Electronic Supplementary Information

Direct conversion of cellulose and raw biomass to acetonitrile by

catalytic fast pyrolysis in ammonia

Ying Zhang^{*†a}, Ziguo Yuan^{†a}, Bin Hu^b, Jin Deng^a, Qian Yao^a, Xin Zhang^a, Xiaohao Liu^a, Yao Fu^a

and Qiang Lu*b

a Department of Applied Chemistry, University of Science and Technology of China, NO. 96,

JinZhai Road, Hefei, Anhui 230026, P. R. China. Email: <u>zhzhying@ustc.edu.cn</u>

b National Engineering Laboratory for biomass Power Generation Equipment, North China

Electric Power University, Beijing 102206, China. Email: <u>qianglu@mail.ustc.edu.cn</u>

 \dagger These authors contributed equally to the article. \dagger

Contents

Experimental details

Fig. S1 Scheme of bench-top device for solid feedstock CFP-A

Fig. S2 Scheme of bench-top device for liquid raw materials feedstock CFP-A

Fig. S3 H₂-TPR profile for CoOx/HZSM-5 catalyst

Fig. S4 XRD patterns of the catalysts

Fig. S5 Pyridine-IR spectra of the catalysts at 200 °C

Fig. S6 Promoted breakage of C-C bond of acetaldehyde by HZSM-5 (a) and CoOx/HZSM-5 catalyst (b), calculated at B3LYP/6-311G(d,p) level.

Fig. S7 Dehydrogenation reactions for acetonitrile formation (a) and 2-methylpyridine formation (b) at indigenous L acid site (Si), calculated at B3LYP/6-311G(d,p) level

Fig. S8 Evolution pathways and energy diagrams for acetonitrile formation from acetic acid and acetone

Table S1 Effect of doped metal on the performance of the HZSM-5(25) based catalyst Table S2 Effect of the different support on the catalytic performance.

Table S3 Effect of the different loading on the catalytic performance

Table S4 Effect of reaction temperature on product distribution

Table S5 Effect of different resident time on product distribution

Table S6 Effect of different NH₃ flow rate on product distribution

Table S7 Product distribution of different feedstock under optimal condition

Table S8 Product distribution of cellulose pyrolysis under nitrogen by Py-GC/MS

Atom coordinates of optimized geometries for all the compounds calculated at B3LYP/6-311G(d,p) level

Experimental details

1. Materials

Acetonitrile (AR), xylene (AR), toluene (AR), benzene(AR) and methanol (AR) were purchased from Sinopharm Chemical Reagent Co. Ltd. Pyrrole (AR), 2methylpyridine (AR), 3-methylpyridine (AR), 4-methylpyridine (AR), indole(AR), pyridine (AR) and bicyclohexane (AR) were purchased from Aladdin Chemical Reagent Co. Ltd.

Metal nitrates including Co(NO₃)₂·6H₂O (99%), Fe(NO₃)₃·9H₂O (98.5%), Ni(NO₃)₂·6H₂O (98%), Cu(NO₃)₂·3H₂O (99%) and Zn(NO₃)₂·6H₂O (99%) were purchased from Sinopharm Chemical Reagent Co. Ltd. SiO₂, γ -Al₂O₃, β -zeolite (Si/Al = 25), MCM-41, USY (25), and HZSM-5 with different Si/Al ratios (Si/Al = 25, 50, 80) were purchased from Catalyst Plant of Nankai University. All these chemicals were used without further purification. N₂ (99.999%), NH₃ (99.995%), Ar (99.999%) and standard gases such as CH₄, C₂H₄, C₂H₆, CO, CO₂, H₂, were purchased from Nanjing Special Gases Factory.

Cellulose was purchased from Aladdin Chemical Reagent Co. Ltd. De-alkali lignin was purchased from Beijing Bailingwei Technology Co., Ltd. Xylose was purchased from Sinopharm Chemical Reagent Co. Ltd. Bagasse, rice husk, and birch were purchased from Guangxi Guigang Ganhua Inc., China.

2. Catalyst characterization

X-ray photoelectron spectroscopy (XPS) spectra were obtained using an X-ray photoelectron spectrometer (ESCALAB250).

Elemental analysis was measured using an Elementar vario EL cube. The combustion tube temperature was 950°C, and the reducing tube temperature was 550°C.

Hydrogen temperature-programmed reduction (H2-TPR) was carried out in a home-

¹ Ma, Y. F., Xu, G. Y., Wang, H., Zhang, Y. & Fu, Y. Cobalt Nanocluster Supported on ZrREnOx for the Selective Hydrogenation of Biomass Derived Aromatic Aldehydes and Ketones in Water. *ACS Catal.* **8**, 1268-1277 (2018).

built reactor system coupled to a gas chromatograph. The details can be seen in reference ^[1].

XRD analysis was conducted on an X-ray diffractometer (TTR-III, Rigaku Corp., Japan) using Cu K α radiation ($\lambda = 1.54056$ Å) at 40 kV and 40 mA. The data were recorded over a 2 θ range of 10–70°. The sample after reaction was dried at 40°C after filtration and acetone sequential washing

Pyridine-IR characterization was performed on a Nicolet iS50 FT-IR Spectrometer. The samples were prepared based on KBr pellettechnique. Prior to pyridine adsorption at room temperature for 1 h, each sample was treated under vacuum at 400°C for 3 h. The unabsorbed pyridine was removed by a vacuum pump. The obtained sample was then subjected to desorption procedure. At a desorption temperature of 200°C, the spectra were recorded for further analysis.

We used inductively coupled plasma-atomic absorption spectroscopy (ICP-AAS, PerkinElmer Corporation AA800) to quantify the Co species by treating 100 mg of the catalyst in 20 ml of 2 mol/L HCl at 25 °C for 24 hours. CoOx on the surface of the catalyst can be dissolved, while Co species in the HZSM-5 skeleton will be retained.

