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Supporting Archives

Four archives are provided alongside this document to assist the reader in reproducing the re-

sults and using the force field, all accessible via https://cscdata.nrel.gov/#/datasets/61b10985-

8ed4-412c-9353-1889f200778f. One, parameters.zip, contains the output topology and pa-

rameter files in CHARMM format, suitable for use in constructing simulation systems.

Another, crystal.zip, contains the directory and minimal output related to building and

simulating crystalline lignin. The remaining two hold the logic of the parameterization,

featuring scripts that do the optimization (including the source for the GPU-accelerated

objective function evaluation) and target data creation (scripts.zip), as well as minimal out-

puts needed to recreate the work (datafiles.zip). Due to licensing restrictions, Gaussian log

files that created the target data are not provided here. Instead, only binary-formatted

parsed target data as well as the input decks used to create the target data are provided in

datafiles.zip.

Introduction

In addition to the typical ancillary tables and figures, the Supporting Information contains

significant discussion related to the different optimization protocols tried, and how we select

from among the different resulting parameter sets generated to determine the optimum.
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Figure S1: A simple example of a lignin trimer demonstrating the combination possibilities
enabled by the forcefield. Dibenzodioxocin-like structures have been isolated from native
lignins. In this example, monomer A (red), B (blue) & C (green) are all G-type lignin. The
original α and β alcohols from the base monomer A are used to specify the stereochemistry
of the α-O-4 and β-O-4 linkages with the C & B monomers, respectively. These alcohols are
removed entirely in monomer C by adding a double bond through the typical CHARMM
“patching” process. Similarly, the three linkages shown (black) are applied as patches applied
to form the linkages of the trimer.
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Extended Parameterization Theory

General CHARMM Parameterization Scheme

CHARMM has a two-stage approach to parameterization,S1,S2 following the demarcation

in Eq. 1 between bonded an non-bonded terms. In the first stage, non-bonded parameters

alone are adjusted. Typically, the Lennard-Jones parameters (red boxed terms in Eq. 1)

are taken by analogy from other compounds with a similar structure,S1,S2 as high-quality

target data are not readily available, and it has been shown to only minimally change the

outcome of observables such as solvation free energy.S3 What sets CHARMM apart from

other force fields is how it handles the atomic charge assignment, representing the red circles

within Eq. 1. Rather than fitting the charges to the results of a restrained electrostatic

potential (RESP) fit, as is done for the AMBER,S4 GROMOS,S5 and OPLSS6 force fields, in

CHARMM, quantum calculations of the interaction energy between TIP3 waterS7 and the

newly parameterized compound and the quantum electrical dipole moment, are used as the

target data to determine the atomic charge distribution across each molecule.S1,S2

The charges obtained in the first stage are then used as part of the input for parameteri-

zation in the second stage to determine the bonded parameters. For describing the bond and

angle terms, in principle a single Hessian calculation can be used as input, with the bond and

angle force constants determined from a scaled vibrational analysis.S1,S8,S9 However, given

the increased availability of computing power, relaxed energy scans, where one degree of

freedom is systematically changed and the remainder of the molecule is allowed to relax,

become tractable for all the required bond and angle terms, and can alternatively be used

to determine these parameters.S10 This approach mirrors what is done for dihedral torsions,

where relaxed potential energy scans are used to determine the dihedral parameters that best

fit the underlying potential energy surface.S1,S2,S9 Together, these two successive steps deter-

mine all of the circled parameters from Eq. 1. When combined with the free parameters with

squares around them in Eq. 1, this parameterization approach creates a complete descrip-
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tion of the forces between individual atoms within the molecules of interest. To maximize

compatibility with other CHARMM parameter sets for carbohydratesS11–S14 or proteins,S15

following the whole parameterization scheme, including the water interaction-based charge

determination, is required.

Additional Considerations for Branched Polymers

For small, discrete molecules, many tools exist to assist in the parameterization process,

like the force field toolkit (ffTK),S1 ForceBalance,S16 the Visual Force Field Derivation

Toolkit (VFFDT),S17 ForceFit,S18 or the general automated atomic model parameteriza-

tion (GAAMP).S19 However, there are specific required features that arise in parameterizing

branched polymers, and it is worth reviewing what those features are before further explain-

ing why new software was required. Chiefly, a mechanism like the atom-typer in CGenFFS20

is required to recognize equivalent chemical environments for an atom. In lignin, there are

many structural elements (such a methoxy group) that repeat in many molecules. Concep-

tually, the charges for these repeated structural elements should be consistent, otherwise

the parameter set is overly specific to the tested geometries and not broadly transferable.

In principle a single lignin monomer can be connected to up to five other monomers (e.g.

participating in both an α-O-4 and a β-O-4 linkage off of the α and β carbons of the C1

branch, a γ ester, and a 5-5 and β-O-4 linkage on C5 and C4). This means that the charge

changes induced by these linkages should be local enough so as to be largely independent of

other surrounding linkages. If this is not the case, the charge distributions would need to be

separately parameterized for all possible combinations of monomers, a task that is currently

intractable due to the combinatorial explosion of possible lignin linkage permutations, even

granting that only a subset of these permutations are found in native lignins.

Furthermore, existing publicly available tools do not easily integrate target data from

multiple molecules into a single objective function for simplified simultaneous optimization

of the parameters in a CHARMM-compatible scheme. This is a critical feature for parame-
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terizing lignin, since the same parameter set must simultaneously describe each linkage type,

ideally without creating overfitting artifacts that could arise from creating many new atom

types for each compound. An additional feature required by the aromatic lignin monomers

is that the equilibrium angle parameters around each of the aromatic carbons should sum

to 360 ◦. If the sum is not exactly 360, a persistent bias develops towards puckering the

aromatic ring, which can cause distorted geometries during simulation away from a typical

planar aromatic ring. The combination of these features is not found in another CHARMM-

compatible tool similar to how ForceBalance can be used for Amber,S21 and demands custom

code to incorporate these features into our parameterization workflow, which we describe in

detail within the methods.
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Figure S2: Examples of how structural elements are divided into near-integer charge groups
of atoms for four non-trivial examples, with the chemical structure shown on the left and the
graph representation of the charge groups on the right. As in Fig. 2 previously, each charge
group is assigned its own unique color within the molecular graph, and the numbers labeling
each node of the graph indicate the atomic index of the assembled molecular structure. The
specific molecules chosen here represent dimeric structures testing different linkers. (A) An α-
6 linkage from lignin to sugar. (B) A β-β linkage between lignins. (C) A ferulate-xylan linker.
(D) A γ-O-γ linker between lignins. The algorithm consistently picks out similar chemical
functionalities across the diverse molecules tested, such as the groups shared between the
linkages in (A) and (C) or (C) and (D).

Extended Optimization Methods

Charge Optimization

To reoptimize charges in CHARMM, three different elements need to be considered; the in-

teraction energy (Eint) between water and the compound at the quantum optimum geometry

