–1.69 (m, 8H), 1.44–1.17 (m, 10H). ¹³C NMR (CDCl₃, 100 MHz): δ = 159.2, 151.6 (d, J_{P-C} = 13.2 Hz), 119.2 (d, J_{P-C} = 2.1 Hz), 119.0 (d, J_{P-C} = 7.5 Hz), 108.6 (d, J_{P-C} = 84.3 Hz), 55.9, 35.7 (d, J_{P-C} = 65.7 Hz), 26.4, 26.2 (d, J_{P-C} = 1.8 Hz), 25.7, 25.2 (d, J_{P-C} = 2.4 Hz), 24.1 (d, J_{P-C} = 2.5 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 60.2; HRMS (ESI-TOF): m/z = 337.1937, calcd for C₁₉H₃₀O₃P [MH⁺] 337.1933.

dibutyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3at): the reaction of **1a** (30.9 mg, 0.2 mmol), **2t** (97.4 mg, 0.6 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 72 h afforded **3at** (yield: 53.0 mg, 93%), which was purified by column chromatography (PE/EtOAc = 3/1). ¹H NMR (CDCl₃, 400 MHz): δ = 10.69 (br, 1H), 6.99 (dd, J_I = 8.8 Hz, J_2 = 2.8 Hz, 1H), 6.88 (dd, J_I = 8.8 Hz, J_2 = 4.8 Hz, 1H), 6.57 (dd, J_I = 13.2 Hz, J_2 = 3.2 Hz, 1H), 3.77 (s, 3H), 2.03–1.85 (m, 4H), 1.74–1.61 (m, 4H), 1.42–1.37 (m, 4H), 0.89 (t, J = 7.2 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ = 157.4, 152.1 (d, J_{P-C} = 15.1 Hz), 119.9 (d, J_{P-C} = 1.8 Hz), 118.8 (d, J_{P-C} = 8.4 Hz), 113.8 (d, J_{P-C} = 11.3 Hz), 111.4 (d, J_{P-C} = 92.0 Hz), 55.8, 29.9 (d, J_{P-C} = 67.7 Hz), 23.8 (d, J_{P-C} = 14.8 Hz), 23.1 (d, J_{P-C} = 4.4 Hz), 13.5. ³¹P NMR (CDCl₃, 160 MHz): δ = 55.2. HRMS (ESI-TOF): m/z = 285.1625, calcd for C₁₅H₂₆O₃P [MH⁺] 285.1620.

butyl(3-chloro-2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3fo): the reaction of **1f** (38.0 mg, 0.2 mmol), **2o** (56.0 mg, 0.3 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 12 h afforded **3fo** (yield: 64.4 mg, 94%), which was purified by column chromatography (PE/EtOAc = 10/1). ¹H NMR (CDCl₃, 400 MHz): δ = 11.23 (br, 1H), 7.81–7.76 (m, 2H), 7.59–7.49 (m, 3H), 7.08 (d, *J* = 2.0 Hz, 1H), 6.56 (dd, *J*_{*I*} = 13.2 Hz, *J*₂ = 2.0 Hz, 1H), 3.72 (s, 3H), 2.35–2.29 (m, 2H), 1.77–1.55 (m, 2H), 1.50–1.41 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 152.8 (d, *J*_{*P*-C} = 3.4 Hz), 151.9 (d, *J*_{*P*-C} = 15.4 Hz), 132.6 (d, *J*_{*P*-C} = 3.5 Hz), 132.0 (d, *J*_{*P*-C} = 97.9 Hz), 130.4 (d, *J*_{*P*-C} = 9.7 Hz), 129.0 (d, *J*_{*P*-C} = 11.9 Hz), 123.1 (d, *J*_{*P*-C} = 12.4 Hz), 119.9 (d, *J*_{*P*-C} = 2.5 Hz), 114.1 (d, *J*_{*P*-C} = 10.7 Hz), 113.8 (d, *J*_{*P*-C} = 94.3 Hz), 56.1, 29.4 (d, *J*_{*P*-C} = 70.7 Hz), 23.9 (d, *J*_{*P*-C} = 15.5 Hz), 13.6. ³¹P NMR (CDCl₃, 160 MHz): δ = 45.1; HRMS (ESI-TOF): *m*/*z* = 339.0915, calcd for C₁₇H₂₁O₃PCI [MH⁺] 339.0917.

bis(4-fluorophenyl)(2-hydroxy-5-methoxy-4-methylphenyl)phosphine oxide (3jd): the

reaction of **1j** (34.0 mg, 0.2 mmol), **2d** (58.0 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 24h afforded **3jd** (yield: 60.5 mg, 80%), which was purified by column chromatography (PE/EtOAc = 4/1). White solid, mp. 196.3–196.7 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.43$ (br, 1H), 7.73–7.66(m, 4H), 7.22–7.17 (m, 4H), 6.81 (d, J = 5.6 Hz, 1H), 6.24 (d, J = 13.6 Hz, 1H), 3.58 (s, 3H), 2.21 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 165.4$ (dd, $J_{F-C} = 253.7$ Hz, $J_{P-C} = 3.3$ Hz), 157.8 (d, $J_{P-C} = 2.8$ Hz), 150.8 (d, $J_{P-C} = 15.1$ Hz), 135.5 (d, $J_{P-C} = 2.5$ Hz), 134.5 (dd, $J_{F-C} = 12.2$ Hz, $J_{P-C} = 9.1$ Hz), 127.8 (dd, $J_{F-C} = 107.7$ Hz, $J_{P-C} = 3.6$ Hz), 121.1 (d, $J_{P-C} = 9.5$ Hz), 134.5 (dd, $J_{F-C} = 21.1$ Hz, $J_{P-C} = 13.9$ Hz), 111.0 (d, $J_{P-C} = 11.6$ Hz), 106.4 (d, $J_{P-C} = 108.3$ Hz), 55.8, 16.6. ³¹P NMR (CDCl₃, 160 MHz): $\delta = 37.4$; HRMS (ESI-TOF): m/z = 375.0967, calcd for C₂₀H₁₈O₃PF₂ [MH⁺] 375.0962.