Fig. S1 Scheme of bench-top device for solid feedstock CFP-A

Fig. S2 Scheme of bench-top device for liquid raw materials CFP-A

Fig. S3 H₂-TPR profile for CoOx/HZSM-5 catalyst.

Fig. S4 XRD patterns of the catalysts

Fig. S5 Pyridine-IR spectra of the catalysts at 200 °C

Fig. S6 Promoted breakage of C-C bond of acetaldehyde by HZSM-5 (a) and CoOx/HZSM-5 catalyst (b), calculated at B3LYP/6-311G(d,p) level.

Fig. S7 Dehydrogenation reactions for acetonitrile formation (a) and 2-methylpyridine formation (b) at indigenous L acid site (Si), calculated at B3LYP/6-311G(d,p) level

Fig. S8 Evolution pathways and energy diagrams for acetonitrile formation from acetic acid and acetone

Catalyst (M/HZSM)	Co	Ni	Fe	Cu	Zn	HZSM-5
Total carbon yield	95.99	91.00	87.11	91.07	93.33	76.69
Bio-oil	34.53	17.82	34.31	30.88	20.18	16.00
Coke	21.11	24.93	21.08	46.32	39.96	39.59
Gases	40.35	48.25	31.72	13.87	33.19	21.1
Detected products	in the org	ganic bio-	oil (C%)			
Acetonitrile	28.73	13.89	22.18	17.19	15.65	5.25
Aromatics	3.93	2.95	3.76	4.31	2.84	3.15
Pyridines	0.83	0.48	2.97	7.71	1.69	5.64
Pyrroles	0.80	0.19	2.76	0.18	0.00	0.73
Indoles	0.24	0.31	2.64	1.49	0.00	1.23
Detected products	Selectivi	ty (%)				
Acetonitrile	83.20	77.95	64.65	55.67	77.55	32.81
Aromatics	11.38	16.55	10.96	13.96	14.07	19.69
Pyridines	2.40	2.69	8.66	24.97	8.37	35.25
Pyrroles	2.32	1.74	8.04	0.58	0.00	4.56
Indoles	0.70	0.70	7.69	4.83	0.00	7.69

Table S1 Effect of doped mental on the performance of the HZSM-5(25) based catalyst

Conditions: Temperature, 650 °C; Catalyst, M/HZSM-5, Si/Al = 25, metal loading 2%, 1 g; NH₃ flow rate 80 mL/min.

Co/support	Co/HZ-5(25)	Co/HZ-5(50)	Co/HZ-5(80)	Co/γAl ₂ O ₃	Co/mcm-41	Co/USY	Со/Нβ(25)	Co/MgO	Co/SiO ₂
Total carbon yield (C %)	95.99	95.12	92.25	85.50	84.12	87.30	86.51	85.70	85.42
Bio-oil	34.53	33.90	30.65	15.42	17.35	17.37	24.63	12.07	10.08
Coke	21.11	20.00	18.34	20.56	15.84	34.04	21.21	33.20	24.58
Gases	40.35	41.22	43.26	49.52	50.93	35.89	40.65	40.88	50.76
Detected products in the	organic bio-oil (C%)							
Acetonitrile	28.73	22.51	12.61	14.28	10.97	12.12	13.04	6.40	8.60
Aromatics	3.93	2.30	2.92	0.11	2.18	2.54	3.83	2.49	0.23
Pyridines	0.83	4.40	6.22	0.48	2.78	2.63	3.02	0.67	0.51
Pyrroles	0.80	4.69	8.90	0.55	1.41	0.08	4.74	1.70	0.74
Indoles	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.00
Detected products Selection	ivity (%)								
Acetonitrile	83.20	66.40	41.14	92.61	63.23	69.78	52.94	53.02	85.32
Aromatics	11.38	6.78	9.53	0.71	12.56	14.62	15.55	20.62	2.28
Pyridines	2.40	12.98	20.29	3.11	16.02	15.14	12.26	5.55	5.06
Pyrroles	2.32	13.83	29.04	3.57	8.13	0.46	19.24	14.08	7.34
Indoles	0.70	0.00	0.00	0.00	0.00	0.00	0.00	2.98	0.00

Table S2 Effect of different support on the catalytic performance.

Conditions: Temperature, 650 °C; Catalyst, Co/support, cobalt loading 2%, dosage, 1 g; NH₃ flow 80ml/min.

Loading (%)	0	1	2	3	4	5
Total carbon yield (C %) 76.69	88.66	95.99	91.70	90.56	89.90
Bio-oil	16.00	25.77	34.53	38.40	33.00	31.38
Coke	39.59	29.03	21.11	16.39	9.49	7.31
Gases	21.1	33.85	40.35	40.91	47.73	50.88
Detected products in the	e organic	bio-oil (C%)			
Acetonitrile	5.25	20.73	28.73	32.48	26.72	25.40
Aromatics	3.15	3.17	3.93	3.72	3.76	3.39
Pyridines	0.64	0.83	0.83	0.99	1.48	1.48
Pyrroles	0.73	0.80	0.80	1.21	1.04	1.11
Indoles	1.23	0.24	0.24	0.00	0.00	0.00
Detected products Selec	ctivity (%))				
Acetonitrile	47.73	80.44	83.20	84.58	80.96	80.94
Aromatics	28.64	12.30	11.38	9.69	11.39	10.80
Pyridines	5.82	3.22	2.40	2.58	4.48	4.71
Pyrroles	6.64	3.10	2.32	3.15	3.15	3.54
Indoles	11.18	0.93	0.70	0.00	0.00	0.00

Table S3 Effect of different loading on the catalytic performance

Conditions: Temperature, 650 °C; Catalyst, HZSM-5, Si/Al = 25, dosage, 1 g; NH_3 flow rate 80 mL/min.