after scaling and shifting the value to better represent liquid conditions, the distance between
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Figure S3: Example potential energy surface dilemma. Suppose, as in (A), that our observed
quantum potential energy surface (red points) is perfectly fit by a series of parameters that
result in a harmonic potential energy surface along that particular geometrical perturbation
or collective variable. When viewed in a multidimensional space (B), this 1D optimized
potential energy surface can either overlay on the minimum of the local classical potential
energy surface (horizontal dashed line, where the geometry observable is collective variable
B), or be offset somewhat (vertical solid line, where the geometry observable is collective
variable A). The offset case represents an instance where a classical molecular dynamics
minimizer will change the geometry away from the starting geometry, and bring the structure
to the local minimum of its own multidimensional potential energy surface by changing a
degree of freedom orthogonal to the scanned potential energy surface, as represented by the
white arrow.
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Figure S4: Examples of the quantum mechanical and classical potential energy surface for
a limited subset of the 2574 bond, angle or dihedral scans used as target data. To simplify
the visualization, v = 0 during the optimizations that lead to this set of parameters. The
bounds enforced on the dihedral terms during the optimization for each set are listed in
Table S1. Each set is drawn in a consistent color, as indicated in the in-figure legend, with
the quantum mechanical target data from the scan shown in black. A molecular image of
the compound being scanned in its central pose can be found within each panel, with a black
arrow indicating what degree of freedom is being probed by the scan. (A) and (B) highlight
the energy change when an unbalanced hydroxyl group rotates, (C) shows a typical methoxy
rotation, (D) demonstrates an angular change between a lignin and sugar monomer, (E)
shows an α-hydroxyl rotation, and (F) shows a rotation around an ester-adjacent bond.
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Figure S5: The actual distribution of residuals (grey histogram) is not fit by a normal
distribution (blue dashed line), as the width is not related to the standard deviation of the
distribution. Instead, a cauchy distribution centered around zero (red solid line) describes
the distribution much better.
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Figure S6: Root mean square deviation (RMSD) distribution of the resulting structures for
both monomers and dimers after minimization in solution relative to the gas-phase minimum
energy structures determined quantum mechanically. As in Fig. S32, the parameter v from
Eq. S2 is held fixed in (A), highlighting the effect of different choices for dihedral bounds,
with the effect of force inclusive optimization demonstrated in (B). Within each subpanel, the
results from the CGenFF starting point are also shown in black as a benchmark. Monomers
and dimers are separated here due to their disparate sizes, which tends to make the RMSD
for dimers larger overall. The mean and standard deviations are reported in Table S6. For
a similar analysis in vacuum, see Fig. S33 and Table S8.
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Figure S7: Distribution of the angle between vectors in lignin dimers linked through a 5-5
linkage after minimization in solution. The angle itself is defined through the vectors shown
in (C), which go from C5 to C2 of each monomer involved in the linkage. The angle between
these vectors is the measured quantity. At the quantum level, this angle is almost exactly
180◦; however, relatively large deviations from the perfect line between the vectors were noted
during minimization. The distributions of the observed angles are reported in panels (A)
and (B). The parameter v from Eq. S2 is held fixed in (A), highlighting the effect of different
choices for dihedral bounds, with the effect of force inclusive optimization demonstrated in
(B). Mean values and their standard deviation over the distribution are reported in-figure,
using the same color as those given in the in-figure legend.
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Figure S8: Crystal comparison for catechol (CATCOL13) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.977±0.008) and CGenFF (right, mean RMSD 1.336±0.008). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S9: Crystal comparison for p-hydroxybenzaldehyde (PHBALD11) between the orig-
inal crystal (left), and the eventual structure after 20 ns of simulation with the lignin-
optimized force field (middle, mean RMSD 1.09 ± 0.02) and CGenFF (right, mean RMSD
1.26± 0.02). Each molecule is shown in a stick representation, with carbons shown in gray,
oxygens in red, and hydrogens in white.
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Figure S10: Crystal comparison for vanillin (YUHTEA01) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 1.331± 0.008) and CGenFF (right, mean RMSD 1.426± 0.009).
Each molecule is shown in a stick representation, with carbons shown in gray, oxygens in
red, and hydrogens in white.

Figure S11: Crystal comparison for vanillin (YUHTEA03) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 1.52±0.03) and CGenFF (right, mean RMSD 1.61±0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S12: Crystal comparison for syringaldehyde (IZALAW) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 8.92±0.01) and CGenFF (right, mean RMSD 8.40±0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S13: Crystal comparison for coniferaldehyde (SIPKEH) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 3.16±0.02) and CGenFF (right, mean RMSD 3.14±0.02). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S14: Crystal comparison for vanillic acid (CEHGUS) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 1.01±0.01) and CGenFF (right, mean RMSD 1.06±0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S15: Crystal comparison for ferulic acid (GASVOL01) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 0.837± 0.006) and CGenFF (right, mean RMSD 1.352± 0.007).
Each molecule is shown in a stick representation, with carbons shown in gray, oxygens in
red, and hydrogens in white.
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Figure S16: Crystal comparison for G-βO4-G (RABWUM) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 0.592± 0.007) and CGenFF (right, mean RMSD 0.631± 0.006).
Each molecule is shown in a stick representation, with carbons shown in gray, oxygens in
red, and hydrogens in white.

Figure S17: Crystal comparison for G-βO4-G (SIPPEM) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.93 ± 0.01) and CGenFF (right, mean RMSD 1.100 ± 0.009). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S18: Crystal comparison for S-βO4-G (VADDOT) between the original crystal
(left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 1.15±0.01) and CGenFF (right, mean RMSD 1.72±0.02). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S19: Crystal comparison for S-βO4-S (SAZHEG) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.95 ± 0.01) and CGenFF (right, mean RMSD 0.84 ± 0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S20: Crystal comparison for S-βO4-S (FOCGUA) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.917 ± 0.007) and CGenFF (right, mean RMSD 0.84 ± 0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S21: Crystal comparison for S-βO4-S (IDIKIP) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.84 ± 0.01) and CGenFF (right, mean RMSD 1.83 ± 0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S22: Crystal comparison for G-ββ-G (INELIW) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.786 ± 0.009) and CGenFF (right, mean RMSD 1.42 ± 0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S23: Crystal comparison for G-ββ-G (INELIW01) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.82 ± 0.02) and CGenFF (right, mean RMSD 2.322 ± 0.008). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S24: Crystal comparison for G-ββ-G (FAFXUF) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 0.99 ± 0.01) and CGenFF (right, mean RMSD 3.97 ± 0.02). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S25: Crystal comparison for G-β5-G (FUMVUE) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 1.01 ± 0.01) and CGenFF (right, mean RMSD 1.07 ± 0.01). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S26: Crystal comparison for dibenzodioxocin (TUGWAT) between the original crys-
tal (left), and the eventual structure after 20 ns of simulation with the lignin-optimized force
field (middle, mean RMSD 0.88±0.02) and CGenFF (right, mean RMSD 1.23±0.02). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.

Figure S27: Crystal comparison for G-55-G (UJOGIK) between the original crystal (left),
and the eventual structure after 20 ns of simulation with the lignin-optimized force field
(middle, mean RMSD 2.521 ± 0.004) and CGenFF (right, mean RMSD 1.77 ± 0.04). Each
molecule is shown in a stick representation, with carbons shown in gray, oxygens in red, and
hydrogens in white.
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Figure S28: Angles (rounded to the nearest integer) around aromatic carbons bonded to oxy-
gen in quantum mechanically optimized structures. Each monomer parameterized is shown
after truncating the group attached to C1 (Fig. 1), with the common name for each result-
ing compound shown above the molecular structure. Within the molecular representation,
carbons are grey, oxygens are red, and hydrogens are white. The oval underlays represent
the near-integer charge groups for these compounds, first laid out in Fig. 2. There are clear
differences between angles depending on surrounding functional groups, indicating that a
single atom type for all aromatic carbons, as CGenFF initially created, cannot reproduce
the diversity of angle values seen here.
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Figure S29: Distribution of the Lennard Jones (LJ, equivalent to UV DW from Eq. 1) contri-
butions to the water interaction energy. Since CHARMM requires that water distances be
shifted inward to better match solution conditions based on gas phase quantum calculations,
sometimes the LJ contribution at this new geometry can be very large, with LJ interactions
in the hundreds of kcalmol−1 observed. If these large LJ contributors were not eliminated,
they would dominate the objective function, as their individual residuals from the quantum-
determined interaction energy would be very large. Thus, we use the 5 kcalmol−1 threshold
for exclusion from the optimization target data, which eliminates less than 7% of the initial
target data set, as indicated by the cumulative sum at the cutoff reported in the upper right.
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water and the compound at the minimum (d), and the compound dipole moment (D).S1,S2

Each of these components is incorporated into an objective function that is minimized to

yield an optimized charge distribution such that the new molecular mechanics (MM) model

matches the values observed from the quantum mechanical target data (QM).

f(q̄) =
∑

compounds

∑

stereoisomers

[(

∑

sites

w−2
(

Eint
QM − Eint

MM(q̄)
)2

+ w−2
d (dQM − dMM(q̄))2

)