(1-hydroxy-4-methoxynaphthalen-2-yl)(phenyl)(o-tolyl)phosphine oxide (3nk): the reaction of 1n (41.0 mg, 0.2 mmol), 2k (52.1 mg, 0.24 mmol) and Ph₃P (5.2 mg, 0.02 mmol) in MeCN (2 mL) at 100 °C for 48h afforded **3nk** (yield: 43.5 mg, 56%), which was purified by column chromatography (PE/EtOAc = 4/1). ¹H NMR (CDCl₃, 400 MHz): δ = 11.81 (br, 1H), 8.38 (d, *J* = 9.2 Hz, 1H), 8.19 (d, *J* = 9.2 Hz, 1H), 7.80–7.75 (m, 2H), 7.64–7.56 (m, 3H), 7.53–7.45 (m, 3H), 7.35–7.30 (m, 1H), 7.24–7.16 (m, 2H), 6.07 (d, *J* = 12.4 Hz, 1H), 3.69 (s, 3H), 2.50 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.6 (d, *J*_{P-C} = 2.2 Hz), 147.7 (d, *J*_{P-C} = 15.3 Hz), 143.4 (d, *J*_{P-C} = 4.6 Hz), 133.4 (d, *J*_{P-C} = 13.7 Hz), 132.7 (d, *J*_{P-C} = 10.5 Hz), 129.7 (d, *J*_{P-C} = 103.9 Hz), 128.82, 128.79 (d, *J*_{P-C} = 1.5 Hz), 121.7, 102.8 (d, *J*_{P-C} = 12.6 Hz), 101.0 (d, *J*_{P-C} = 106.3 Hz), 55.6, 21.4 (d, *J*_{P-C} = 5.2 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 42.8; HRMS (ESI-TOF): *m*/z = 389.1310, calcd for C₂₄H₂₂O₃P [MH⁺] 389.1307.

4. Crystal structure determination

The well-shaped single crystals were selected for X-ray diffraction study. The unit cell parameters and intensity data were collected at 296(2) K on a Bruker SMART APEX II CCD diffractometer using a graphite-monochromated Mo K_{α} ($\lambda = 0.71073$ Å) radiation. The structure was solved by direct methods and refined on F^2 by full-matrix least squares procedures using SHELXTL software. All non-hydrogen atoms were refined anisotropically. All H atoms were located from a difference map and refined isotropically. ORTEP representation (30% probability level) of the molecular structures and CCDC numbers for compounds **3ja**, **3ma**, **3ma'**, **3pa'** and **3aj** are presented in Table S1. Crystallographic data for **3ja**, **3ma**, **3ma'**, **3pa'** and **3aj** are listed in Table S2. These data can be obtained free of charge from the Cambridge Crystallographic Date Center via www.ccdc.cam.ac.uk.

Table S1 Molecular structures of 3ja, 3ma, 3ma', 3pa' and 3aj

Compound	3ja	3ma	3ma'	3ра'	3aj
Empirical formula	$C_{20}H_{19}O_3P$	$C_{19}H_{16}Br O_3P$	C ₁₉ H ₁₆ Br O ₃ P	$C_{20}H_{19}O_5P$	C ₁₇ H ₁₇ NO
Formula weight	338.32	403.20	403.20	370.32	251.31
Crystal system	monoclinic	orthorhombic	monoclinic	orthorhombic	orthorhombic
Space group	C2/c	Pbca	$P2_{1}/c$	$Pna2_1$	Aba2
<i>a</i> / Å	18.086(10)	11.472(9)	14.870(3)	12.4510(7)	32.26(3)
b / Å	11.245(6)	17.116(13)	8.1150(18)	8.5872(10)	16.224(15)
<i>c</i> / Å	17.491(10)	18.240(14)	15.295(4)	7.9138(5)	7.120(7)
β/()	98.109(7)	90	106.026(3)	90	90
$V/~{ m \AA}^3$	3522(3)	3582(5)	1773.8(7)	1831.48(18)	3726(6)
Ζ	8	8	4	4	4
$D_{\rm c} / ({\rm g.cm}^{-3})$	1.276	1.495	1.510	1.343	1.256
μ / mm^{-1}	0.170	2.398	2.421	0.178	0.164
<i>F</i> (000)	1424.0	1632.0	816.0	776.0	1488.0
Crystal size / mm ³	0.13×0.12×0.10	0.20×0.18×0.15	0.13×0.12×0.10	0.49×0.46×0.40	0.20×0.18×0.15
heta range / (°)	2.14~25.004	2.233~25.004	1.425~25.001	3.241~25.341	1.262~25.242
Reflections collected	12250	23501	12190	25295	13479
Independent reflections	$3108 (R_{int} = 0.0498)$	$3164 (R_{int} = 0.1182)$	$3127 (R_{int} = 0.0292)$	$3352 (R_{int} = 0.0435)$	$3537 (R_{int} = 0.0260)$
Reflectionsobserved $(I > 2\sigma(I))$	2121	1934	2561	3013	3302
Data/restraints/parameters	3108/0/217	3164/0/217	3127/0/217	3352/1/236	3537/1/226
Goodness-of-fit on F^2	1.053	1.064	1.033	1.041	1.049
$R_1/wR_2(I>2\sigma(I))$	0.0478/ 0.1161	0.0705/0.1681	0.0291/0.0756	0.0362/0.0867	0.0325/0.0835
R_1/wR_2 (all data)	0.0805/ 0.1287	0.1216/0.1873	0.0396/0.0791	0.0429/0.0919	0.0355/0.0851
$(\Delta \rho)_{\rm max}, (\Delta \rho)_{\rm min} / (e \cdot {\rm \AA}^{-3})$	0.235, -0.265	0.850, -0.807	0.228, -0.309	0.189, -0.215	0.217, -0.199

Table S2 Crystal data and structure refinements for the products

5. Additional Results

5.1 The solvent effect

MeO OMe 1a	+ Ph ₂ P(O)H 2a	$ \frac{10 \text{ mol}\% \text{ Ph}_{3}\text{P}}{\text{solvent, } 100^{\circ}\text{C}} \qquad $	OP(O)Ph ₂ OMe 4aa
entry	solvent	yield (%) ^b /selectivity (3aa/4aa) ^c	prod. precip. ^d
1	MeCN	97 (>100/1)	yes ^e
2	Toluene	92 (>100/1)	yes ^e
3	dioxane	95 (>100/1)	no
4	DCE	92 (>100/1)	no
5	DMF	69 (25/1) ^f	no
6	DMSO	86 (88/1)	no
7	EtOH	85 (>100/1)	no
8	ⁱ PrOH	84 (>100/1)	no

Table S3. The solvent effect on the reaction of 1a and $2a^a$

^{*a*}Conditions: to a 10 mL screw-capped Schlenk tube, a mixture of **1a** (0.2 mmol), **2a** (0.24 mmol) and additives (0.1 mmol) in 2 mL solvent was charged and heated at 100 °C for 16 h under N₂. ^{*b*}Combined yields. ^{*c*}Deduced from ³¹P NMR spectra of the crude products. ^{*d*}prod. precip.: the product precipitated at room temperature (ca. 20-25 °C) or not. ^{*e*}Solubility of **3aa** in MeCN at 22 °C: ca. 3.4 g/L; in toluene: ca. 10.6 g/L. ^{*f*}other unidentified byproducts were observed.