Temperature (°C)	550	600	650	700
Total carbon yield (C %)	84.07	93.86	92.70	90.78
Bio-oil	23.54	43.49	35.40	24.86
Coke	31.67	18.47	16.39	12.04
Gases	28.86	31.90	40.91	53.88
Detected products in the o	organic bio	o-oil (C%)		
Acetonitrile	18.88	34.36	28.48	19.69
Aromatics	2.37	3.38	3.72	2.94
Pyridines	1.02	2.45	1.99	1.03
Pyrroles	1.27	2.51	1.21	1.00
Indoles	0.00	0.79	0.00	0.20
Acetonitrile	80.20	79.01	80.45	79.20
Aromatics	10.07	7.77	10.50	11.83
Pyridines	4.33	5.63	5.62	4.14
Pyrroles	5.40	5.77	3.42	4.03
Indoles	0.00	1.82	0.00	0.80

Table S4 Effect of reaction temperature on product distribution

Conditions: Catalyst, Co/HZSM-5, cobalt loading 3%, Si/Al = 25, dosage, 1 g; NH₃ flow rate, 80 mL/min.

Time (s)	0.88	1.32	1.77	2.65	3.53
Total carbon yield (C %)	81.71	92.08	93.89	89.72	89.48
Bio-oil	28.77	34.74	43.50	32.80	24.00
Coke	35.47	31.67	18.47	18.75	18.56
Gases	17.47	25.67	31.91	38.17	45.92
Detected products in the	organic	bio-oil (C%)		
Acetonitrile	15.23	23.48	34.36	28.33	21.44
Aromatics	2.71	3.73	3.38	2.72	1.51
Pyridines	2.17	2.97	2.46	0.85	1.05
Pyrroles	2.96	3.37	2.51	0.45	0.00
Indoles	5.70	1.19	0.79	0.45	0.00
Detected products Selection	ivity (%)			
Acetonitrile	52.94	67.59	78.99	86.37	89.33
Aromatics	9.42	10.74	7.77	8.29	6.29
Pyridines	7.54	8.55	5.66	2.60	4.38
Pyrroles	10.29	9.70	5.77	1.37	0.00
Indoles	19.81	3.43	1.82	1.37	0.00

Table S5 Effect of different resident time on product distribution

Conditions: Temperature, 600 °C; Catalyst, Co/HZSM-5, cobalt loading 3%, Si/Al = 25; NH₃ flow rate 80 mL/min.

	Telent M	13 HOW 1a	te on proc		Jution
NH3 flow rate(ml/min)	40	60	80	100	120
Total carbon yield (C %)	80.16	88.85	93.89	86.98	82.93
Bio-oil	23.29	37.70	43.51	36.32	31.76
Coke	29.39	22.27	18.47	18.28	18.05
Gases	27.48	28.88	31.91	32.38	33.12
Detected products in the o	rganic bi	o-oil (C%)		
Acetonitrile	18.67	29.74	34.36	25.94	22.83
Aromatics	2.10	2.88	3.38	4.21	3.24
Pyridines	1.05	2.20	2.46	2.67	2.62
Pyrroles	1.12	2.31	2.51	3.18	2.88
Indoles	0.35	0.57	0.79	0.32	0.19
Detected products Selectiv	vity (%)				
Acetonitrile	80.16	78.89	78.97	71.42	71.88
Aromatics	9.02	7.64	7.77	11.59	10.20
Pyridines	4.51	5.93	5.62	7.35	8.25
Pyrroles	4.81	6.13	5.76	8.76	9.07
Indoles	1.50	1.51	1.82	0.88	0.60

Table S6 Effect of different NH₃ flow rate on product distribution

Conditions: Temperature, 600 °C; Catalyst, Co/HZSM-5, cobalt loading 3%, Si/Al = 25, dosage, 1 g.

Feedstock	Bagasse	Rice husk	Birch	Lignin	Xylose
Total carbon yield (C %)	88.57	85.43	85.62	89.33	87.04
Bio-oil	16.38	15.48	17.05	10.22	13.29
Coke	50.92	43.97	40.88	68.82	36.33
Gases	21.27	25.98	27.69	18.29	37.42
Detected products in the	organic bio	o-oil (C%)			
Acetonitrile	12.81	11.58	11.05	4.37	8.57
Aromatics	1.26	2.33	2.13	2.05	2.39
Pyridines	1.58	0.58	3.16	1.74	2.33
Pyrroles	0.73	0.99	0.72	0.00	1.58
Indoles	0.00	0.00	0.00	2.06	0.00
Detected products Selecti	vity (%)				
Acetonitrile	78.19	74.48	64.78	42.76	64.48
Aromatics	7.68	15.06	12.48	20.05	17.98
Pyridines	9.66	3.73	18.55	17.03	17.53
Pyrroles	4.47	6.37	4.20	0.00	11.89
Indoles	0.00	0.00	0.00	20.16	0.00

Table S7 Product distribution of different feedstock under optimal condition

Conditions: Temperature, 600 °C; Co/HZSM-5, cobalt loading 3%, Si/Al = 25, dosage 1 g; NH₃ flow rate 80ml/min.

