Electronic supplementary information

Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: Silyl species enable reactivity

Hu Li, Wenfeng Zhao, Wenshuai Dai, Jingxuan Long, Masaru Watanabe, Sebastian Meier*, Shunmugavel Saravanamurugan*, Song Yang*, Anders Riisager

* Corresponding authors. Email: semei@kemi.dtu.dk (SM); saravana@ciab.res.in (SS); jhzx.msm@gmail.com (SY)

The PDF file includes:

Supplementary Text

- Table S1. Hydrogenation of biomass derivatives with different metal catalysts
- Table S2. Selective hydrogenation of ethyl levulinate (EL) to γ -valerolactone (GVL) and
 - 1,4-pentanediol (1,4-PD) via silyl ethers (Si-1 and Si-2) under various conditions.
- Table S3. Effect of various hydrosilanes on the conversion of EL to GVL
- Table S4. The synthesis of N-substituted lactams from levulinic acid
- Fig. S1. Reaction pathways for the hydrogenation of EL to GVL and 1,4-PD
- Fig. S2. MS (top) and ¹H-¹³C HSQC NMR (bottom) spectra of tetraethyl orthosilicate Si(OEt)₄
- Fig. S3. Effect of various solvents on the hydrogenation of EL to GVL
- Fig. S4. GC-MS spectrum of the reaction mixture obtained in the hydrogenation of EL in *n*-hexane
- Fig. S5. Selected MS spectra of the products obtained in the hydrogenation of EL in n-hexane
- Fig. S6. Effect of post-treatment temperature on the cyclization of in situ formed silyl ether (Si-1) to GVL
- Fig. S7. GC-MS spectrum of the reaction mixture obtained in the hydrogenation of EL in THF
- Fig. S8. The effect of hydrosilane dosage on the catalytic hydrogenation of EL
- Fig. S9. MS spectrum of GVL ethyl acetal
- Fig. S10. Effect of reaction time on the hydrogenation of EL
- Fig. S11. In situ time-series of ¹³C NMR spectra for the hydrogenation of EL
- Fig. S12. *Ex situ* NMR spectra of the reaction mixture in the region for the intermediate (ethyl 4-hydroxypentanoate, EHP) and product GVL
- Fig. S13. ¹H NMR spectra of the reaction mixture using normal Ph₂SiH₂ and deuterium-labeled Ph₂SiD₂ as reducing agents
- Fig. S14. ¹H-¹³C HSQC NMR spectra of the reaction mixtures using Ph₂SiD₂ as reducing agent
- Fig. S15. ¹³C NMR spectra of the reaction mixtures using Ph₂SiD₂ as reducing agent
- Fig. S16. ¹³C NMR (DEPT-135) spectra of the reaction mixtures using Ph₂SiD₂ as reducing agent
- Fig. S17. Effect of Cs_2CO_3 dosage on the conversion of EL to GVL
- Fig. S18. STEM-HAADF image (a), and C (b), Cs (c), O (d), and Si (e) elemental mappings of recovered Cs₂CO₃
- Fig. S19. TEM images of (a) fresh and (b) recovered Cs₂CO₃
- Fig. S20. Effect of post-treatment time on the yield of formate
- Fig. S21. ¹H NMR spectra of the reaction mixture in the chemical shift range of 8-10 ppm for the conversion of EL
- Fig. S22. Reaction pathways for reduction of EL to GVL and 1,4-PD via corresponding silyl ethers
- Fig. S23. DFT calculation results of the reaction pathways to different silyl ethers from EL
- Fig. S24. Reaction pathways for selective reduction of the lactone and lactam via corresponding silyl ethers