OP(O)Ph₂ P(O)Pł Ph₂P(O)H MeÓ ÒMe 2a ÓMe ÓMe 1a 3aa 4aa yield (%)^b/selectivity (3aa/4aa)^c temperature (°C) entry 100 97 (>100/1) 1 2 80 76 (>100/1) 3 60 61 (> 100/1)

Table S4. The temperature effect on the reaction of 1a and $2a^a$

^{*a*}Conditions: to a 10 mL screw-capped Schlenk tube, a mixture of **1a** (0.2 mmol), **2a** (0.24 mmol) and Ph₃P (0.1 mmol) in 2 mL MeCN was charged and heated to the specific temperature for 16 h under N₂. ^{*b*}Combined yields. ^{*c*}Deduced from ³¹P NMR spectra of the crude products.

5.2 Time course of the control reactions

The control reactions of **1a** and **2a** in the presence of 10 mol% TPP, 10 mol% TPP and 10 mol% PhCO₂H, and 10 mol% TPP with addition of 20 mol% **3na** (90 min) were performed. As shown in Figure S1, the reaction in the presence of 10 mol% (TPP and PhCO₂H) proceeded faster initially and become slow with the consumption of the starting materials. The addition of **3na** (90 min later) could significantly accelerate the reaction of **1a** and **2a** with 10 mol% TPP. An induction time (ca. 210 min) for the reaction of **1a** and **2a** with 10 mol% TPP. Was observed.

Figure S1. Time-course of the C–P coupling reaction of **1a** and **2a** in the presence of 10 mol% $Ph_3P(\blacktriangle)$ or 10 mol% (Ph_3P and $PhCO_2H$) (\blacklozenge) or 10 mol% Ph_3P with the addition of 20 mol% **3na** (\bigcirc)

5.2 Reactions of 1a and 2a in the presence of 10 mol% of 3aa, or a combination of 10 mol% 3aa and 10 mol% TPP

The reaction of **1a** and **2a** with 10 mol% **3aa** was performed and the reaction mixture after removal of volatiles in vacuo was analyzed by ³¹P NMR. The reaction produced a mixture of **3aa**, **4aa** and other impurities (Figure S2A). In contrast, the reaction of **1a** and **2a** in the presence of 10 mol% Ph₃P and 10 mol% **3aa** took place with high selectivity and afforded the product in high yield. The ³¹P NMR of the reaction mixture was shown in Figure S2B.

Figure S2. The ³¹P NMR of the C-P coupling reaction of **1a** and **2a** in the presence of (**A**) 10 mol% of **3aa** only, and (**B**) 10 mol% of **3aa** and 10 mol% Ph₃P

5.3 Competition experiments

(A)

A comparison on the reactivity between diarylphosphine oxide and dialkylphosphine oxide: a mixture of **1a** (0.2 mmol), **2a** (0.2 mmol) and **2s** (0.2 mmol) with TPP (0.02 mmol) in MeCN (2 mL) was heated at 100 °C for 16 h (eq. s-5-3-1). After removal of volatiles in vacuo, the reaction mixture was analyzed by ³¹P NMR (Figure S3). The ratio of the products **3aa** and **3as** was ca. 1/0.16. This result indicates that diarylphosphine oxide shows higher reactivity.

Figure S3. The ³¹P NMR spectra of the reaction mixture for the reaction s-5-3-1

A comparison on the reactivity of electronically different diarylphosphine oxides: a mixture of 1a (0.2 mmol), 2c (0.2 mmol) and 2d (0.2 mmol) with TPP (0.02 mmol) in MeCN (2 mL) was heated at 100 °C for 16 h. After removal of volatiles in vacuo, the reaction

mixture was analyzed by ³¹P NMR (Figure S4). The ratio of the products **3ac** and **3ad** was ca. 1/1.24. This result indicates that This result may suggest that $Ar_2P(O)H$ **2** bearing electron-withdrawing groups reacts slightly fast to form the product.

Figure S4. The ³¹P NMR spectra of the reaction mixture for the reaction s-5-3-2

A comparison on the reactivity of sterically different diarylphosphine oxides: a mixture of **1a** (0.2 mmol), **2a** (0.2 mmol) and **2g** (0.2 mmol) with TPP (0.02 mmol) in MeCN (2 mL) was heated at 100 °C for 16 h. After removal of volatiles in vacuo, the reaction mixture was analyzed by ³¹P NMR (Figure S5). The ratio of the products **3aa** and **3ag** was ca. 1/0.16. This result indicates that sterically demanding $Ar_2P(O)H$ **2** reacts much more slowly to form the product.

Figure S5. The ³¹P NMR spectra of the reaction mixture for the reaction s-5-3-3

5.4 The influence of the radical scavenger (BHT) on the reaction

The reaction of **1a** and **2a** in the presence of 2.0 equiv of butylated hydroxytoluene (BHT) gave a mixture of products: **3aa** 57%; **4aa** 14%; and other byproducts 29% (Figure S6A). Miscellaneous processes may take place in this reaction. In contrast, the reaction of **1a** and **2a** in the presence of 2.0 equiv of BHT and 10 mol% of TPP gave the product **3aa** selectively in 90% yield with <5% impurity, and <5% of **2a** unconsumed (Figure S6B).

Figure S6. The ³¹P NMR of the C-P coupling reaction of **1a** and **2a** in the presence of (**A**) 2 equiv of BHT, and (**B**) 2.0 equiv of BHT and 10 mol% Ph_3P

6. Scaled-up experiments

To a solution of 4-methoxyphenol (2.48 g, 20 mmol) in MeOH (20 mL) was added dropwise a solution of PhI(OAc)₂ (7.08 g, 22 mmol) in MeOH (40 mL) at 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was concentrated to ca. 20 mL under a reduced pressure. The mixture was quenched with aq. NaHCO₃ and extracted with ether (20 mL×3). The combined organic layers were washed with water and dried over MgSO₄. Removal of the solvent to dryness led to a yellow liquid (crude **1a**) which was used without further purification.