Tuble 56 Froduct distribution of centrose pyrofysis under introgen						
Detected	Resident time	Peak area				
compounds	Resident time	HZSM-5	Co-HZSM-5			
Acetaldehyde	1.61	2.84E+07	1.60E+07			
Furan	1.74	5.73E+06	5.36E+06			
Acetone	1.78	1.26E+07	7.47E+06			
Acetic acid	2.05	1.14E+07	3.05E+06			
HAA	2.16	8.65E+07	5.68E+07			
Acetol	2.68	9.07E+07	4.74E+07			
Methyl furan	4.44	1.85E+07	1.07E+07			
Benzene	2.41	2.19E+08	1.89E+08			
Toluene	3.14	4.70E+08	3.92E+08			
Xylene	4.07	6.08E+08	3.97E+08			
Naphthalene	8.07	2.77E+08	2.78E+08			
1-methyl-						
naphthalene	9.06	2.76E+08	1.95E+08			
LG	11.89	9.81E+08	1.37E+09			

Table S8 Product distribution of cellulose pyrolysis under nitrogen

Conditions: Temperature, 600 °C; Carrier gas, N₂

Atom coordinates of optimized geometries for all the compounds calculated at

B3LYP/6-311G(d,p) level

Acetaldehyde

С	-1.16886300	-0.14786500	-0.00000200
Н	-1.70775900	0.22284400	-0.87874900
Н	-1.70724700	0.22256700	0.87920500
Н	-1.15578600	-1.23752900	-0.00020300
С	0.23557400	0.39712500	-0.00007500
Н	0.30480700	1.50860000	0.00006900
0	1.23321500	-0.27650600	0.00001700

Acetonitrile

С	0.00000000	0.00000000	-1.17585100
Н	1.02432500	0.00000000	-1.55388600
Н	-0.51216300	0.88709200	-1.55388600
Н	-0.51216300	-0.88709200	-1.55388600
С	0.00000000	0.00000000	0.28097900
Ν	0.00000000	0.00000000	1.43298400

2-Methylpridine

С	-1.86809400	-0.07094800	-0.00004800	
С	-1.23448000	1.16685900	-0.00001100	
С	0.15596400	1.20780000	0.00005300	
С	0.87562200	0.00853800	0.00002300	
С	-1.06980500	-1.21262900	0.00005000	
Н	-2.94822800	-0.15507100	-0.00014300	
Н	-1.81128000	2.08528400	-0.00003500	
Н	0.68121400	2.15601900	0.00010900	
Н	-1.52466300	-2.20001300	-0.00003500	
Ν	0.26406000	-1.18577700	0.00002800	
С	2.38226200	-0.01318500	-0.00004200	
Н	2.80418800	0.99342400	-0.00024900	
Н	2.75084500	-0.54876300	0.87886500	
Н	2.75069100	-0.54904600	-0.87885300	

A-TS1

С	-1.41721400	-0.14056300	0.00000000
Η	-1.38973600	-0.75110800	-0.90316000
Η	-2.27347100	0.54070800	-0.00150600
Η	-1.39127700	-0.74903700	0.90461200
С	0.56967500	0.55842000	-0.00002500
Η	-0.31739500	1.19268800	0.00011900
0	1.30714000	-0.34254900	0.00001000

B-TS1

С	-1.43351000	-0.36245300	-0.10821600
Η	-2.20846500	0.36280400	0.14925000
Η	-1.70326600	-1.33026200	0.32737100
Н	-1.40544100	-0.43773800	-1.19933900
С	-0.09964000	0.17311900	0.40505100
Н	-0.06436800	0.12400600	1.51317600
0	0.37275100	1.28440100	-0.16723800
Ν	1.10160900	-0.78493100	-0.08892000
Н	1.71928400	-1.13557000	0.64071400
Η	1.31264400	0.30494900	-0.51630400
Н	0.85523800	-1.53287400	-0.73553300

B-I1

С	-1.37800900	-0.35079300	-0.09531400
Н	-2.10830000	0.37310400	0.27384000
Н	-1.65157700	-1.34331800	0.27169700
Η	-1.42227800	-0.35205900	-1.18838400
С	0.02872700	0.02215900	0.35967300
Н	0.07091800	0.01176300	1.45967900
0	0.27659000	1.32904300	-0.13293200
Ν	1.09806100	-0.85818300	-0.09717000
Η	1.11793900	-1.72238300	0.43404900
Η	1.22239600	1.47508400	-0.01621300
Н	0.96744500	-1.09544900	-1.07717000

B-I2

С	1.42419400	-0.40294300	-0.14743600
Η	1.60231900	-1.34739600	0.36802700
Η	2.32485400	0.21648600	-0.04968000
Η	1.25146900	-0.57637500	-1.21019500
С	0.27814000	0.34841900	0.44899600
Η	0.26687900	0.42414100	1.53725600
0	-1.20801600	-0.89609700	0.05290500
Ν	-0.40209500	1.21767100	-0.31227500
Η	-1.07990300	0.23149100	-0.62911700
Η	-1.09726900	-1.78047700	-0.32421200
Η	-1.00356600	1.80435700	0.26125000

B-TS3

С	-1.23247400	-0.11516800	-0.00003400
Η	-1.69569500	0.32091600	-0.88712900
Η	-1.69543100	0.31785400	0.88870900

Η	-1.36887400	-1.20062200	-0.00184400
С	0.22853700	0.14968600	0.00019700
Н	0.23768300	1.70427200	-0.00036600
N	1.34394100	-0.33781600	-0.00008200
Η	1.13835300	1.01517800	0.00022500
C-1	[S1		
С	2.25230300	0.47755200	0.06875000
Η	1.74448900	1.22404800	0.67545300
Η	2.54446800	0.93128900	-0.88430600
Η	3.17607600	0.17384500	0.57011300
С	1.40593100	-0.73041500	-0.17606400
Η	1.89279000	-1.58409500	-0.65218300
Ν	0.18337600	-0.87887100	0.13647100
Η	-0.74160700	-1.51723900	-0.23511200
С	-0.97067500	1.45333200	-0.20591800
Η	-0.24986000	2.10461700	0.29700700
Η	-1.95662500	1.91841700	-0.13446200
Η	-0.72251200	1.36395000	-1.26617300
С	-1.08488100	0.06676600	0.42038800
Η	-1.14549400	0.13663300	1.52440100
0	-1.93017800	-0.77534700	-0.18662200