+ wD (DQM −DMM(q̄))2
]

(S1)

It should be emphasized that Eq. S1 is a restatement of the objective function used by de-

fault in ffTK (w = 0.2 kcalmol−1, wd = 0.1 Å, wD proportional to the number of atoms in

the compound),S1 with the exception that Eq. S1 explicitly incorporates target data from

multiple compounds with multiple chiralities and discards interaction energies that are un-

physically high after shifting and scaling. In keeping with standard CHARMM methodology,

Eint
QM is scaled up by 1.16 for uncharged compounds from the computed value from Gaus-

sian and dQM is shifted inward by 0.2 Å to better reproduce liquid phase properties from

gas phase calculations.S1,S2 Occasionally, the inward shift greatly increases the non-bonded

Lennard-Jones contribution to the energy (UV DW ), which makes fitting the quantum me-

chanical interaction impossible, as no possible combination of charges would be able to coun-

terbalance the high UV DW that is observed for a subset of the interactions (Fig. S29). To

ameliorate this, both w and wd are additionally multiplied by 0 if UV DW > 5 kcalmol−1, and

by min
(

1, exp
(

−0.2Eint
QM

))

−1
otherwise, which weights repulsive interactions more weakly

than attractive interactions, and completely discounts contributions from interactions that

are too strongly repulsive after the shift is applied. These highly repulsive interactions ac-

count for 7% of the total interactions observed (Fig. S29). The target magnitude of the

dipole moment was chosen such that the molecular dipole (DMM) is between 1.2 and 1.5

times the magnitude of the quantum dipole (DQM), and that harmonic penalties were not
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applied if the direction of DMM was within 20◦ of DQM , consistent with standard CHARMM

methodology.S1,S2

A B

Figure S30: Examples of the optimized positions of water relative to a test compound, in this
case the combination of the G-monomer with an aldehyde substituent on C1. In (A), water
is acting as a proton donor to accessible sites on the test compound, whereas in (B), water
is acting as a proton acceptor relative to potential proton donor sites on the compound.
Each calculation is of the target molecule with a single water molecule, and are carried
out separately. However here all water molecule positions are shown simultaneously with a
distinct solid color.

The target data fed into this objective function are created through the same process as

in ffTK,S1 using the MP2-optimized geometries computed earlier as the basis for calculation.

To determine the interactions with water, water molecules are algorithmically placed as either

potential hydrogen bond donors or acceptors (Fig. S30), and then optimized at an HF/6-

31G* level of theoryS22 to determine the optimal distance for interaction between the single

water and the target compound. This required 4836 individual optimizations in Gaussian

09.S23 The dipole is determined at the MP2/6-31G* level of theoryS24 from the optimized

geometry computed previously.

With the quantum mechanical target data needed for Eq. S1 in hand, it remains to deter-

mine the exact charge vector q̄ that optimizes the objective function. However, unrestrained
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optimization can result in aphysical results (such as positive partial charges for oxygens) if

not carefully bounded. The bounds chosen restrict hydrogens to their typical CHARMM

charges of 0.09 for non-polar hydrogens, 0.115 for aromatic hydrogens, 0.15 for sp2 hydro-

gens, and 0.42 for polar hydrogens, whose units are with respect to the charge of a proton.

Heavy atoms were allowed to change their charges by ±0.25 charge units relative to the

CGenFF charges.

Equivalent atoms on different compounds should have equivalent charges, which must be

imposed within the optimizer. Since no specific prescription exists for determining equivalent

charges, we tried two different schemes (Fig. 2). In one scheme, a neighborhood is determined

for each atom of every compound, and atoms with identical neighborhoods are grouped

together and are forced to carry the same charge (Fig. 2). A neighborhood in this instance

is defined to be a subgraph representation of the molecule centered around a specific atom,

where the nodes are the atoms labeled by atom type that are within 1, 2, or 3 bonds of the

original atom, and the edges represent the bonded topology of the molecule within that subset

of atoms. Neighborhoods can then be grouped together by checking whether the subgraphs

are isomorphic relative to one another when the atom type is used as a key.S25,S26 This reduces

the number of independent charges significantly, while still reducing the residual between

quantum and classical interaction energies relative to CGenFF. However, this scheme does

have the unfortunate side-effect of making the patches that would link together monomers

dependent on the identity of the monomers being linked. Additionally, monomers with

multiple adjacent linkages (such as a 5-5 linkage and an additional linkage on C4) cannot

always have their charges determined by this method, since the two dimers that we use to

describe each linkage can result in conflicting charge assignments for the same atoms.

To rectify this, we also present an alternative scheme, where compounds are broken up

into integer charge groups based on the charge assignments from CGenFF (Fig. 2). In this

setup, equivalent atoms within equivalent charge groups are assigned equivalent charges,

keeping charges consistent for similar functional groups across all target compounds. The

S-27



charge groups are determined algorithmically, starting from atoms at extreme points on the

molecule (typically hydrogen), and growing charge groups until the net charge is within 0.05

charge units of an integer. This is continued until all atoms are assigned to a group, with the

caveat that large groups are split if possible by checking alternative starting sites for group

assignment. If the absolute value of the net charge of the last assigned charge group exceeds

0.05, adjacent charge groups are removed, and new seeds are chosen for the charge groups.

This algorithm results in compact charge groups within 100 assignment attempts for all the

compounds studied.

For both schemes, the objective function was minimized using the L-BFGS-B algo-

rithmS27 as implemented in SciPy. The L-BFGS-B algorithm is a modification to the con-

ventional L-BFGS algorithm that has been used in previous parameterization studies,S19,S21

which can handle bounded and constrained optimization simultaneously. Since L-BFGS-

B requires derivatives, derivatives for the charge objective function were computed for the

energy and distance terms analytically. The dipole derivative was estimated numerically

by taking steps of 0.0001 for all elements of the charge vector. The results were written

to a topology file, where the output charges were rounded to the nearest thousandth of a

charge unit using integer programming to arrive at a solution that minimally changed the

output charges while making sure that the charge sums remained unchanged for groups and

molecules. The topology file was used to generate the molecular topologies required for the

subsequent bonded term optimization.

Bonded Term Optimization

Similar to the charge optimization, determining the bonded term parameters of Eq. 1 depends

on creating quantum mechanical target data and using those data to inform an objective

function that is minimized. The target data in this case are optimized bond, angle, and

dihedral scansS10 performed in Gaussian 09 at the MP2/6-31G* level of theory.S23,S24 Due

to their increased computational cost, only non-redundant dimer scans were performed, while
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for monomers, all possible scans were performed. All bonds were stretched and compressed

from their optimized geometry values by 0.1 Å in two steps, for a total of 5 molecular poses

for each stretched bond. All angles were increased and decreased from their optimized

geometry values by 10◦ in two steps. Dihedrals centered around sp2 centers were scanned

in 5◦ increments for 30◦ in both directions around the geometry optimum. Similarly, other

dihedrals were scanned in 15◦ increments for 180◦ around the geometry optimum to generate

a potential energy surface for a complete rotation of the bond. In sum, these 2574 scans

generated 28473 valid poses where the energy of the pose is known quantum mechanically,

and the bonding topology remained unchanged from the input structure, as judged by no

bonds within a scan geometry exceeding 1.65 Å in length and no new unbonded atom pairs

come within 1.65 Å of each other.

These target data are passed along to the objective function, which aims to match the

energy changes between the individual poses from a single scan with our classical forcefield.