To a 100 mL oven-dried Schlenk tube with a Teflon-coated stir bar was added triphenylphosphine (524 mg, 2 mmol), the crude **1a**, diphenylphosphine oxide **2a** (4.85 g, 24 mmol) and 20 mL of MeCN under an atmoshphere of dry N₂ (Figure S7, pic a). The Schlenk tube was sealed and heated in an oil bath at 100 °C. After the reaction mxiture was stirred for 16 h (Figure S7, pic b), the reaction was cooled to room temperature with a mild stirring. The product started to precipitate during this process (Figure S7, pic c). After filtrating on a glass Buchner funnel (Figure S7, pic d), washing with a small amount of ether and drying under vacuum, the major portion of the product **3aa** (5.10 g) was obtained (Figure S7, pic e). The combined filtrate was concentrated to dryness on a rotary evaporator, redisolved in 10 mL MeCN, and stored in a refrigerator for one night. The precipitate was collected and washed with a few drops of ether to afford the second portion of the product (0.50 g). Total yield 86%. Note: the obtained product is a litte yellowish but pure enough for synthetic use.

The synthesis of 3fa, 3na, 3ad and 3aj on 5-10 mmol scale was followed a similar procedure.

Figure S7. (a) before heating; (b) after heating for 16 h; (c) cooling down; (d) filtrating; (e) the product **3aa**

7. Synthetic transformation of products 3

OH

OMe

Ph

To a flame-dried Schlenk tube was charged with **3** (0.1 mmol) and a magnetic stir bar under N_2 atmosphere. Then, toluene (3.0 mL) and Et₃N (1.5 mmol) were added by a syringe. The reaction mixture was cooled with an ice-water bath. HSiCl₃ (1 mmol) was carefully added by a syringe. The ice-water bath was removed, and the reaction mixture was heated at 100 °C in an oil bath for 48 h. After cooling, ca.1.0 mL of 5% aq. NaOH was added and stirred for 10 min. The resulting mixture was diluted with water and extracted with ethylacetate (20.0 mL×3). The combined organic layers were dried over MgSO₄ and solvent were removed in vacuo. Purification of the residue by column chromatography on silica gel using hexane/ethyl acetate (50:1, v/v) gave product **5**.

2-(diphenylphosphanyl)-4-methoxyphenol (5a): yield: 24.6 mg, 80%. ¹H NMR (CDCl₃, 400 MHz): δ = 7.36–7.30 (m, 10H), 6.88–6.83 (m, 2H), 6.49–6.47 (m, 1H), 5.72 (d, *J* = 2.4 Hz, 1H), 3.61 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 153.5 (d, *J*_{P-C} = 2.2 Hz), 153.0 (d, *J*_{P-C} = 18.4 Hz), 134.8 (d, *J*_{P-C} = 5.8 Hz), 133.4 (d, *J*_{P-C} = 18.6 Hz), 129.0, 128.7 (d, *J*_{P-C} = 7.5 Hz), 122.0 (d,

 $J_{P-C} = 7.7$ Hz), 119.1 (d, $J_{P-C} = 4.5$ Hz), 117.0, 116.3 (d, $J_{P-C} = 2.0$ Hz), 55.6. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -26.2$; HRMS (ESI-TOF): m/z = 309.1047, calcd for C₁₉H₁₈O₂P [MH⁺] 309.1044.

 $J_{P-C} = 16.5$ Hz), 137.2 (d, $J_{P-C} = 0.9$ Hz), 133.7 (d, $J_{P-C} = 19.5$ Hz), 129.1 (d, $J_{P-C} = 18.1$ Hz), 128.8, 128.7, 128.6 (d, $J_{P-C} = 7.1$ Hz), 127.8, 123.9 (d, $J_{P-C} = 10.3$ Hz), 118.7 (d, $J_{P-C} = 2.9$ Hz), 116.9, 55.6. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -21.9$; HRMS (ESI-TOF): m/z = 385.1359, calcd for C₂₅H₂₂O₂P [MH⁺] 385.1357.

3.59 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 153.2 (d, J_{P-C} = 1.2 Hz), 147.2 (d, J_{P-C} = 6.6 Hz), 135.1 (d, J_{P-C} = 8.9 Hz), 133.8 (d, J_{P-C} = 20.3 Hz), 129.1, 128.6 (d, J_{P-C} = 7.4 Hz), 125.5 (d, J_{P-C} = 17.2 Hz), 120.0 (d, J_{P-C} = 3.7 Hz), 118.6 (d, J_{P-C} = 2.9 Hz), 115.0, 55.7. ³¹P NMR (CDCl₃, 160 MHz): δ = -17.4; HRMS (ESI-TOF): m/z = 343.0657, calcd for C₁₉H₁₇O₂PCl [MH⁺] 343.0655.

2-(diphenylphosphanyl)-4-methoxynaphthalen-1-ol (5d): yield: 25.8 mg, 72%. White solid, mp. 84.4–84.9 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.27-8.23$ (m, 1H), 8.19–8.15 (m, 1H), 7.57–7.51 (m, 2H), 7.42–7.33 (m, 10H), 6.91 (d, J = 8.8 Hz, 1H), 6.37 (d, J = 4.8 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 151.2$ (d, $J_{P,C} = 19.6$ Hz),

149.2 (d, $J_{P-C} = 2.6$ Hz), 135.3 (d, $J_{P-C} = 3.7$ Hz), 133.1 (d, $J_{P-C} = 18.4$ Hz), 128.9, 128.7 (d, $J_{P-C} = 7.8$ Hz), 127.7, 127.2, 126.2, 124.8 (d, $J_{P-C} = 3.3$ Hz), 122.8 (d, $J_{P-C} = 3.2$ Hz), 121.8, 110.9 (d, $J_{P-C} = 3.5$ Hz), 106.6 (d, $J_{P-C} = 3.2$ Hz), 55.6. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -30.9$; HRMS (ESI-TOF): m/z = 359.1206, calcd for $C_{23}H_{20}O_2P$ [MH⁺] 359.1201.