C-I1

С	2.25290100	0.30883800	0.51418900
Н	1.65147900	0.73741900	1.31472100
Н	2.79632400	1.12134200	0.01944600
Н	3.00858000	-0.34972100	0.95381000
С	1.45157700	-0.45286700	-0.51061900
Н	2.05765000	-0.95606500	-1.27091300
Ν	0.19746100	-0.58890900	-0.63298500
Н	-1.92690500	-1.35826300	-0.37026200
С	-1.27032400	1.32687100	-0.29640200
Н	-0.47946900	2.08160300	-0.33523400
Н	-2.09016800	1.70126700	0.31958300
Н	-1.63975600	1.16092400	-1.31170400
С	-0.75564200	0.00969500	0.28795900
Н	-0.34757900	0.18038600	1.29042500
0	-1.81043200	-0.91897000	0.48128300
C-T	S2		
С	2.41140600	0.27054500	0.48241500
Н	3.06432400	0.93997000	-0.08828900
Н	3.06698600	-0.41134000	1.03348100

Н	1.84148000	0.87131400	1.19084500	
С	1.54356300	-0.50854800	-0.46554800	
Η	2.07733200	-1.15559500	-1.16581100	
Ν	0.27808200	-0.49670900	-0.57927500	
Η	-2.03189400	-1.59940700	-0.21038700	
С	-1.36759700	1.28411700	-0.32661000	
Η	-1.59217500	2.13493200	0.30814600	
Η	-2.26074600	0.24650400	-0.12681700	
Η	-1.19879500	1.50132900	-1.37691700	
С	-0.54956400	0.25773600	0.24473500	
Η	-0.36657200	0.24313100	1.31507000	
0	-2.09667000	-0.88962300	0.44570800	

C-I2

С	1.60491000	0.82284900	0.18664300
Н	0.83466000	1.40003400	0.69663300
Η	1.93340400	1.38139100	-0.69669700
Н	2.48079500	0.72260900	0.83590500
С	1.12321300	-0.54402300	-0.21791500
Н	1.88787600	-1.20317900	-0.63925100
Ν	-0.03986100	-1.04403100	-0.11844400
С	-1.77175900	0.67011100	-0.25508100
Н	-2.69880100	1.06614300	0.13923100
Η	-1.39780400	1.09026300	-1.18176500
С	-1.15256400	-0.34260900	0.35688200
Η	-1.58390700	-0.78701000	1.25188300

C-TS3

С	-3.01463600	1.04058000	0.04788600	
Η	-2.11697700	1.65881500	0.04954900	
Η	-3.57899500	1.21750200	0.96900500	
Η	-3.66178300	1.34314500	-0.78195900	
С	-2.68614100	-0.41787600	-0.07458800	
Η	-3.52147800	-1.12029900	-0.05701700	
Ν	-1.53133400	-0.90798500	-0.19784700	
С	0.67439800	-0.56431200	0.77521100	
Η	1.36814900	-1.49869700	0.37762800	
Η	0.29983100	-0.59863700	1.79889000	
С	-0.26439300	-0.55877400	-0.27222700	
Η	0.16009300	-0.44884000	-1.27464300	
С	2.04136000	1.52539200	-0.18510200	
Η	3.07157800	1.80757700	-0.41470900	
Η	1.63184000	2.25898800	0.51893200	
Н	1.47420600	1.57560900	-1.12040900	

С	2.05653700	0.09888900	0.37928400
Η	2.6000000	0.13042900	1.34744200
0	2.51876500	-0.83913600	-0.50632100

C-I3

С

Η

Η

Η

С

Η

2.82198600

2.73063100 3.79501600

2.66075400

1.71270100

1.89675100

С	-2.59732000	1.21308100	-0.33949100
Н	-1.60203100	1.47575300	-0.69557100
Н	-2.85409800	1.86815300	0.50030100
Н	-3.33221700	1.41197000	-1.12631600
С	-2.69264000	-0.22854100	0.08109000
Н	-3.69690900	-0.57274800	0.34515500
Ν	-1.77557400	-1.10414500	0.15053400
С	0.40361600	-0.11723300	0.64207700
Н	2.19394600	-1.79915500	-0.28442300
Н	0.01859900	0.40431300	1.51549000
С	-0.42545600	-0.84194700	-0.11563300
Н	-0.03187300	-1.40068100	-0.96105100
С	2.29351900	1.39951400	-0.06327700
Н	3.37831500	1.45997500	-0.17536000
Н	1.97162500	2.15618100	0.65654100
Н	1.82868400	1.61422700	-1.02843200
С	1.89104300	0.00010300	0.40051000
Н	2.40761100	-0.20245100	1.35293400
0	2.36384900	-0.90454800	-0.59808200
C-1	ГS4		
C	-2.16759600	1.37246300	0.30373600
Н	-1.11426800	1.49764900	0.04604300
Н	-2.33461500	1.75101100	1.31758700
Н	-2.78190400	1.99159500	-0.35998900
С	-2.63579800	-0.05361000	0.21487200
Н	-3.66614300	-0.24407600	0.52457500
Ν	-1.98594500	-1.06327400	-0.20641600
С	0.37758800	-0.80371300	0.26439900
Н	1.77757500	2.29696400	-1.08245600
Н	0.18544500	-0.65623400	1.32249900
С	-0.66282800	-1.00110400	-0.57920000
Н	-0.47953400	-1.17751700	-1.63786100