The objective function contains terms not found in any prior parameterization efforts, in-

corporating information about the forces at quantum minima as well as biasing the sum of

the angles around sp2 centers to be 360◦.

f(p̄) =
∑

poses

w (EQM − EV DW+Elec − EBonded(p̄))
2

+
∑

minima

vfMM(p̄)2 +
∑

sp2sites

10

((

∑

angles

)

− 360

)2

(S2)

The first term is the typical energy term found in other parameterization schemes, which

treats the bonded energy as a correction to the nonbonded energy that comes from the

completed charge parameterization, which is precalculated prior to optimization. This term

is weighted by w = exp (0.25EQM), where EQM has been shifted such that the minimum

energy for a single scan is defined to be 0, under the principle that it is more important for

the forcefield to accurately model near the minima of energy landscapes to obtain the correct
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statistical distribution between minima rather than exactly recapitulating barrier heights of

slow transitions. The second term was added based on the knowledge that the force on

each atom at a quantum mechanical minima should be exactly zero. Different values for the

weighting term v were tried, including 0, 0.02, 0.1, and 0.5, to see how this term improves

the structures seen during simulation relative to computed quantum structures. The final

term in Eq. S2 is an additional bias to make the angle terms around sp2 centers sum to 360◦.

If this term is not added, these centers will tend to pucker and move the central atom out of

the plane formed by the surrounding three atoms without an improper dihedral term added

as well. Since we choose not to fit improper terms at all, we elect to make the aromatic

rings flat through this modest bias, which is less than 1% of the energy contribution to the

objective function.

As with the charge optimization, we place bounds on the parameters during the bonded

optimization process. The equilibrium bond lengths and Urey-Bradley lengths are allowed to

drift only by 10% from the initial value provided by CGenFF, whose initial values did not al-

ways reflect the geometry optimum observed in quantum calculations. Similarly, equilibrium

angles are allowed to drift by at most 5 ◦ from the starting point. These bounds were found

to be needed to prevent the optimizer from moving the terms far away from their observed

geometry to improve fits in unrelated scans. Additionally, the force constants were restrained

with a low bound of half the CGenFF estimate, and a high bound of 1000 kcalmol−1 Å−2

for bonds, and 500 kcalmol−1 unit−2 for both angles and Urey-Bradley terms. In practice,

these force constant bounds were largely superfluous, as in most cases the force constants

from CGenFF were found to be largely retained in the final fit. In the rare instances where

this was not the case, the lower bound on the force constants prevented them from becoming

zero, which would ruin the fit for the equilibrium values, in addition to permitting unphysical

geometries.

Four different sets of dihedral parameter bounds were tried (Table S1), with results

shown later. In dihedral set A, the only nonzero dihedral force constant (kk in Eq. 1) occurs
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Table S1: Bounds imposed on kk during dihedral optimization for the four pa-
rameter sets generated depending on the periodicity. Note that for the case of
sets A, B, and C, the bounds are implicitly [0, 0] unless the force constant is
specified in CGenFF (kC) or was one of the select few terms added afterward to
improve the fits, as detailed in the methods.

Dihedral Set

N A B C Free

1 [−5, 3]











[−5, 0] kC < 0

[0, 3] kC > 0

[−5, 3] kC = 0











[max (−5,−2kC) , 0] kC < 0

[0,min (3, 2kC)] kC > 0

[−5, 3] kC = 0

[−5, 3]

2 [−10, 5]











[−10, 0] kC < 0

[0, 5] kC > 0

[−10, 5] kC = 0











[max (−10,−2kC) , 0] kC < 0

[0,min (5, 2kC)] kC > 0

[−10, 5] kC = 0

[−10, 5]

3 [−5, 4]











[−5, 0] kC < 0

[0, 4] kC > 0

[−5, 4] kC = 0











[max (−5,−2kC) , 0] kC < 0

[0,min (4, 2kC)] kC > 0

[−5, 4] kC = 0

[−5, 4]

4 [−1.5, 2.5]











[−1.5, 0] kC < 0

[0, 2.5] kC > 0

[−1.5, 2.5] kC = 0











[max (−1.5,−2kC) , 0] kC < 0

[0,min (2.5, 2kC)] kC > 0

[−1.5, 2.5] kC = 0

[−1.5, 2.5]

6 [−1, 1]











[−1, 0] kC < 0

[0, 1] kC > 0

[−1, 1] kC = 0











[max (−1,−2kC) , 0] kC < 0

[0,min (1, 2kC)] kC > 0

[−1, 1] kC = 0

[−1, 1]
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when those terms are defined in the parameter set from CGenFF, including if the terms

are zero, leveraging heuristics included in CGenFF about which dihedral terms are essential

to describing the potential energy surface (e.g. nk = 2 for terms within aromatic rings, or

nk = 3 for most rotateable bonds). The reliance on the heuristics is expanded in dihedral set

B, where kk is restricted to have the same phase as what was determined through CGenFF,

which heavily penalizes situations where two related dihedral terms nearly cancel by being

opposite in sign. As a result, the force constants in set B are in general smaller than they

are in set A. Dihedral set C goes even further by restricting the magnitude of the force

constants. Whereas sets A and B have force constant bounds determined by the range

of values observed throughout the CHARMM force field (Table S1), set C places bounds

based on the force constants determined through CGenFF. The effect of this approach is

to fine tune the allowable range such that the dihedral force constants respond to different

chemistries. For instance, nk = 3 terms involving four heavy atoms tend to have larger force

constants than they would if a hydrogen is involved, reflecting the higher cost of eclipsed

conformations for larger species. The bounds imposed in set C (Table S1) would reflect this

reality better than either set A or B, where such force constants all share the same bounds.

In all three letter dihedral sets tested, additional nk = 1 terms not found in CGenFF were

permitted to be nonzero in order to reflect the preference of specific alcohols to have their

hydrogen pointed away from nearby large functional groups.

The final set of bounds tested is the “free” parameter set, where all nk = 1, 2, 3, 4, 6

dihedral terms were allowed to be nonzero, regardless of whether they appear in the initial

parameter set provided by CGenFF. This approach follows other fully automatic parameter-

ization schemes,S19,S28 while still retaining the bounds from set A (Table S1). Since this set

has the most free parameters, it naturally will have the lowest the objective function value

as described in Eq. S2 relative to the other dihedral sets. However, this free set loses much

of the chemical intuition of the lettered sets, and is primarily included as a reference point

for how far from optimal the other sets are, as it was shown to produce inferior geometries
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during simulation.

The bonded optimization uses the same SciPy L-BFGS-B routineS27 as was used for

charges. However, rather than simultaneously optimizing bond, angle, and dihedral terms,

we cycle between only optimizing bond and angle terms and optimizing dihedral terms sepa-

rately five times, and then optimize once more with all terms allowed to float. To bound our

time to solution, each optimization stage is limited to 8000 L-BFGS-B steps or 16000 ob-

jective function evaluations. This staged approach prevents the dihedral terms from rapidly

adjusting to eliminate the initial residual before the bond and angle terms can respond. Due

to the large number of free parameters, evaluation of the energy contribution to the objective

function and its gradients would take between three and four seconds when written purely

in python, whereas each step was a fraction of a second for the charge objective function.

The slow evaluations became a significant bottleneck in the parameterization pipeline, and

so the energy and force contributions to the objective function were reimplemented within

a GPU-accelerated library. Specifically, since optimization of bonded terms simplifies to

the population and reduction of a N by M matrix (N being the total number of poses, M

being the number of free parameters),S10,S28 we use a combination of CUDAS29-kernels and

ThrustS30 to fill the matrix and cuBLAS to perform the reduction required to compute the

gradients. This GPU implementation reduces the runtime overall by approximately two

orders of magnitude relative to the original python implementation, allowing many more

optimization steps to be taken, and is provided as Supporting Information for others to

take advantage of. Accelerating the evaluation of the objective function allows us to take

many more steps in this very high dimensional space, thereby converging on the optimum

parameter set given the bounds placed upon the optimizer.
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Extended Results and Discussion

We discuss here the rationale for choosing a group-based charge assignment paradigm and

letting v=0 in Eq. S1. This discussion is rather technical, as the differences between individ-

ual parameter sets are rather small, and is not required to show that the developed force field

strikes a good balance between improved accuracy and simplicity in model construction.