2-(bis(4-fluorophenyl)phosphanyl)-4-methoxyphenol (5e): yield: 27.5 mg, 80%. White solid, mp. 116.2–117.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.32–7.26 (m, 4H), 7.09–7.04 (m, 4H), 6.87–6.82 (m, 2H), 6.38–6.36 (m, 1H), 5.58 (s, 1H), 3.63 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 163.6 (d, J_{F-C} = 249.0 Hz), 153.8 (d, J_{P-C} = 2.2 Hz), 152.6 (d, J_{P-C} = 19.2 Hz), 135.4 (q, J_{F-C} = 21.2 Hz, J_{P-C} = 8.0 Hz), 130.3 (m), 122.3 (d, J_{P-C} = 7.8 Hz), 118.8 (d, J_{P-C} = 2.8 Hz), 116.8,

116.4 (d, $J_{P-C} = 1.4$ Hz), 116.0 (dd, $J_{F-C} = 21.7$ Hz, $J_{P-C} = 8.0$ Hz), 55.6. ³¹P NMR (CDCl₃, 160 MHz): $\delta = -27.3$; HRMS (ESI-TOF): m/z = 345.0857, calcd for C₁₉H₁₆O₂PF₂ [MH⁺] 345.0856.

2-((3,5-dimethylphenyl)(phenyl)phosphanyl)-4-methoxy-6methylphenol (5f): yield: 21.6 mg, 62%. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.35-7.30$ (m, 5H), 6.98 (s, 1H), 6.95 (d, *J*= 8.8 Hz, 2H), 6.75 (d, *J*= 7.2 Hz, 1H), 6.38 (dd, *J*₁ = 5.6 Hz, *J*₂= 3.2 Hz, 1H), 5.93 (d, *J*= 7.6 Hz, 1H), 3.61 (s, 3H), 2.26 (s, 6H), 2.25 (s,

3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 153.0 (d, J_{P-C} = 3.2 Hz), 151.6 (d, J_{P-C} = 17.4 Hz), 138.2 (d, J_{P-C} = 7.2 Hz), 135.2 (d, J_{P-C} = 5.2 Hz), 134.4 (d, J_{P-C} = 4.3 Hz), 133.4 (d, J_{P-C} = 18.8 Hz), 131.1 (d, J_{P-C} = 15.8 Hz), 131.0, 128.8 (d, J_{P-C} = 20.6 Hz), 128.6, 125.6 (d, J_{P-C} = 2.1 Hz), 121.1 (d, J_{P-C} = 5.6 Hz), 118.7, 116.5 (d, J_{P-C} = 5.7 Hz), 55.6, 21.4, 16.6 (d, J_{P-C} = 1.7 Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = -27.4; HRMS (ESI-TOF): m/z = 351.1517, calcd for C₂₂H₂₄O₂P [MH⁺] 351.1514.

7.2 Synthesis of 6 via the Suzuki-Miyaura coupling reaction

(5-methoxy-2-(naphthalen-1-yl)phenyl)diphenylphosphine oxide (6): to a solution of the triflate **P-6**^[4] (180.0 mg, 0.395 mmol) and naphthalen-1-ylboronic acid (191.5 mg, 1.1 mmol) in THF/H₂O (v/v 8/1, 3 mL), were added KF (69.6 mg, 1.2 mmol), Pd(OAc)₂ (8.8 mg, 0.04 mmol) and XPhos (19.2 mg, 0.04 mmol) at 60°C. The reaction was stirred under nitrogen at 60°C for 36 h. The mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, concentrated and purified with silica gel column chromatography (PE/EtOAc 3/1) to afford compound 6 (150.3 mg, 88%). White solid, mp. 201.7–203.1 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.57-7.5$ (m, 4H), 7.46 (dd, $J_1 = 9.6$ Hz, J₂= 1.2 Hz, 1H), 7.33–7.23 (m, 8H), 7.21–7.12 (m, 4H), 7.00–6.96 (m, 1H), 6.91–6.86 (m, 2H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.3 (d, J_{P-C} = 14.6 Hz), 136.7 (d, J_{P-C} = 3.7 Hz), 136.6 (d, $J_{P-C} = 8.9$ Hz), 134.2 (d, $J_{P-C} = 100.6$ Hz), 134.0 (d, $J_{P-C} = 10.9$ Hz), 133.1 (d, $J_{P-C} = 103.1$ Hz),133.0, 132.0, 131.9 (d, $J_{P-C} = 104.5$ Hz), 131.8 (d, $J_{P-C} = 9.0$ Hz), 131.0 (d, $J_{P-C} = 2.8$ Hz), 130.6 (d, $J_{P-C} = 9.7$ Hz), 130.2 (d, $J_{P-C} = 3.3$ Hz), 129.6, 127.9 (d, $J_{P-C} = 11.2$ Hz), 127.7 (d, $J_{P-C} = 5.8$ Hz), 127.3 (d, $J_{P-C} = 12.0$ Hz), 126.1, 125.2 (d, $J_{P-C} = 13.3$ Hz), 124.3, 119.4 (d, $J_{P-C} = 12.5$ Hz), 117.0 (d, $J_{P-C} = 3.0$ Hz), 55.4. ³¹P NMR (CDCl₃, 160 MHz): $\delta =$ 27.3; HRMS (ESI-TOF): m/z = 435.1515, calcd for C₂₉H₂₄O₂P [MH⁺] 435.1514.

7.3 Synthesis of the phosphomacracycle 7 via RCM reaction

(2-(allyloxy)-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (P-7): to a solution of compound 3aq (142.7 mg, 0.45 mmol, 1.0 equiv) and ally bromide (162.1 mg, 1.35 mmol, 3.0 equiv) in DMF (2 mL), were added K_2CO_3 (187.0 mg, 1.35 mmol, 3.0 equiv) at rt. The reaction was stirred under nitrogen for 4 h. The mixture was diluted with H₂O and

^[4] The triflate **P-6** (92%) was prepared from **3aa** on a 1 mmol scale via a known procedure: S. Wu, M. He and X. Zhang, *Tetrahedron: Asymmetry*, 2004, **15**, 2177.

extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, concentrated and purified with silica gel column chromatography (PE/EtOAc 2/1) to afford compound **P-7** (160.6 mg, 100%). ¹H NMR (CDCl₃, 400 MHz): 7.80–7.75 (m, 2H), 7.62 (dd, $J_I = 3.2$ Hz, $J_2 = 13.6$ Hz, 1H), 7.48–7.38 (m, 3H), 7.01 (dd, $J_I = 9.2$ Hz, $J_2 = 3.2$ Hz, 1H), 6.81 (dd, $J_I = 8.8$ Hz, $J_2 = 6.0$ Hz, 1H), 5.87–5.68 (m, 2H), 5.23–5.18 (m, 2H), 5.02–4.95 (m, 2H), 4.45 (dd, $J_I = 12.4$ Hz, $J_2 = 5.6$ Hz, 1H), 4.37 (dd, $J_I = 12.4$ Hz, $J_2 = 5.2$ Hz, 1H), 3.83 (s, 3H), 2.54–2.36 (m, 2H), 2.15 (q, J = 6.8 Hz, 2H), 1.86–1.58 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.0$ (d, $J_{P-C} = 2.6$ Hz), 152.6 (d, $J_{P-C} = 4.2$ Hz), 137.6, 133.7 (d, $J_{P-C} = 100.6$ Hz), 132.4, 131.4 (d, $J_{P-C} = 2.8$ Hz), 130.7 (d, $J_{P-C} = 10.9$ Hz), 128.2 (d, $J_{P-C} = 10.7$ Hz), 120.7 (d, $J_{P-C} = 95.0$ Hz), 120.1 (d, $J_{P-C} = 15.9$ Hz), 28.1 (d, $J_{P-C} = 73.2$ Hz), 20.8 (d, $J_{P-C} = 3.5$ Hz). ³¹P NMR (CDCl₃, 160 MHz): $\delta = 33.5$. HRMS (ESI-TOF): m/z = 357.1629, calcd for C₂₁H₂₆O₃P [MH⁺] 357.1620.

(Z)-10-methoxy-8-phenyl-2,5,6,7-tetrahydrobenzo[b][1,4]oxaphosphecine 8-oxide (7): to a solution of the compound P-7 (140.0 mg, 0.39 mmol) in CH_2Cl_2 (80 mL), were added the Grubbs catalyst 1st (32.9 mg, 0.1 equiv) under an atmosphere of dry nitrogen. The reaction was stirred at 40 °C for 4 d. The mixture was concentrated and purified with silica gel column chromatography (PE/EtOAc 1/1) to afford compound 7 (60.7 mg, 46%), and the recovered P-7 (60.9 mg). ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.77-7.72$ (m, 2H), 7.55 (dd, $J_1 = 13.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.44–7.36 (m, 3H), 7.04 (dd, $J_1 = 8.8$ Hz, $J_2 = 3.2$ Hz, 1H), 6.91 (dd, $J_1 = 8.8$ Hz, $J_2 = 6.0$ Hz, 1H), 5.98 (dt, $J_1 = 10.4$ Hz, $J_2 = 4.2$ Hz, 1H), 5.77–5.70 (m, 1H), 4.76 (dd, J_1 = 11.6 Hz, J_2 = 6.4 Hz, 1H), 4.57 (dd, J_1 = 11.6 Hz, J_2 = 4.4 Hz, 1H), 3.79 (s, 3H), 2.92–2.84 (m, 1H), 2.41–2.29 (m, 1H), 2.21–2.10 (m, 1H), 2.06–1.99 (m, 2H), 1.85–1.72 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.7$ (d, $J_{P-C} = 5.1$ Hz), 154.3 (d, $J_{P-C} = 12.3$ Hz), 137.6, 135.0 (d, $J_{P-C} = 100.5$ Hz), 131.3 (d, $J_{P-C} = 2.6$ Hz), 129.8 (d, $J_{P-C} = 10.2$ Hz), 128.4 (d, $J_{P-C} = 12.2$ Hz), 125.5, 122.4 (d, $J_{P-C} = 93.3$ Hz), 120.9 (d, $J_{P-C} = 2.0$ Hz), 117.0 (d, $J_{P-C} = 5.7$ Hz), 116.4 (d, $J_{P-C} = 8.3$ Hz), 68.1, 55.8, 28.5 (d, $J_{P-C} = 72.7$ Hz), 28.0, 18.5 (d, $J_{P-C} = 5.2$ Hz). ³¹P NMR (CDCl₃, 160 MHz): δ = 33.3. HRMS (ESI-TOF): m/z =329.1312, calcd for C₁₉H₂₂O₃P [MH⁺] 329.1307.

8. Copies of ¹H, ¹³C and ³¹P NMR spectra

¹H NMR of (2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3aa)

³¹P NMR of (2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3aa)

¹H NMR of (2-hydroxy-5-methoxy-3-methylphenyl)diphenylphosphine oxide (3ba)

¹³C NMR of (2-hydroxy-5-methoxy-3-methylphenyl)diphenylphosphine oxide (3ba)

³¹P NMR of (2-hydroxy-5-methoxy-3-methylphenyl)diphenylphosphine oxide (3ba)

¹H NMR of (3-(tert-butyl)-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ca)

14

¹³C NMR of (3-(tert-butyl)-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ca)

Solvent: DMSO-d₆

³¹P NMR of (3-(tert-butyl)-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ca)

¹H NMR of (2-hydroxy-5-methoxy-[1,1'-biphenyl]-3-yl)diphenylphosphine oxide (3da)

¹³C NMR of (2-hydroxy-5-methoxy-[1,1'-biphenyl]-3-yl)diphenylphosphine oxide (3da)

¹H NMR of (3-fluoro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ea)

¹³C NMR of (3-fluoro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ea)

³¹P NMR of (3-fluoro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ea)

¹H NMR of (3-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3fa)

S49

¹³C NMR of (3-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3fa)

³¹P NMR of (3-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3fa)

¹H NMR of (3-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ga)

¹³C NMR of (3-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ga)

S53

³¹P NMR of (3-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ga)

¹H NMR of (2-hydroxy-3-iodo-5-methoxyphenyl)diphenylphosphine oxide (3ha)

¹³C NMR of (2-hydroxy-3-iodo-5-methoxyphenyl)diphenylphosphine oxide (3ha)

³¹P NMR of (2-hydroxy-3-iodo-5-methoxyphenyl)diphenylphosphine oxide (3ha)

¹H NMR of (2-hydroxy-5-methoxy-3-(phenylethynyl)phenyl)diphenylphosphine oxide (3ia)