-0.37255300

0.82198800

-0.70173700

-0.54475200

-0.66183000

-0.83891800

0.65494300

0.38533000

0.29593100

1.71752300

-0.20114600

-1.25396800

-0.47199100

C-I4

	-		
С	-2.19872000	1.25670100	-0.32383000
Н	-1.28961700	1.39399400	-0.90831500
Н	-2.22148400	2.01223100	0.46933500
Н	-3.07343100	1.44156300	-0.95563300
С	-2.29369900	-0.12171600	0.27098300
Н	-3.24429100	-0.35920000	0.75652700
Ν	-1.43108100	-1.05531500	0.26385900
С	0.83139100	-0.13122400	0.22123100
Н	0.60341900	0.56065500	1.02855300
С	-0.14283900	-0.93484400	-0.24882900
Н	0.09041300	-1.67603700	-1.01139500
С	3.19275600	0.60579600	0.18744000
Н	4.19345800	0.53784800	-0.22118300
Н	3.03397400	1.33113400	0.97919900
С	2.19761400	-0.16958000	-0.26186200
Η	2.40611400	-0.88578200	-1.05489700
C-1	ſS5		
С	1.84020000	-0.32243400	-0.01964400
С	1.45751200	0.99320200	-0.26579100
С	0.30412000	1.58744200	0.25476900
С	-1.09292200	-0.15406300	0.35263400
С	0.89105600	-1.36365400	0.09174800
Н	2.83651800	-0.64043800	-0.31118700
Н	2.02491200	1.53800700	-1.02107000
Н	-0.06542100	2.49621200	-0.21450100

C-I5

Η

Ν

С

Η

Η

Η

Η

Η

1.26634700

-0.41141400

-2.40786300

-2.31350000

-3.16542300

-2.76117700

-1.05000900

0.15503000

-	-		
С	-1.64777600	-0.07281900	0.45084900
С	-1.13139700	1.13739700	0.21521200
С	0.13477000	1.25197200	-0.58911000
С	1.00343600	-0.01865800	-0.47034400
С	-0.95283500	-1.26074900	-0.07080700

-2.37992100

-1.22728100

0.14382100

0.06399200

1.14458700

0.07782300

1.56255000

-0.57772900

-0.01602700

-0.03890000

-0.31989500

-1.40359900

0.00836200

-0.06386400

1.41020000

1.32106400

Η	-2.58027900	-0.20721400	0.98813000	
Н	-1.63290300	2.03980300	0.55101400	
Н	0.71641300	2.12764700	-0.28304000	
Η	-1.49717800	-2.20737100	-0.06666800	
Ν	0.23966800	-1.28177700	-0.52510900	
С	1.85408500	-0.03976200	0.80902500	
Η	2.55546300	0.79962200	0.81813700	
Η	1.22480300	0.02498300	1.70054400	
Η	2.42362000	-0.96966300	0.86166200	
Η	1.68846100	-0.04412200	-1.32246100	
Η	-0.13776600	1.42447100	-1.64050300	

C-TS6

С	1.84789700	-0.08053800	0.24766500
С	1.26289400	1.14748100	-0.08368400
С	-0.12021800	1.23853000	-0.23460400
С	-0.85555400	-0.04292800	0.13935400
С	1.07777200	-1.22172400	-0.09041700
Η	2.91402100	-0.16684900	0.40769100
Η	1.88497400	2.01974300	-0.25778400
Η	-0.65396400	2.08993700	-0.63179600
Η	1.59021700	-2.15100000	-0.33508000
Ν	-0.22311100	-1.22054000	-0.25953400
С	-2.36213600	-0.02581900	0.03016600
Η	-2.79304500	0.85715000	0.50583900
Η	-2.61614700	-0.01643200	-1.03281200
Н	-2.78155700	-0.92725500	0.47573400
Н	-0.70590400	-0.06934600	1.55065700
Η	-0.38075300	0.81782900	1.08340900

Model of B acid site

Al	-0.26943900	0.00060800	-0.05237800	
0	1.22416100	-0.00347100	0.83482900	
0	-1.15896300	1.46221800	-0.10742400	
0	-1.18293300	-1.44722400	-0.08373800	
0	0.70568600	-0.02622900	-1.72728700	
Si	2.44014600	-0.03718900	-1.77577700	
Η	0.23255200	-0.04730700	-2.56523100	
Si	-2.10204800	-2.77899300	0.09642600	
Н	-1.59003000	-3.64990200	1.19028600	
Н	-3.51351500	-2.42786400	0.41503400	
Η	-2.10769000	-3.58091900	-1.16004700	
Si	2.07476400	0.00839200	2.23629800	

Η	1.80691000	-1.20779600	3.05080100
Η	3.52965400	0.04392700	1.92235800
Н	1.75058000	1.20173700	3.06432000
Si	-2.04824400	2.81550300	0.06164800
Н	-2.83890200	3.08227900	-1.17291000
Η	-1.17887400	4.00076100	0.30395800
Н	-2.99996900	2.70811800	1.20149300
Η	2.70544300	-0.05366700	-3.23534600
Н	2.94312700	-1.26950500	-1.15050800
Н	2.95516800	1.20188800	-1.17467200

Model of L acid site

0	-1.45089200	-0.83512900	-0.62310300
0	1.44701000	-0.83739000	-0.62330200
0	-0.00060000	1.67184000	-0.62451500
Si	0.14119700	2.58445100	0.75781100
Si	2.17255300	-1.41222800	0.75754300
Н	2.07967900	-0.42381200	1.86621100
Н	1.53738200	-2.67681200	1.21073800
Н	3.59886900	-1.65976100	0.43541800
Si	-2.30989500	-1.17043200	0.76022600
Н	-1.40877700	-1.59970100	1.86401700
Н	-3.07107700	0.01978600	1.22079800
Η	-3.25234400	-2.26892400	0.43709600
Н	-0.35881900	3.94439600	0.44127600
Н	1.55634200	2.66538800	1.20402300
Н	-0.66316000	2.00836400	1.86950200
Co	-0.00134100	-0.00105800	-1.01629100