Charge Optimization

As briefly described in Methods (Fig. 2), we attempted two alternative approaches to de-

termine equivalent charge environments for the compounds under study. In one approach,

a neighborhood around an atom was defined through a molecular subgraph that extended

1, 2, or 3 bonds away from the originator atom. If two neighborhoods were identical, with

the same internal topology between atoms of the same type, those charges were forced to

be equivalent during optimization. The other approach was to define charge groups based

on the initial assigned charges from CGenFF and use those groups as the subgraphs to be

compared. As will be shown in the subsequent discussion, the two approaches are equally

good at fitting the target data, however the group-based method produces modular lignin

models, and is therefore our preferred method for determining equivalent charges.

Under either scenario, optimization reduces the interaction energy residual between the

quantum interaction energy (Eint
QM) and the classical interaction energy (Eint

MM), with varying

magnitudes of success, depending on the scheme used (Fig. S31). From Fig. S31B, we

see that after optimization, approximately 50% of the calculated water interactions are

within 0.5 kcalmol−1 of their quantum targets, a significant improvement on the 40% from

the CGenFF starting point. For more problematic water interactions where the residual

remains large, as in the extreme 5% of the residual distribution, optimization can reduce

the residual by up to 1 kcalmol−1. The optimization significantly reduces the residual for

most interactions by somewhat increasing the residual for others (Fig. S31A), improving the
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Figure S31: Comparison of water interaction energies determined through quantum calcu-
lations and the parameterized point charges in our molecular mechanics framework. (A)
Scatter diagram comparing the adjusted quantum (QM) and classical (MM) interaction en-
ergies for the low interaction energy poses (Eint

QM < 5 kcalmol−1 and Eint
V DW < 1 kcalmol−1)

under different parameterization schemes. These cutoffs reduce the number of points plot-
ted, which improves the visual clarity of the plot. The solid black diagonal line indicates
the line where Eint

QM = Eint
MM , which is surrounded by darker and lighter bands indicating

deviations of 1 kcalmol−1 and 2 kcalmol−1. The scattering points for two specific isolated
poses have been highlighted with an orange underlay, indicating that not all points have
been improved by the fitting procedure. In (B), the scatter plot is transformed into a cu-
mulative distribution of the interaction energy residuals (Eint

QM − Eint
MM), with a highlighted

grey region representing residuals less than 0.5 kcalmol−1. Both plots use the same colors to
discriminate between parameterization schemes. Black is used for the charges taken directly
from CGenFF. Red, blue, and green are used for successively larger neighborhood schemes,
and violet is used to denote the group-based parameterization scheme.
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overall fit.

Table S2: Mean absolute charge shift, in charge units, comparing the difference
in optimized heavy atom charges between different parameter sets.

Charge Type Group 1-Neighbor 2-Neighbor 3-Neighbor

CGenFF 0.025 0.045 0.049 0.039
Group – 0.049 0.047 0.044
1-Neighbor – – 0.055 0.048
2-Neighbor – – – 0.033

Table S3: Charge optimization comparison statistics. Each of the four parame-
terization schemes is compared against CGenFF, principally through their root
mean squared error for the water interaction energies. This is done under two
conditions, once for the favorable interaction energies that contribute the most to
the optimization due to the weighting applied in Eq. S1, and again for higher en-
ergy interactions that are largely excluded from the optimization. As in Fig. S31,
only if Eint

V DW < 1 kcalmol−1 is the datapoint included in the reported statistics,
so that the reported R2 matches the scatter shown in Fig. S31A.

Small E (Eint < 0 kcal/mol) Larger E (Eint < 20 kcal/mol)

Charge Scheme
〈

(

Eint
QM − Eint

MM

)2
〉

1

2
〈

Eint
QM − Eint

MM

〉

R2
〈

(

Eint
QM − Eint

MM

)2
〉

1

2

R2

CGenFF 0.98 kcal/mol -0.08 kcal/mol 0.80 0.98 kcal/mol 0.81
1-Neighbor 0.79 kcal/mol -0.16 kcal/mol 0.87 0.79 kcal/mol 0.87
2-Neighbor 0.70 kcal/mol -0.13 kcal/mol 0.89 0.72 kcal/mol 0.89
3-Neighbor 0.68 kcal/mol -0.13 kcal/mol 0.89 0.69 kcal/mol 0.90
Group 0.78 kcal/mol -0.06 kcal/mol 0.86 0.79 kcal/mol 0.87

The degree of success in improving the fit is alternatively quantified in Table S3 through

the root mean squared error (RMSE). Through this lens, the group scheme is effectively

equivalent to the neighbor scheme when the subgraph only considers direct neighbors (1-

Neighbor), with very similar RMSE values and correlation coefficients. The RMSE improves

further when the neighbor scheme uses a larger neighborhood to determine which charges

should be equivalent, thereby increasing the number of individual charges allowed and the

parameter space the optimizer can explore. The number of free parameters roughly doubles

(from 259 to 450) in going from the 1-Neighbor to the 2-Neighbor scheme, with the 3-
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Neighbor scheme nearly doubling the total of free parameters again to 798. This makes the

relatively small 10% decrease in the RMSE in going to a more expansive charge scheme

much less impressive than it otherwise might be, and suggests that the 2- and 3-Neighbor

approaches may overfit the target data. The ultimate conclusion is that the number of free

charge parameters is the primary determinant for the observed RMSE, and neatly explains

why the 1-Neighbor (259 independent charges) and group bond (290 independent charges)

are so similar, and are effectively interchangeable from an RMSE standpoint, even if there

are modest changes in charges between the two sets (Table S2).

Since the quality of the fits are largely unchanged between the two approaches (Fig. S31,

Table S3), other considerations can drive the final choice. In this case, we choose the group-

based approach for the practical reason that it makes the topology file simpler. To understand

why, it helps to consider why the CG2R61 atom type, which is used in CGenFF for most

aromatic carbons, was split into three atom types in the current lignin force field. The

atom type split was required by monomer-specific angle changes near oxygenated functional

groups found throughout the quantum optimized geometries (Fig. S28). Given this diversity

in the observed angles, there is no way to reproduce these geometries if the aromatic carbon

atom types were all equal. Instead, the aromatic carbon atom type is split based on the

functional group that is attached to the carbon, representing the only case where atom types

in the lignin force field are mapped surjectively onto the CGenFF atom types.

The Neighbor-1 variant of charge optimization therefore assigns different charges on the

aromatic carbons depending on the monomer type, which in turn means that the topological

patches that describe individual lignin linkages are monomer-specific. The Neighbor-1 ap-

proach quadruples the number of possible topological patches to choose from when linking

lignin monomers together. Different linkages may also both modify the charges on a specific

atom, such as if a monomer was involved in both a β-O-4 and a 5-5 linkage to carbons 4 and

5 (Fig. 1), which could lead to a non-integer charge after both linkages are applied to the

system.
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By contrast the charge groups assigned as in Fig. 2 logically subdivide the ring by func-

tional group, as shown by the underlaying ovals in Fig. S28. The rational division of lignin

functionality is replicated for more complicated dimeric systems as well (Fig. S2). Since the

group method isolates neighboring functional groups from their neighbors, the topological

patches that link together individual monomers are largely independent of monomer iden-

tity, simplifying the lignin construction process. The isolated charge groups also mean that

multiple linkages can be applied to the same monomer without two linkages trying to apply

different charges to the same atom. Thus from this point onward, we only consider charges

that are determined through this group scheme, which is just as accurate as the other scheme

tested (Fig. S31, Table S3), and comes with fewer side effects when constructing systems

that use the force field.

Bonded Optimization

With the charges established in the previous section, determining bonded term parameters

is the final choice prior to a full parameter set. At the heart of the bonded optimization

are the potential energy scans, with a small subset of the 2574 scans performed shown in

Fig. S4, which are chosen to be representative of different behaviors observed over the whole

set. Figs. S4A and S4B led to the introduction of extra n=1 terms to adjust the existing

n=2 dihedral to allow for the energies of the two states to be unequal, rather than just being

dictated by the non-bonded terms as it was originally in CGenFF (grey). This was the only

clear case in surveying the individual scans where CGenFF had obviously missed a dihedral

term required to correctly fit the potential energy scans. In Fig. S4C, we see a different

kind of limitation of the general force field, where CGenFF already contained the exact

multiplicities needed to recapitulate the scan, but did not have the right weighting between

them. This is even clearer in Fig. S4D, where the optimum angle at the bridging oxygen was

not originally recapitulated by CGenFF, but is improved in all of our new optimizations.