Supplementary Text

Materials

Potassium carbonate (K₂CO₃, 99%), sodium carbonate (Na₂CO₃, >99.8%), lithium carbonate (Li₂CO₃, 99.99%), cesium chloride (CsCl, 99.9%), cesium nitrate (CsNO₃, 99.9%), cesium formate (CsOOCH, 98%), trimethoxysilane [(MeO)₃SiH, 95%], diphenylsilane (Ph₂SiH₂, 98%), triethylsilane (Et₃SiH, 99%), heptamethyltrisiloxane, polymethylhydrosiloxane, levulinic acid (98%), formic acid (99%), *n*-butylamine (99%), 4-chlorobenzamide (>98%), cyclohexylamine (>99%), aniline (>99%), benzylamine (99%), methyl benzoate (99%), methyl *p*-toluate (99%), methyl *p*-formylbenzoate (98%), methyl 4-acetylbenzoate (98%), 4-nitrobenzaldehyde (98%), 2,5-hexanedione (≥99%), methyl 5-formyl-2-furoate (97%), and 2,5-diformylfuran (98%) were purchased from Beijing InnoChem Science & Technology Co., Ltd. All other organic reagents were in analytically pure and used without further purification, unless otherwise noted.

Catalyst characterization

Magnified images were taken using transmission electron microscopy (TEM, JEM-1200EX). Scanning transmission electron microscope and high-angle annular dark-field (STEM-HAADF) images were obtained using an aberration-corrected FEI Tecnai G2 F30 S-TWIN (S)TEM operating at 300 kV.

Computational method

All geometry optimizations and energy calculations were performed at B3LYP/6-311+g (d, p) level by using the Gaussian 09 package ^{S1}. Considering the zero point corrections (ZPCs) of all the compounds, harmonic vibrational frequency calculations are performed at the same level to that in geometry optimization process.

	H-donor	Temp. (°C)	Time (h)	Substrate		Product		
Catalyst				Туре	Conv.(%)	Туре	Yield(%)	Ref.
Pt@TECN	1 MPa H ₂	100	1	Furfural	98	Furfuryl alcohol	97	S2
Cu/MgAlO	4 MPa H_2	150	3	Furfural	>99	Furfuryl alcohol	99	S3
Pt/C	8 MPa H_2	175	0.5	Furfural	99.3	Furfuryl alcohol	47.9	S4
Pd/C	2 MPa H_2	150	4	Furfural	41.2	Furfuryl alcohol	14.4	S5
Pd/C	$8 \mathrm{MPa}\mathrm{H_2}$	160	0.5	Furfural	98.4	Tetrahydrofurfuryl alcohol	62.1	S6
Ru/C	4 MPa H_2	150	-	Levulinic acid	-	γ-Valerolactone	30	S7
Au/ZrO ₂ -VS	Formic acid	180	3	Levulinic acid	-	γ-Valerolactone	99	S8
Cu-ZrO ₂	3.5 МРа Н ₂	200	5	Methyl levulinate	-	γ-Valerolactone	92	S9
Co-pincer	5 MPa H ₂	130	48	Cyclohexyl hexanoate	-	Cyclohexanol	99	S10
Fe-PNP	5 MPa H ₂	130	3	<i>N,N-</i> dimethyl formamide	-	Methanol	>99	S11
Fe-pincer	$6 \mathrm{MPa} \mathrm{H}_2$	90	20	Benzonitrile	>99	<i>N</i> -benzyl benzaldimine	98	S12
Fe-complex	3 MPa H_2	100	6	Methyl benzoate	>99	Benzyl alcohol	97	S13

Table S1. Hydrogenation of biomass derivatives with different metal catalysts. Some representative examples with good performance on selective hydrogenation of biomass derivatives are listed.