Transition state for the formation of acetonitrile at B acid site

Al	-0.43790200	0.19508600	-0.02363900
0	-2.11588400	-0.19752100	-0.05660100
0	0.03824900	1.84564800	-0.09198500
0	0.37619200	-0.68819300	-1.39416800
0	0.30658200	-0.56930600	1.44544300
Si	-0.40508300	-1.28015500	2.78002400
Si	-0.25492500	-1.62626500	-2.62899800
Η	-0.94216500	-2.82414900	-2.08946700
Η	-1.19672500	-0.84108900	-3.46157700
Η	0.89570200	-2.06140300	-3.46216100
Si	-3.74453400	-0.17217700	-0.10967400
Η	-4.32381900	-0.79090900	1.11509300
Η	-4.27434400	1.21646700	-0.21168800
Н	-4.24620900	-0.93688900	-1.28549900

Si	0.23693800	3.45615500	-0.16937800
Η	-0.16860400	4.12234500	1.10022800
Η	-0.56001500	4.05905300	-1.27461000
Η	1.66874900	3.79775400	-0.41402800
Η	-1.34655000	-0.34129200	3.43677200
Η	0.68945700	-1.62227500	3.72405900
Η	-1.12498900	-2.52214500	2.40586300
С	4.77332600	-0.41770400	-0.44315600
Η	4.85466700	0.49219400	-1.04020800
Η	4.94506700	-1.27438400	-1.09670500
Η	5.51280400	-0.40403300	0.36052700
С	3.42779800	-0.50040400	0.15204300
Η	2.61754300	-0.51379200	-1.21805300
Ν	2.79688700	-0.54906600	1.14943300
Η	1.67338300	-0.57290500	1.35189500
Η	1.73916100	-0.57737900	-1.36164400

Transition state for the formation of 2-methylpyridine at B acid site

С	4.30823000	1.02605000	0.54746100
Η	5.17330700	1.51496500	0.99136200
С	3.36925900	1.81130000	-0.18993800
Н	3.42801100	2.89156300	-0.16230800
С	2.49462600	-0.32520100	-1.02265000
Н	1.46800600	-0.72214200	-1.11848400
Н	2.99909400	-0.67925000	-1.94180300
С	2.51245400	1.15518600	-1.01096900
Н	1.85710800	1.68090700	-1.69305500
Ν	4.22727500	-0.27232400	0.73850600
С	3.18730400	-0.92426000	0.15302800
Н	2.00443000	-0.46072600	1.28742400
С	3.09743700	-2.39719100	0.38355200
Н	3.44300400	-2.64500300	1.38631800
Н	2.08588100	-2.76471300	0.21665200
Η	3.76656200	-2.89159100	-0.33228200
Al	-1.10725200	0.03117900	-0.06640800
0	-2.82040000	-0.07636500	0.14517500
0	-0.55238800	1.52656300	-0.80192100
0	-0.41650600	-1.30409900	-1.00529600
0	-0.32348700	-0.09325900	1.55979200
Si	-0.88523900	-0.07960700	3.12049900
Н	1.19553800	-0.31905500	1.40655200
Si	-0.85877500	-2.61035300	-1.88646000
Н	-1.58688200	-3.62603400	-1.07656400
Н	-1.70880300	-2.25498200	-3.05617900

Η	0.37682900	-3.26526100	-2.41364100
Si	-4.44083100	-0.17261700	0.18009200
Η	-5.07765000	1.06513900	-0.35457000
Η	-4.94006300	-1.31753000	-0.63486500
Η	-4.94038200	-0.36457300	1.57154000
Si	-0.92317700	3.05326600	-1.22989200
Η	0.29145400	3.69453400	-1.82595800
Η	-1.33423700	3.89817000	-0.07259900
Η	-2.00144200	3.12469700	-2.25468100
Η	0.29674500	-0.12440400	4.02409600
Η	-1.74020700	-1.25910600	3.41099200
Η	-1.65426500	1.15766400	3.41157300