However, not every scan is perfect, as evidenced by Figs. S4E and S4F, where the relatively
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well-behaved quantum potential energy surface is not perfectly fit by any of the molecular

mechanics parameter sets. Sometimes, as in Fig. S4E, the overall shape is preserved, whereas

in others like S4F, the shape of the potential energy surface is not broadly reproduced even

when all possible dihedral parameters are allowed to be nonzero, as in the free dihedral set.

A

B

Figure S32: Cumulative distribution of the residual between the optimized potential energy
surface and the target potential energy surface under different optimization conditions. In
(A), the parameter v in Eq. S2 is held fixed in each subpanel, and the dihedral optimization
set (Table S1) changes. The reverse is true in (B), where the impact of the v parameter is
directly probed. In each graph, the black line is the original CGenFF distribution, the other
colored lines represent the newly optimized parameter sets, and a gray background for the
region where the residual is less than 0.5 kcalmol−1.

Individual scans, such as those in Fig. S4, do not provide a holistic view of parameter

quality. Instead, we aggregate the residuals within each scan under the different optimization

conditions and monitor their distribution, as in Fig. S32. In all cases, the newly optimized

parameters outperform the original CGenFF parameter set, with 10-20% more of the pose

population near zero residuals, although they do so to differing degrees. In general, large val-
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ues for the v parameter within the optimization objective function (Eq. S2) are detrimental

to the fit, with less of the population being near zero residual (Fig. S32B). Likewise, the en-

ergetic fit becomes worse with increasing constraints on the dihedral parameters (Fig. S32A).

Both of these phenomena are consequences of disfavoring recapitulating exactly the potential

energy surface by adding in a competing term that is force-dependent and by bounding the

solution space.

Table S4: γ parameters (in kcalmol−1) for the Cauchy distributions centered
on zero that best fit the remaining residuals for all tested combinations of v
parameters and dihedral sets, in addition to the original CGenFF fits.

Dihedral Set v=0 v=0.02 v=0.1 v=0.5

Set A 0.3 0.3 0.3 0.38
Set B 0.3 0.31 0.31 0.39
Set C 0.32 0.32 0.33 0.42
Free 0.22 0.21 0.22 0.27

CGenFF 0.57

A more typical quantification metric to measure the energy deviation would be the root

square mean error (Table S7). However, the residuals observed are not normally distributed,

as the standard deviation of the residuals would predict a much broader distribution than

what is actually observed (Fig. S5). Instead, we find that a Cauchy distribution centered

around zero, whose probability density has the form:

P (x) =
(

γπ
(

1 + x2γ−2
))

−1
(S3)

fits the observed residuals much better (Fig. S5). In the formalism of Eq. S3, x would be the

energy residual, and γ would be a scale parameter that determines the probability at the

peak (P (0) = (πγ)−1). These γ parameters are reported in Table S4, with smaller values

for γ indicating a distribution with a higher peak and less population in the long tails of the

distribution. The γ parameters reinforce the findings from Fig. S32, in that the best fits to

the energy scans come from ignoring forces at minimum energy structures and giving the
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optimizer as many free parameters as possible.

Based on the data presented so far, one would then clearly choose the optimization

parameter combination of no force contribution to the optimization criteria (v=0) and to

allow as many dihedral terms as possible to perfectly recapitulate the target potential en-

ergy surfaces. This is indeed what many automated parameter optimization techniques do

when reoptimizing dihedral parameters,S19,S28 and numerically reduces energy residuals by

exploiting these other degrees of freedom. However, having good energy fits does not always

imply that the derived structures are accurate, as was shown in Fig. S3 for a hypothetical

potential energy surface. Thus before making a final assessment of what parameter set to

choose, we examine structural information after optimization to see what extra impact and

possibly overfit degrees of freedom might have on the observed structures to be expected in

simulation.

This structural information is added through examining how far the optimized structures

from gas-phase quantum calculations will drift either when placed in solution, where water

molecules are present to screen intra-molecular electrostatic interactions (Fig. S6), or when

the molecule is isolated in vacuum (Fig. S33). In either case, using the free dihedral set

results in larger deviations from the starting point than any of the other dihedral sets tested,

suggesting that indeed the added complexity from the additional terms is creating new local

minima away from the quantum minima along the orthogonal degrees of freedom within a

single scan, as was exemplified in Fig. S3. In our view, this is compelling evidence that

allowing any periodicity to contribute during minimization creates overfitting artifacts, as

the free dihedral set has consistently poor fits (Fig. S6A). For this reason, we exclude the

free dihedral set as a candidate for the final lignin parameter set, despite having the lowest

energy residuals (Fig. S32, Table S4).

We examine the three CGenFF-based dihedral sets as candidates for the final parameter

set. Based on the mean RMSDs after minimization, as presented in Tables S6 and S8, dihe-

dral sets B or C, where the phases of the dihedral terms are fixed to their CGenFF values,
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A

B

Figure S33: Root mean square deviation (RMSD) distribution of the resulting structures for
both monomers and dimers after minimization in vacuum (no other molecules in the sim-
ulation system) relative to the gas-phase minimum energy structures determined quantum
mechanically. In (A), the parameter v from Eq. S2 is held fixed, highlighting the effect of
different choices for dihedral bounds, with the effect of force inclusive optimization demon-
strated in (B). Within each subpanel, the results from the CGenFF starting point are also
shown in black as a benchmark. The mean and standard deviation for these distributions
are reported in Table S8. For a similar analysis in solution, see Fig. S6.
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Table S5: Periodic unit cell dimensions a, b, c, α, β, and γ for the original
crystal (black), as well as averaged over the last 10 ns of simulation with both the
optimized lignin force field (red), and CGenFF (gray). The standard deviation
is reported as an uncertainty in the last digit in parentheses.

CSD Code a b c

CATCOL13 58.39 58.259(6) 57.186(4) 50.58 52.589(4) 52.352(4) 51.66 50.227(6) 50.477(5)
PHBALD11 53.59 52.78(1) 52.964(9) 54.22 53.17(2) 53.04(2) 50.01 52.39(1) 52.73(1)
YUHTEA01 56.40 53.975(5) 54.120(4) 53.75 54.928(8) 55.690(9) 59.41 62.584(4) 62.715(6)
YUHTEA03 56.20 53.91(2) 53.95(1) 55.05 57.37(5) 58.12(2) 60.05 56.61(3) 56.69(1)
IZALAW 55.26 37.81(1) 39.88(1) 53.85 77.55(2) 76.68(1) 50.43 55.10(1) 54.615(9)
SIPKEH 62.31 67.56(3) 68.84(5) 51.51 54.87(3) 53.21(2) 55.62 48.57(4) 49.39(3)
CEHGUS 50.83 53.77(1) 53.83(1) 52.17 52.37(1) 51.89(1) 56.64 56.86(1) 57.39(1)
GASVOL01 50.58 52.982(6) 51.072(5) 50.26 49.399(5) 49.059(5) 59.02 59.996(6) 63.300(9)