Table S2. Selective hydrogenation of ethyl levulinate (EL) to γ -valerolactone (GVL) and 1,4-pentanediol (1,4-PD) via silyl ethers (Si-1 and Si-2) under various conditions. The reaction conditions are as follows: 1 mmol EL, 1.5 equiv. H⁻ of (EtO)₃SiH, 5 mol% catalyst, 2 mL 2-methyltetrahydrofuran (MTHF)

Entry Catalyst	Temp	Time	EL conv.		Product	yield (%)	CB^a	
	(°C)	(h)	(%)	Si-1	GVL	Si-2	1,4 - PD	(%)	
1^b	Cs_2CO_3	25	0.5	98	21	74	<1	0	98
2^{c}	Cs_2CO_3	25	0.5	>99	10	87	<1	0	99
3^d	K_2CO_3	25	0.5	2	<1	1	0	0	>99
4^d	Na ₂ CO ₃	25	0.5	1	0	<1	0	0	>99
5^d	Li ₂ CO ₃	25	0.5	0	0	0	0	0	100
6^d	CsCl	25	1.0	0	0	0	0	0	100
7^d	CsNO ₃	25	1.0	0	0	0	0	0	100
8^d	CsOOCH	25	1.0	0	0	0	0	0	100
$9^{d,e}$	K_2CO_3	25	1.0	34	<1	32	0	0	99

^{*a*} CB: carbon balance; ^{*b*} No ethanol post-treatment; ^{*c*} After reaction, 2 mL ethanol was added into the reaction mixture and stirred (500 rpm) at 25 °C for 2 h. ^{*d*} After reaction, 2 mL ethanol was added into the reaction mixture and stirred at 80 °C for 2 h. ^{*e*} 18-crown-6 (10 mol%) was added together with K₂CO₃ for the reaction.

Table S3. Effect of various hydrosilanes on the conversion of EL to GVL. The reaction conditions are as follows: 1 mmol EL, 1.5 equiv. H⁻ of hydrosilane, 5 mol% Cs_2CO_3 , 2 mL MTHF, 25 °C, 0.5 h; After reaction, 2 mL ethanol was added into the reaction mixture and stirred at 80 °C for 2 h.

Hydrosilane name	Structure	EL conv. (%)	GVL yield (%)	
Trimethoxysilane	(MeO) ₃ SiH	90	81	
Triethoxysilane	(EtO) ₃ SiH	>99	98	
Phenylsilane	PhSiH ₃	99	89	
Diphenylsilane	Ph ₂ SiH ₂	45	33	
Triethylsilane	Et ₃ SiH	1	<1	
Heptamethyltrisiloxane	Me ₃ Si-O-MeSiH-O-SiMe ₃	16	4	
Polymethylhydrosiloxane (PMHS)	Me ₃ Si-O-(MeSiH-O) _n -SiMe ₃	40	25	

Table S4. The synthesis of *N***-substituted lactams from levulinic acid.** The reaction conditions are as follows: 1 mmol levulinic acid, 2 mmol amine, 5 mmol HCOOH, 2 mL DMSO, 120 °C.

$\begin{array}{c} O \\ \hline \\ O \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ C \\ \hline \\ \hline$						
Entry	R	Time (h)	Lactam (%)			
			Yield	Selectivity		
1		8	90	95		
2	<u> </u> -§-	10	87	92		
3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	92	96		
4	<u> </u> -§-	10	89	93		
5	CI	12	85	90		

Fig. S1. Reaction pathways for the reduction of EL to GVL and 1,4-PD. The dominant product 1,4-PD with the absence of MTHF formed during the reduction process indicates that the cleavage of the cyclic C-O bond is more apt to take place, as compared with that of the exocyclic C-O bond. GVL acetal and Si-2 with $R = -Si(OEt)_3$ were the dominant products, which is consistent with the results that $Si(OEt)_4$ instead of (EtO)₃SiOSi(EtO)₃ was found to be the major silyl species formed after the reaction.

Fig. S2. MS (top) and ¹H-¹³C HSQC NMR (bottom) spectra of tetraethyl orthosilicate Si(OEt)₄. For the ¹H-¹³C HSQC NMR spectra, the reaction mixture in red with reference standards in blue is presented, showing tetraethylorthosilicate formation and residual triethoxysilane in the reaction mixture.

Fig. S3. Effect of various solvents on the hydrogenation of EL to GVL. The reaction conditions are as follows: 1 mmol EL, 1.5 equiv. H⁻ of $(EtO)_3SiH$, 5 mol% Cs₂CO₃, 2 mL MTHF, 25 °C, 0.5 h. After the reaction, 2 mL of ethanol was added into the resulting solution and further stirred at 80 °C for 2 h.