¹³C NMR of (2-hydroxy-5-methoxy-3-(phenylethynyl)phenyl)diphenylphosphine oxide (3ia)

S59

³¹P NMR of (2-hydroxy-5-methoxy-3-(phenylethynyl)phenyl)diphenylphosphine oxide (3ia)

¹H NMR of (2-hydroxy-5-methoxy-4-methylphenyl)diphenylphosphine oxide (3ja)

¹³C NMR of (2-hydroxy-5-methoxy-4-methylphenyl)diphenylphosphine oxide (3ja)

S62

³¹P NMR of (2-hydroxy-5-methoxy-4-methylphenyl)diphenylphosphine oxide (3ja)

¹H NMR of (2-hydroxy-4,5-dimethoxyphenyl)diphenylphosphine oxide (3ka)

¹³C NMR of (2-hydroxy-4,5-dimethoxyphenyl)diphenylphosphine oxide (3ka)

³¹P NMR of (2-hydroxy-4,5-dimethoxyphenyl)diphenylphosphine oxide (3ka)

¹H NMR of (4-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3la)

¹³C NMR of (4-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3la)

³¹P NMR of (4-chloro-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3la)

¹H NMR of (2-chloro-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3la')

¹³C NMR of (2-chloro-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3la')

³¹P NMR of (2-chloro-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3la')

¹H NMR of (4-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ma)

S73

¹³C NMR of (4-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ma)

³¹P NMR of (4-bromo-2-hydroxy-5-methoxyphenyl)diphenylphosphine oxide (3ma)

¹H NMR of (2-bromo-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3ma')

¹³C NMR of (2-bromo-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3ma')

S77

³¹P NMR of (2-bromo-6-hydroxy-3-methoxyphenyl)diphenylphosphine oxide (3ma')

¹H NMR of (1-hydroxy-4-methoxynaphthalen-2-yl)diphenylphosphine oxide (3na)

¹³C NMR of (1-hydroxy-4-methoxynaphthalen-2-yl)diphenylphosphine oxide (3na)

³¹P NMR of (1-hydroxy-4-methoxynaphthalen-2-yl)diphenylphosphine oxide (3na)

¹H NMR of 6-(diphenylphosphoryl)-5-hydroxy-8-methoxynaphthalen-1-yl acetate (30a)

¹³C NMR of 6-(diphenylphosphoryl)-5-hydroxy-8-methoxynaphthalen-1-yl acetate (30a)

³¹P NMR of 6-(diphenylphosphoryl)-5-hydroxy-8-methoxynaphthalen-1-yl acetate (30a)

¹H NMR of (6-hydroxybenzo[d][1,3]dioxol-5-yl)diphenylphosphine oxide (3pa)

¹³C NMR of (6-hydroxybenzo[d][1,3]dioxol-5-yl)diphenylphosphine oxide (3pa)

³¹P NMR of (6-hydroxybenzo[d][1,3]dioxol-5-yl)diphenylphosphine oxide (3pa)

¹H NMR of 7-(diphenylphosphoryl)-7a-methoxy-7,7a-dihydrobenzo[d][1,3]dioxol-5(6H)-one (3pa')

¹³C NMR of 7-(diphenylphosphoryl)-7a-methoxy-7,7a-dihydrobenzo[d][1,3]dioxol-5(6H)-one (3pa')

¹H NMR of (2-hydroxy-5-methoxyphenyl)di-p-tolylphosphine oxide (3ab)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)di-p-tolylphosphine oxide (3ab)

³¹P NMR of (2-hydroxy-5-methoxyphenyl)di-p-tolylphosphine oxide (3ab)

¹H NMR of (2-hydroxy-5-methoxyphenyl)bis(4-methoxyphenyl)phosphine oxide (3ac)

S94

¹³C NMR of (2-hydroxy-5-methoxyphenyl)bis(4-methoxyphenyl)phosphine oxide (3ac)

³¹P NMR of (2-hydroxy-5-methoxyphenyl)bis(4-methoxyphenyl)phosphine oxide (3ac)

¹H NMR of bis(4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3ad)

¹³C NMR of bis(4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3ad)

³¹P NMR of bis(4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3ad)

¹H NMR of (2-hydroxy-5-methoxyphenyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3ae)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3ae)

S101

³¹P NMR of (2-hydroxy-5-methoxyphenyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3ae)

¹H NMR of bis(3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3af)

¹³C NMR of bis(3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3af)

³¹P NMR of bis(3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)phosphine oxide (3af)

¹H NMR of (2-hydroxy-5-methylphenyl)di-o-tolylphosphine oxide (3ag)

¹³C NMR of(2-hydroxy-5-methylphenyl)di-o-tolylphosphine oxide (3ag)

³¹P NMR of(2-hydroxy-5-methylphenyl)di-o-tolylphosphine oxide (3ag)

¹H NMR of (4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ah)

¹³C NMR of (4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ah)

³¹P NMR of (4-fluorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ah)

¹H NMR of (2-hydroxy-5-methoxyphenyl)(4-methoxyphenyl)(phenyl)phosphine oxide (3ai)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)(4-methoxyphenyl)(phenyl)phosphine oxide (3ai)

³¹P NMR of (2-hydroxy-5-methoxyphenyl)(4-methoxyphenyl)(phenyl)phosphine oxide (3ai)

¹H NMR of (3,5-dimethylphenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3aj)

¹³C NMR of (3,5-dimethylphenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3aj)

³¹P NMR of (3,5-dimethylphenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3aj)

¹H NMR of (3,5-dimethylphenyl)(2-hydroxy-5-methoxy-3-methylphenyl)(phenyl)phosphine oxide (3bj)

¹³C NMR of (3,5-dimethylphenyl)(2-hydroxy-5-methoxy-3-methylphenyl)(phenyl)phosphine oxide (3bj)

³¹P NMR of (3,5-dimethylphenyl)(2-hydroxy-5-methoxy-3-methylphenyl)(phenyl)phosphine oxide (3bj)

¹H NMR of (2-hydroxy-5-methoxyphenyl)(phenyl)(o-tolyl)phosphine oxide (3ak)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)(phenyl)(o-tolyl)phosphine oxide (3ak)

³¹P NMR of (2-hydroxy-5-methoxyphenyl)(phenyl)(o-tolyl)phosphine oxide (3ak)

¹H NMR of (3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3al)

¹³C NMR of (3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3al)

