Electronic Supplementary Information

Efficient synthesis of ethanol by methanol homologation using CO₂ at lower temperature

^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China ^b University of Chinese Academy of Sciences, Beijing 100049, China Email: qianql@iccas.ac.cn; hanbx@iccas.ac.cn

Figures

Fig. S1 The representative GC spectra of liquid sample with internal standard toluene (a) and gaseous sample (b) after methanol homologation with CO_2 and H_2 . Reaction conditions were the same as that of entry 1 of Table 1.

Note:

The peak of air resulted from the operation of sampling and injection.

Peak 1

Fig. S2 The representative GC-MS spectra of the liquid product after the reaction of methanol with CO_2 and H_2 . Reaction conditions were the same as that of entry 1 in Table 1.

Fig. S3 The GC spectra of liquid products with internal standard toluene after the reaction of methanol with CO and H₂ using THF as solvent. Reaction conditions: 10 μ mol [RuCl₂(CO)₃]₂ and 60 μ mol Co₄(CO)₁₂ (based on the metal), 2.5 mmol LiI, 2 mL THF, 2.6 mmol methanol, 0.5 MPa CO and 6 MPa H₂ (at room temperature), 160 °C, 15 h.

Peak 1

(Methanol (Standard))

Fig. S4 The GC-MS spectra of reaction solution using 13 CH₃OH instead of methanol. Other reaction conditions were the same as that of entry 1 in Table 1.

Note: The molecular weight of ethanol formed in the reaction was 47 Daltons. This demonstrates that the two C atoms in the ethanol product were from ¹³C of ¹³CH₃OH and C of CO₂, respectively. In addition, the methyl group of ¹³CH₃OH was transferred to the methyl group of ¹³CH₃CH₂OH molecule.

Fig. S5 The GC spectra of liquid products with internal standard toluene (a) and gaseous products (b) after direct CO_2 hydrogenation. Reaction conditions: 10 µmol [RuCl₂(CO)₃]₂ and 60 µmol $Co_4(CO)_{12}$ (based on the metal), 2.5 mmol LiI, 2 mL NEP, 2 MPa CO_2 and 6 MPa H₂ (at room temperature), 160 ° C, 15 h.

Fig. S6 The GC spectra of liquid products with internal standard toluene after the reaction of methanol with CO and H₂ using NEP as solvent. Reaction conditions: 10 μ mol [RuCl₂(CO)₃]₂ and 60 μ mol Co₄(CO)₁₂ (based on the metal), 2.5 mmol LiI, 2 mL NEP, 2.6 mmol methanol, 0.5 MPa CO and 6 MPa H₂ (at room temperature), 160 ° C, 15 h.

Peak 1

(Methanol (Standard))

Fig. S7 The GC-MS spectra of reaction solution using $CH_3^{18}OH$ instead of methanol. Other reaction conditions were the same as that of entry 1 in Table 1.

Notes: The molecular weight of ethanol synthesized was still 46 Daltons. This result supports that the CH_3 and ^{18}OH group broke away during the reaction. Otherwise, the molecular weight of ethanol should be 48 Daltons.

Peak 1

(Methanol (Standard))

(Ethanol (Standard))

Fig. S8 The GC-MS spectra of reaction solution using CH_3OD instead of methanol. Other reaction conditions were the same as that of entry 1 in Table 1.

Notes: The molecular weight of ethanol generated in the reaction was still 46 Daltons. This result supports two deductions.

1. The CH_3 and OD group broke away during the reaction. Otherwise, the molecular weight of ethanol should be 47 Daltons.

2. H atom in the OH group of ethanol was from H_2 . Otherwise, the molecular weight of ethanol should be 47 Daltons.

Fig. S9 The GC traces of the liquid sample (a) and gaseous sample (b) after the reaction of methanol, CO and H_2 . Reaction conditions: 60 µmol $Co_4(CO)_{12}$ (based on the metal), 2.5 mmol LiI, 2 mL NEP, 2.6 mmol methanol, 0.5 MPa CO and 6 MPa H_2 (at room temperature), 160 °C, 10 h.

Notes: The liquid sample was analyzed by using a gas chromatograph (GC, Agilent 7890) equipped with a flame ionization detector (FID) and an HP-INNOWAX capillyary column with no internal standard.

Fig. S10 The GC traces of the liquid sample (a) and gaseous sample (b) after the reaction of CH₃CHO and H₂ catalyzed by Ru catalyst. Reaction conditions: 10 μ mol [RuCl₂(CO)₃]₂ (based on the metal), CH₃CHO 1 mmol, and 6 MPa H₂ (at room temperature), 160 °C, 15 h.

(Methanol (Standard))

Fig. S11 The GC-MS spectra of liquid products after reaction using D_2 instead of H_2 . Other reaction conditions were the same as that of entry 1 in Table 1.

Notes: This result supports two deductions.

1. Only one H atom of the unreacted methanol was substituted by D atom.

2. The D atoms could enter the ethanol generated in the reaction, and at most Six D atoms could enter into one ethanol molecule.

Entry	CO ₂ /H ₂ [MPa]	Solvent	TOF (h ⁻¹)	Selectivity (C-mol%)		
				Ethanol	CO	CH_4
1	2/6	NMP	7.0	57.5	27.7	14.9
2		NEP	7.5	65.0	21.2	13.8
3	3/5	NMP	6.7	53.0	33.6	13.4
4		NEP	7.2	57.9	27.3	14.8
5	4/4	NMP	6.2	47.8	41.1	11.2
6		NEP	6.8	53.5	34.0	12.5
7	5/3	NMP	5.2	39.0	47.9	13.1
8		NEP	6.2	47.8	35.4	16.9
9	6/2	NMP	4.3	35.3	47.2	17.5
10		NEP	5.6	45.8	34.6	19.6

Table S1. Effect of NMP and NEP on methanol homologation with CO_2 and H_2 at different CO_2 pressures.

Reaction conditions: 10 μ mol [RuCl₂(CO)₃]₂ and 60 μ mol Co₄(CO)₁₂ (based on the metal), 2.5 mmol LiI, 2 mL solvent, 2.6 mmol methanol, different pressure of CO₂ and H₂ (at room temperature), 160 ° C, 15 h.