Fig. S4. GC-MS spectrum of the reaction mixture obtained in the hydrogenation of EL in *n***-hexane. Reaction conditions: 1 mmol EL, 1.5 equiv. H⁻ of (EtO)₃SiH, 5 mol% Cs₂CO₃, 2 mL** *n***-hexane, 25 °C, 0.5 h.**

Fig. S5. Selected MS spectra of the products obtained in the hydrogenation of EL in *n*-hexane. Reaction conditions: 1 mmol EL, 1.5 equiv. H⁻ of $(EtO)_3SiH$, 5 mol% Cs₂CO₃, 2 mL *n*-hexane, 25 °C, 0.5 h.

Fig. S6. Effect of post-treatment temperature on the cyclization of *in situ* formed silyl ether (Si-1) to GVL. THF instead of MTHF was used as solvent to check the possibility of MTHF formation with Cs_2CO_3 under otherwise identical conditions listed in Table S2 (GVL acetals were the dominant byproducts, while 1,4-PD and MTHF were not detected by GC-MS in Fig. S7). After the reaction, 2 mL of ethanol was added into the resulting solution and further stirred at the specific post-treatment temperature for 2 h.

Fig. S7. GC-MS spectrum of the reaction mixture obtained in the hydrogenation of EL in THF. Reaction conditions: 1 mmol EL, 1.5 equiv. H- of (EtO)₃SiH, 5 mol% Cs₂CO₃, 2 mL THF, 25 °C, 0.5 h.

Fig. S8. The effect of hydrosilane dosage on the catalytic hydrogenation of EL. Reaction conditions: 1 mmol EL, 1-5.5 equiv. H⁻ of (EtO)₃SiH, 5 mol% Cs₂CO₃, 2 mL MTHF, 25 °C, 0.5 h; After reaction, 2 mL ethanol was added into the reaction mixture and stirred at 80 °C for 2 h.

Fig. S9. MS spectrum of GVL ethyl acetal (2-ethoxy-5-methyltetrahydrofuran)

Fig. S10. Effect of reaction time on the hydrogenation of EL. The reaction conditions are as follows: 1 mmol EL, 3.5 equiv. H⁻ of $(EtO)_3SiH$, 5 mol% Cs₂CO₃, 2 mL MTHF, 25 °C. After the reaction, 2 mL of ethanol was added into the resulting solution and further stirred at the specific post-treatment temperature for 2 h.

Fig. S11. *In situ* time-series of ¹³C NMR spectra for the hydrogenation of EL. The used solvent was MTHF with 5% DMSO-d₆, without magnetic stirring.

Fig. S12. *Ex situ* NMR spectra of the reaction mixture in the region for the intermediate (ethyl 4-hydroxypentanoate, EHP) and product (γ -valerolactone, GVL). After the indicated reaction times, the reaction mixture was quenched by methanol at room temperature and then sent for NMR analysis. Clearly, better selectivity was observed for the product here than in the NMR tube (Fig. S11).

Fig. S13. ¹H NMR spectra of the reaction mixture using normal Ph₂SiH₂ and deuterium-labeled Ph₂SiD₂ as reducing agents. THF-d₆ was used as solvent.

Fig. S14. ¹H-¹³C HSQC NMR spectra of the reaction mixtures using Ph_2SiD_2 as reducing agent. (a) THF-d₆ as solvent and (b) THF-d₆ as solvent with post-treatment by methanol-d₄ at 60 °C for 2 h.

Fig. S15. ¹³C NMR spectra of the reaction mixtures using Ph_2SiD_2 as reducing agent. THF- d_6 was used as solvent without or with post-treatment by methanol- d_4 at 60 °C for 2 h.