RABWUM 50.80 51.630(7) 50.731(6) 60.22 61.658(5) 61.212(5) 52.02 51.900(4) 53.512(4)
SIPPEM 70.95 71.36(1) 72.16(1) 60.72 63.33(2) 63.63(1) 50.62 50.59(2) 49.759(8)
VADDOT 50.54 50.587(8) 51.12(1) 53.74 56.63(1) 58.22(1) 60.22 61.17(1) 60.87(1)
SAZHEG 52.23 53.64(1) 53.66(1) 53.36 53.09(1) 53.40(2) 52.84 55.08(1) 54.454(9)
FOCGUA 72.19 75.161(6) 73.696(9) 51.42 51.626(3) 52.513(4) 67.34 67.301(8) 69.240(8)
IDIKIP 51.62 52.748(5) 52.061(6) 62.49 64.33(1) 68.51(1) 59.48 60.34(1) 58.568(8)
INELIW 58.99 60.556(6) 61.512(6) 54.59 56.136(9) 55.78(1) 55.48 54.565(6) 55.014(6)
INELIW01 54.85 53.93(1) 50.930(7) 54.61 56.12(2) 60.892(9) 53.77 54.96(1) 54.808(5)
FAFXUF 57.75 58.84(1) 60.5(1) 54.12 53.87(1) 58.0(1) 56.91 59.90(1) 60.3(2)
FUMVUE 52.54 51.991(8) 51.783(7) 58.69 61.00(1) 60.12(1) 54.90 56.83(1) 57.88(1)
TUGWAT 59.08 59.76(4) 62.00(2) 52.16 52.546(9) 52.853(9) 62.60 64.89(8) 62.08(1)
UJOGIK 62.46 58.538(4) 62.80(4) 51.06 49.816(4) 48.81(5) 53.15 59.972(3) 58.3(1)

CSD Code α β γ

CATCOL13 90.00 90.000(4) 90.000(4) 114.24 111.049(9) 108.495(7) 90.00 90.000(4) 90.000(4)
PHBALD11 90.00 90.00(1) 90.00(1) 112.87 111.01(2) 109.83(2) 90.00 90.00(1) 90.00(1)
YUHTEA01 90.00 90.00(1) 90.00(1) 115.02 9(3)e+01 9(3)e+01 90.00 90.000(6) 90.000(8)
YUHTEA03 90.00 90.00(2) 90.00(2) 90.00 90.00(2) 90.00(2) 90.00 90.00(2) 90.00(1)
IZALAW 90.00 90.00(1) 90.00(1) 91.35 101.95(2) 102.90(2) 90.00 90.00(1) 90.00(1)
SIPKEH 90.00 89.9(1) 90.04(6) 90.00 90.13(4) 89.96(1) 90.00 92.7(2) 89.69(4)
CEHGUS 90.00 90.00(2) 90.00(1) 95.31 93.67(2) 93.61(2) 90.00 90.00(3) 90.00(2)
GASVOL01 90.00 90.000(9) 90.000(6) 91.72 92.117(8) 92.92(1) 90.00 90.000(8) 90.000(4)

RABWUM 90.00 90.000(6) 90.000(6) 96.16 96.142(7) 96.622(6) 90.00 90.000(6) 90.000(5)
SIPPEM 90.00 90.00(2) 90.000(8) 90.00 90.00(1) 90.000(9) 90.00 90.00(1) 90.000(8)
VADDOT 109.41 111.44(1) 113.23(1) 90.57 92.04(2) 92.24(2) 103.28 103.19(2) 103.92(1)
SAZHEG 106.23 107.61(1) 106.16(2) 93.71 94.91(2) 93.38(1) 82.97 83.83(1) 84.53(1)
FOCGUA 90.00 90.000(6) 90.000(7) 114.33 114.162(5) 115.180(5) 90.00 90.000(5) 90.000(7)
IDIKIP 90.00 90.000(8) 90.00(1) 109.84 111.578(9) 111.54(2) 90.00 90.000(9) 90.000(7)
INELIW 90.00 90.000(8) 89.999(7) 92.89 91.949(9) 87.75(1) 90.00 90.000(7) 90.001(6)
INELIW01 90.00 90.02(9) 90.01(1) 95.48 93.42(1) 98.733(9) 90.00 89.999(9) 90.00(1)
FAFXUF 90.00 90.000(9) 88.8(1) 90.00 90.00(1) 89.9(2) 90.00 90.000(9) 89.3(1)
FUMVUE 90.00 90.00(2) 90.00(1) 109.81 109.21(2) 109.30(1) 90.00 90.00(1) 90.000(8)
TUGWAT 90.00 90.02(2) 90.01(3) 100.26 101.82(4) 103.67(3) 90.00 90.00(2) 89.99(8)
UJOGIK 90.00 90.000(4) 90.011(8) 90.00 90.000(3) 90.041(6) 90.00 90.000(4) 89.78(2)
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Table S6: The RMSD mean and standard deviation (in Å) for monomers and
dimers minimized in solution relative to the gas-phase minimum energy struc-
tures determined quantum mechanically.

Monomers

Dihedral Set v=0 v=0.02 v=0.1 v=0.5

Dihedral Set A 0.27± 0.12 0.30± 0.14 0.26± 0.12 0.28± 0.15
Dihedral Set B 0.22± 0.14 0.24± 0.13 0.22± 0.11 0.27± 0.17
Dihedral Set C 0.22± 0.14 0.22± 0.14 0.24± 0.16 0.25± 0.15
Free Dihedral 0.30± 0.13 0.33± 0.14 0.31± 0.15 0.34± 0.18

CGenFF 0.19± 0.10

Dimers

Dihedral Set A 0.34± 0.08 0.35± 0.08 0.33± 0.08 0.34± 0.08
Dihedral Set B 0.30± 0.08 0.29± 0.08 0.30± 0.08 0.31± 0.08
Dihedral Set C 0.29± 0.09 0.29± 0.07 0.29± 0.08 0.29± 0.08
Free Dihedral 0.42± 0.12 0.42± 0.11 0.39± 0.10 0.46± 0.11

CGenFF 0.29± 0.08

Table S7: Root mean square error, in kcalmol−1, comparing the difference be-
tween quantum and classical energies across all potential energy scans. The
tabulated numbers are heavily influenced by the poses with the poorest fits, and
do not reflect typical residuals.

Dihedral Set v=0 v=0.02 v=0.1 v=0.5

Set A 2.3 2.3 2.3 2.5
Set B 2.3 2.3 2.3 2.5
Set C 2.3 2.3 2.3 2.4
Free 2.1 2.1 2.1 2.3

CGenFF 2.8
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Table S8: The RMSD mean and standard deviation (in Å) for monomers and
dimers minimized in vacuum relative to the gas-phase minimum energy struc-
tures determined quantum mechanically.

Monomers

Dihedral Set v=0 v=0.02 v=0.1 v=0.5

Dihedral Set A 0.07± 0.11 0.06± 0.11 0.05± 0.07 0.05± 0.06
Dihedral Set B 0.05± 0.09 0.05± 0.09 0.04± 0.05 0.04± 0.03
Dihedral Set C 0.06± 0.11 0.07± 0.11 0.06± 0.11 0.05± 0.05
Free Dihedral 0.06± 0.19 0.06± 0.19 0.03± 0.05 0.06± 0.08

CGenFF 0.06± 0.14

Dimers

Dihedral Set A 0.40± 0.33 0.39± 0.30 0.36± 0.36 0.36± 0.37
Dihedral Set B 0.29± 0.29 0.31± 0.30 0.31± 0.30 0.32± 0.33
Dihedral Set C 0.32± 0.31 0.35± 0.33 0.35± 0.36 0.31± 0.30
Free Dihedral 0.32± 0.37 0.33± 0.38 0.37± 0.37 0.38± 0.34

CGenFF 0.34± 0.32

are superior to A, where the phase was allowed to change for a term with a given periodicity.

We suspect that in the case of set A, the optimizer chased particularly large residuals, and

corrected them by flipping around the phase for specific dihedral terms. This can have dele-

terious effects on the structure, since flipping the phase will reverse the positions of minima

and maxima within a single term. Since these phases encode within them specific chemical

intuition, such as n=2, δ = 180◦ forcing a flat interaction suitable for the core of an aromatic

ring, or n=3, δ = 0◦ correctly emphasizing staggered rather than eclipsed configurations

around sp3 centers, flipping the phase can push structures in unnatural directions.

It should be emphasized that these minimized structure results were the primary mo-

tivation for using the CGenFF parameter set as a basis for the non-zero dihedral terms.