³¹P NMR of (3-chlorophenyl)(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3al)

¹H NMR of (2-hydroxy-5-methoxyphenyl)di(thiophen-2-yl)phosphine oxide (3am)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)di(thiophen-2-yl)phosphine oxide (3am)

-10.632 2.113 0.000 UH O Me Ph ÓМе 2.98 2.00 1.00 g.98 1.00 PPM 12 10 4 2

¹H NMR of (2-hydroxy-5-methoxyphenyl)(methyl)(phenyl)phosphine oxide (3an)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)(methyl)(phenyl)phosphine oxide (3an)

³¹P NMR of (2-hydroxy-5-methoxyphenyl)(methyl)(phenyl)phosphine oxide (3an)

¹H NMR of butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ao)

¹³C NMR of butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ao)

³¹P NMR of butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ao)

7.97 7.95 7.1295 7.1295 7.1294 7.1294 7.1294 7.1294 7.1292 6.97 6.97 6.92 6.88 6.88 6.88 6.88 6.88 <1.31 -3.74 -13 -12 -11 -10 ОН 1 -9 0 -8 Ρh MeÓ -7 -6 -5 -3 -2 -1 -0 3.07 月 3.07 月 3.07 月 3.07 月 3.07 月 ē. 3.01 –≞ 9.01 –≞ --1 -4 10 4 -2 -3 14 12 7 3 0 -1 2 13 11 9 6 5 f1 (ppm) 1 8

¹H NMR of *tert*-butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ap)

¹³C NMR of *tert*-butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ap)

³¹P NMR of *tert*-butyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ap)

¹H NMR of (2-hydroxy-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (3aq)

¹³C NMR of (2-hydroxy-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (3aq)

¹H NMR of cyclohexyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ar)

¹³C NMR of cyclohexyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ar)

³¹P NMR of cyclohexyl(2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3ar)

¹H NMR of dicyclohexyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3as)

¹³C NMR of dicyclohexyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3as)

³¹P NMR of dicyclohexyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3as)

¹H NMR of dibutyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3at)

³¹P NMR of dibutyl(2-hydroxy-5-methoxyphenyl)phosphine oxide (3at)

¹H NMR of butyl(3-chloro-2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3fo)

¹³C NMR of butyl(3-chloro-2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3fo)

S152

³¹P NMR of butyl(3-chloro-2-hydroxy-5-methoxyphenyl)(phenyl)phosphine oxide (3fo)

¹H NMR of bis(4-fluorophenyl)(2-hydroxy-5-methoxy-4-methylphenyl)phosphine oxide (3jd)

¹³C NMR of bis(4-fluorophenyl)(2-hydroxy-5-methoxy-4-methylphenyl)phosphine oxide (3jd)

³¹P NMR of bis(4-fluorophenyl)(2-hydroxy-5-methoxy-4-methylphenyl)phosphine oxide (3jd)

¹H NMR of (1-hydroxy-4-methoxynaphthalen-2-yl)(phenyl)(o-tolyl)phosphine oxide (3nk)

S157

¹³C NMR of (1-hydroxy-4-methoxynaphthalen-2-yl)(phenyl)(o-tolyl)phosphine oxide (3nk)

³¹P NMR of (1-hydroxy-4-methoxynaphthalen-2-yl)(phenyl)(o-tolyl)phosphine oxide (3nk)

¹H NMR of 2-(diphenylphosphanyl)-4-methoxyphenol (5a)

¹³C NMR of 2-(diphenylphosphanyl)-4-methoxyphenol (5a)

³¹P NMR of 2-(diphenylphosphanyl)-4-methoxyphenol (5a)

S162

¹H NMR of 3-(diphenylphosphanyl)-5-methoxy-[1,1'-biphenyl]-2-ol (5b)

¹³C NMR of 3-(diphenylphosphanyl)-5-methoxy-[1,1'-biphenyl]-2-ol (5b)

³¹P NMR of 3-(diphenylphosphanyl)-5-methoxy-[1,1'-biphenyl]-2-ol (5b)

S165

¹H NMR of 2-chloro-6-(diphenylphosphanyl)-4-methoxyphenol (5c)

¹³C NMR of 2-chloro-6-(diphenylphosphanyl)-4-methoxyphenol (5c)

³¹P NMR of 2-chloro-6-(diphenylphosphanyl)-4-methoxyphenol (5c)

¹H NMR of 2-(diphenylphosphanyl)-4-methoxynaphthalen-1-ol (5d)

¹³C NMR of 2-(diphenylphosphanyl)-4-methoxynaphthalen-1-ol (5d)

³¹P NMR of 2-(diphenylphosphanyl)-4-methoxynaphthalen-1-ol (5d)

¹H NMR of 2-(bis(4-fluorophenyl)phosphanyl)-4-methoxyphenol (5e)

³¹P NMR of 2-(bis(4-fluorophenyl)phosphanyl)-4-methoxyphenol (5e)

¹H NMR of 2-((3,5-dimethylphenyl)(phenyl)phosphanyl)-4-methoxy-6-methylphenol (5f)

S175

¹³C NMR of 2-((3,5-dimethylphenyl)(phenyl)phosphanyl)-4-methoxy-6-methylphenol (5f)

¹H NMR of (5-methoxy-2-(naphthalen-1-yl)phenyl)diphenylphosphine oxide (6)

¹³C NMR of (5-methoxy-2-(naphthalen-1-yl)phenyl)diphenylphosphine oxide (6)

³¹P NMR of (5-methoxy-2-(naphthalen-1-yl)phenyl)diphenylphosphine oxide (6)

¹H NMR of (2-(allyloxy)-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (P-7)

¹³C NMR of (2-(allyloxy)-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (P-7)

S182

³¹P NMR of (2-(allyloxy)-5-methoxyphenyl)(pent-4-en-1-yl)(phenyl)phosphine oxide (P-7)

¹H NMR of (Z)-10-methoxy-8-phenyl-2,5,6,7-tetrahydrobenzo[b][1,4]oxaphosphecine 8-oxide (7)

S184

¹³C NMR of (Z)-10-methoxy-8-phenyl-2,5,6,7-tetrahydrobenzo[b][1,4]oxaphosphecine 8-oxide (7)

³¹P NMR of phosphorus-macrocycle (Z)-10-methoxy-8-phenyl-2,5,6,7-tetrahydrobenzo[b][1,4]oxaphosphecine 8-oxide (7)