Fig. S16. ¹³C NMR (DEPT-135) spectra of the reaction mixtures using Ph_2SiD_2 as reducing agent. THF- d_6 was used as solvent without or with post-treatment by methanol- d_4 at 60 °C for 2 h. Boxes show the absence of quaternary carbon signals present in Fig. S15.

Fig. S17. Effect of Cs₂CO₃ dosage on the conversion of EL to GVL. Reaction conditions: 1 mmol EL, 1.5 equiv. H⁻, 2 mL MTHF, 25 °C, 0.5 h.

Fig. S18. (a) STEM-HAADF image and (b) C, (c) Cs, (d) O and (e) Si elemental mappings of recovered Cs₂CO₃.

Fig. S19. TEM images of (a) fresh and (b) recovered Cs₂CO₃. Images were taken after dispersion of the solid samples into THF.

Fig. S20. Effect of post-treatment time on the yield of formate. Reaction conditions: 1 mmol EL, 1.5 equiv. H⁻ of $(EtO)_3SiH$, 5 mol% Cs₂CO₃, 2 mL MTHF, 25 °C, 0.5 h. After the reaction, 2 mL ethanol was added into the reaction mixture and stirred at 80 °C for variable post-treatment time.

Fig. S21. ¹H NMR spectra of the reaction mixture in the chemical shift range of 8-10 ppm for the conversion of EL. Reaction conditions: 1 mmol EL, 1.5 equiv. H⁻, 5 mol% Cs₂CO₃, 2 mL MTHF, 25 °C for 0.5 h. Post-treatment with methanol-d₄ (2 mL) at 80 °C for 0 or 2 h.

Fig. S22. Reaction pathways for reduction of EL to GVL and 1,4-PD via corresponding silyl ethers.

Fig. S23. DFT calculation results of the reaction pathways to different silyl ethers from EL.

Fig. S24. Reaction pathways for selective reduction of the lactone and lactam via corresponding silyl ethers. (A) Reduction of 1,5-dimethyl-2-pyrrolidinone (DPO) to a) 1,2-dimethylpyrrolidine (DPI) or b) corresponding disilyl ether, and (B) Reduction of valerolactone (GVL) to a) 2-methyltetrahydrofuran (MTHF) or b) corresponding disilyl ether.

References

- Gaussian 09, Revision D.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.
- S2. X. Chen, L. Zhang, B. Zhang, X. Guo, X. Mu, Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C₃N₄ nanosheets catalysts in water. *Sci. Rep.* 2016, 6, 28558.
- S3. J. Wu, G. Gao, J. Li, P. Sun, X. Long, F. Li, *Appl. Catal. B: Environ.* 2017, 203, 227-236.
- S4. M. Hronec, K. Fulajtarová, Catal. Commun. 2012, 24, 100-104.
- S5. W. J. Yu, Y. Tang, L. Y. Mo, P. Chen, H. Lou, X. M. Zheng, *Bioresour. Technol.* 2011, **102**, 8241-8246.
- S6. M. Hronec, K. Fulajtarová, T. Liptaj, Appl. Catal. A: Gen. 2012, 437-438, 104-111.
- S7. L. Deng, Y. Zhao, J. Li, Y. Fu, B. Liao, Q.X. Guo, *ChemSusChem* 2010, 3, 1172-1175.
- S8. X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, K. N. Fan, ChemSusChem 2011, 4, 1838-1843.

- S9. A. M. Hengne, C. V. Rode, Green Chem. 2012, 14, 1064-1072.
- S10. D. Srimani, A. Mukherjee, A. F. G. Goldberg, G. Leitus, Y. Diskin-Posner, L. J.
 W. Shimon, Y. B. David, D. Milstein, *Angew. Chem. Int. Ed.* 2015, 54, 12357-12360.
- S11. N. M. Rezayee, D. C. Samblanet, M. S. Sanford, ACS Catal. 2016, 6, 6377-6383.
- S12. S. Chakraborty, D. Milstein, ACS Catal. 2017, 7, 3968-3972.
- S13. S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 8722-8726.