The parameter set determined by CGenFF already properly encodes the required chemical

intuition to minimize overfitting problems that we see with the free parameter set. Thus,

rather than develop a novel and untested algorithm to assign nonzero dihedrals and phases,

we leverage prior general force field development effortsS2 to guide us towards a good start-

ing point. Since few potential energy scans initially saw results where the free dihedral set

was decidedly better than the restricted dihedral sets (Figs S4A and S4B), we think that
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CGenFF indeed was an excellent starting point.

Figure S34: Distribution of the force magnitudes on each atom from minimized structures
depending on the different v parameters applied while optimizing with a specific dihedral
set.

Having settled on either dihedral set B or C, the parameter v in Eq. S2 needs to be

addressed. In principle, having v be nonzero could reduce the type of problem exemplified in

Fig. S3, since if the computed force is near zero at the quantum minimum, that implies that

the molecular mechanics minimum energy structure coincides with the quantum structure.

However, since force information at minimum energy configurations has not been used to

inform CHARMM-style parameterization before, there is a high burden of proof to show that

this is indeed the case. Based on the evidence shown so far (Figs. S32B and S6B), there is no

compelling evidence that a nonzero v actually improves the quality of the parameterization,

although it does clearly shift the distribution of the forces experienced by individual atoms

towards zero (Fig. S34).

If we look further at specific structural features that we would like to recapitulate, such

as the alignment of aromatic rings coupled by 5-5 linkages (Fig. S7C), we can further probe

the effect of v, as well as provide a practical example of how large structural deviations

with the new force field compare with CGenFF. For dihedral sets B or C, both improve on

CGenFF uniformly, shifting the distribution to the right and closer to the 180◦ We observe

that changing the dihedral set (Fig. S7A) has a larger impact than increasing v (Fig. S7B),

although an appropriate v of intermediate size can better recapitulate the 180◦ geometries
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A

B

Figure S35: Distribution of the 5-5 angle, as defined in Fig. S7C, when dimers containing
a 5-5 linkage are optimized in vacuum. In (A), the parameter v from Eq. S2 is held fixed,
highlighting the effect of different choices for dihedral bounds, with the effect of force in-
clusive optimization demonstrated in (B). Mean values and their standard deviation over
the distribution are reported in-figure, using the same color as those given in the in-figure
legend.
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expected from quantum calculations. These results also hold in vacuum (Fig. S35). While

this does eliminate the v=0.5 case, which had already performed poorly on prior metrics, it

does not provide a compelling reason on its own to adopt either v=0.02 or v=0.1 because of

how small both the effect size as well as the sample size, since we only are considering the

5-5 linkage. However, given what we know so far, v=0.02 is slightly better than v=0.1, and

that is what we will use in the final comparisons.

At this stage, four candidate parameter sets remain, a combination of v=0 or v=0.02, and

dihedral sets B or C. Deciding between these candidates is done in part by directly comparing

how different each of the parameter sets are, by assessing their correlation coefficients with

respect to one another (Fig. S36). What we observe is that the parameter sets that satisfy

our criteria are highly correlated with one another, with a few minor visible changes. For

instance, the equilibrium values for the bonds and the Urey-Bradley terms show a checker-

board pattern, suggesting that these changed depending on the value for v. By contrast,

the force constants for these terms are effectively unchanging between all the combinations

shown. The angle term changes significantly from CGenFF, a consequence of both the angle

sum constraint around sp2 centers (Eq. S2) and some instances where CGenFF did not fit

particularly well due to an incorrect minimum position (Fig. S4D). Finally, the correlation

between the dihedral sets that emerge as the best overall fit (B, C, v=0 or 0.02) is actually

quite high, suggesting that again we can make the final determination between these options

based on other considerations.

We use this freedom to select our final parameter set based on arguments of simplicity.

The rest of the CHARMM force field was parameterized using v=0, since the forces at the

minimum were not explicitly considered. Since we find no compelling reason to use a different

value for v, our final parameter set should also use v=0. We then choose to report only

the parameters from set B because of the slightly narrower distribution of energy residuals

(Table S4), generally running to the left of set C in Fig. S6A, and the fact that the 5-5

angle distribution is slightly better when v=0 (Fig. S7A). These changes are minute, as is
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Figure S36: Correlation coefficients between specific parameter sets tried, as labeled on the
axes. The individual parameter vectors that describe specific bonded terms from Eq. 1 are
separated out, such that the measured correlations only pertain to either the force constants
or the equilibrium position (center of each harmonic potential) for each term in the force
field. Higher correlation coefficients between parameter sets are shown in yellow, and lower
correlation coefficients are bluer, with a minimum correlation of 0.5.
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expected given the differences in the bounds imposed during optimization (Table S1) between

sets B and C. The final complete parameter set is provided as a separate download in the

Supporting Information.

Implications and Applications for Polymeric Force Field Develop-

ment

While the force field determined here is strictly applicable to lignin, the process presented

has important implications for parameterization efforts of other polymers. The first implica-

tion is that we demonstrate that general force fields are often perfectly adequate to recreate

structures of the polymer at the atomic level, as evidenced by the low RMSD when the

structures are minimized (Table S6). Thus, significant progress can be made even without a

tailored force field, and for lignin systems that we have not parameterized, would be a per-

fectly acceptable starting point for simulation. However, there are significant improvements

in the energetic description of structural changes that come from explicit parameterization

(Tables S3 and S4), which means that the significant cost to parameterization should only

be borne when structural changes are expected. Since lignin structures are thought to be

amorphous, implying that significant structural changes will occur regardless of starting

structure, accurate energetics can guide modeled lignin towards native-like states. For crys-

talline polymer simulations, parameterization may not be required if structural changes are

not the desired result.

On the parameterization front, the exhaustive balancing performed with a tunable objec-

tive function (Eq. S2) has significant implications on future parameterization efforts. While

it is true that the energy residual always improves with more free parameters (Fig. S32A),

this comes at the cost of frequently moving the minimum of the classical molecular me-

chanics surface along orthogonal degrees of freedom away from the true minimum energy

structures (Fig. S6A). This means that automated processes that fit dihedrals run the risk

of perturbing molecular structures unless specific steps are taken to reduce this risk, such
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as not including higher order terms such as the n=4 or n=6 terms by default,S15,S31 or even

better using chemical intuition to determine what the logical periodicities should be.S32

Though not explored in depth here, bounds also play an important role in keeping the

optimizer confined to an acceptably small search space,S1,S15 which can be important for

correctly describing interactions between different molecules. This is particularly true for

the charges, where the optimizer can find creative solutions that are very dissimilar from

other species in CHARMM if not appropriately guided through placing upper and lower

limits on the optimization. Likewise, optimizers can override chemical intuition for dihedral

terms if given the opportunity, similarly distorting structures during simulation.

What was surprising to us is the lack of improvement in the quality of the parameters if

forces at minimum energy geometries were considered. Despite trying a number of different

levels of strength for the parameter v in Eq. S2, there was little to no gain in quantifiable

metrics of parameter performance. We suspect that rather than forcing the minimum energy

structures to coincide, as we had hoped given the discussion around Fig. S3, the optimizer just

scaled down the forces overall, including away from the minima. Reducing force magnitudes

thereby perturbs the energetics, and does not actually cause the molecular mechanical and

quantum mechanical potential energy minima to coincide. If forces were also considered when

the structure is perturbed, perhaps adding in force information would be more successful.

However, since the CHARMM corrections between quantum and molecular mechanical forces

is not always straightforward, as we see in the scaling of water interaction energies,S1,S2 this

was not attempted here.

Finally, we see elements of our workflow being useful in other parameterization efforts,

and is provided as two separate archives provided as Supporting Information. The code we

use to generate the target data exposes to a wider research community the data-generation

utilities of ffTK,S1 enabling other researchers to better automate the tedious data acquisition

required to start optimization. The optimization routines themselves also may find a use by

others, particularly those who would like a monolithic optimization process to determine the
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best fit across all of their compounds. This is doubly true for the GPU-accelerated bonded

optimization function, which can be directly used or extended with minimal reconfiguration

within other parameterization tools.
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