Transition state for the formation of acetonitrile at L acid site

-1.55741500	1.69053400	0.35696700	
-1.60942800	0.03368400	-1.00482600	
1.68698000	0.23896800	-0.45099300	
-0.42791300	1.54397400	0.22764300	
-0.55909200	-1.60369100	0.10336800	
0.13787100	-2.44238100	1.35869400	
0.78893400	2.47660600	0.97704800	
1.48505800	1.71846300	2.03513300	
1.71320600	3.04860800	-0.01994100	
0.00797000	3.57377100	1.60507700	
3.14227300	-0.39729900	-0.86176800	
4.03702400	0.67934500	-1.37038600	
3.81490600	-1.04581900	0.29773900	
3.01732000	-1.42704000	-1.93728700	
-0.62917100	-3.70500200	1.51666400	
0.06477400	-1.66207300	2.62309400	
1.56158800	-2.78272600	1.09951000	
-0.11077300	-0.05030700	-0.56729600	
-3.72523500	-0.71090300	-0.93591400	
-3.26037000	-1.65814800	-0.65767400	
-3.78243400	-0.66041500	-2.02513300	
-4.72695000	-0.63826300	-0.50928400	
-2.89406200	0.40007500	-0.41679800	
-2.85661700	1.38676500	0.24969000	
	-1.55741500 -1.60942800 1.68698000 -0.42791300 -0.55909200 0.13787100 0.78893400 1.48505800 1.71320600 0.00797000 3.14227300 4.03702400 3.81490600 3.01732000 -0.62917100 0.06477400 1.56158800 -0.11077300 -3.72523500 -3.26037000 -3.78243400 -4.72695000 -2.89406200 -2.85661700	-1.55741500 1.69053400 -1.60942800 0.03368400 1.68698000 0.23896800 -0.42791300 1.54397400 -0.55909200 -1.60369100 0.13787100 -2.44238100 0.78893400 2.47660600 1.48505800 1.71846300 1.71320600 3.04860800 0.00797000 3.57377100 3.14227300 -0.39729900 4.03702400 0.67934500 3.81490600 -1.04581900 3.01732000 -1.42704000 -0.62917100 -3.70500200 0.06477400 -1.66207300 1.56158800 -2.78272600 -0.11077300 -0.05030700 -3.72523500 -0.71090300 -3.78243400 -0.66041500 -4.72695000 -0.63826300 -2.89406200 0.40007500 -2.85661700 1.38676500	-1.55741500 1.69053400 0.35696700 -1.60942800 0.03368400 -1.00482600 1.68698000 0.23896800 -0.45099300 -0.42791300 1.54397400 0.22764300 -0.55909200 -1.60369100 0.10336800 0.13787100 -2.44238100 1.35869400 0.78893400 2.47660600 0.97704800 1.48505800 1.71846300 2.03513300 1.71320600 3.04860800 -0.01994100 0.00797000 3.57377100 1.60507700 3.14227300 -0.39729900 -0.86176800 4.03702400 0.67934500 -1.37038600 3.81490600 -1.04581900 0.29773900 3.01732000 -1.42704000 -1.93728700 -0.62917100 -3.70500200 1.51666400 0.06477400 -1.66207300 2.62309400 1.56158800 -2.78272600 1.09951000 -3.72523500 -0.71090300 -0.93591400 -3.78243400 -0.66041500 -2.02513300 -4.72695000 -0.63826300 -0.50928400 -2.89406200 0.40007500 -0.41679800 -2.85661700 1.38676500 0.24969000

Transition state for the formation of 2-methylpyridine at L acid site

С	3.06411200	1.72810500	0.18745400
С	2.42134700	1.49227400	-0.98141900
С	2.02327100	0.12402000	-1.34077200
С	2.52370300	-0.93767800	-0.41128000

С	3.44174700	0.63395500	1.03206800
Н	3.34841000	2.73529300	0.47085800
Н	2.18835700	2.29917900	-1.66544500
Н	2.15518400	-0.11105800	-2.40322700
Н	3.97136000	0.83106500	1.96070800
Ν	3.24856200	-0.62023900	0.71912700
С	2.80318600	-2.31094200	-0.99610800
Н	1.95940300	-2.67903600	-1.58731700
Н	3.68027400	-2.28280800	-1.65442100
Н	3.01086700	-3.02228700	-0.19553800
Н	1.25283200	-1.15279800	0.17884300
Н	0.81901900	0.12085300	-1.33133200
0	-2.56671600	-0.42108400	-0.89255100
0	0.09120000	-1.16974600	0.33255900
0	-0.51116200	1.64793800	-0.33414500
Si	-0.92996400	2.57719700	0.96014500
Si	-0.50813800	-1.97117400	1.70974500
Н	-1.14527100	-0.98805200	2.61302800
Н	-1.49084700	-2.98980600	1.28142100
Η	0.66314600	-2.60408900	2.35517700
Si	-4.08600800	-0.40106900	-0.26941700
Η	-4.11389700	-0.92910900	1.12693800
Н	-4.65673600	0.97355600	-0.23872500
Н	-4.97320200	-1.26195700	-1.09813600
Η	-0.73088500	4.00158200	0.58421400
Η	-0.09360200	2.28710900	2.16088000
Η	-2.35067600	2.38433400	1.37009200
Co	-0.83951500	-0.03610800	-0.75389200
Ace	etic acid		
С	-1.39368000	-0.11814700	-0.00001600
Η	-1.67249600	-0.70287000	-0.87943200
Η	-1.91956000	0.83367900	-0.00133000
Η	-1.67272800	-0.70036800	0.88101000
0	0.78520500	-1.03878300	-0.00000700
Н	1.72372900	-0.79865700	0.00011000
0	0.63387500	1.20225300	0.00000700
С	0.09174900	0.12822200	-0.00004500
D-]	ГS1		
С	-1.28677700	0.66128600	0.57434100
Η	-0.80494800	1.29566000	1.31856400
Η	-2.04356500	0.03621000	1.05981700
Η	-1.78890500	1.28911200	-0.16171300

Ο	1.09134400	1.01493500	-0.56716000
Η	0.82722700	1.93567100	-0.47012800
Ο	-0.56537100	-0.96174400	-1.07311000
С	-0.30932200	-0.23131800	-0.15859700
Ν	0.85083000	-0.75249800	0.85981700
Η	0.60413600	-0.78933800	1.84409400
Η	1.43021400	0.14491400	0.49379600
Η	1.18884100	-1.65008000	0.52454600
D-	[1		
С	-1.36137700	-0.34688600	-0.00019000
Η	-1.46081200	-1.42881900	-0.10829000
Η	-1.89716000	0.14637600	-0.81253700
Η	-1.83171700	-0.03906300	0.93631200
Ο	0.35385600	1.33170400	0.00068000
С	0.07730600	0.14816900	-0.00328500
Ν	1.03523600	-0.82707700	-0.00352900
Η	2.00191400	-0.54312500	0.01593400
Η	0.81470100	-1.80716300	0.00869600
D -'	TS2		
С	1.46100600	0.09378500	-0.00000700
Η	1.85333700	-0.42164600	-0.87928400
Η	1.85321200	-0.42068500	0.87989000
Н	1.80618100	1.12714600	-0.00053600
0	-0.65262600	-1.13501200	-0.00000100
С	-0.02908600	-0.00726800	-0.00000200

Ν	-0.93429600	0.93673900	0.00000200
Н	-0.74404500	1.93103200	-0.00000600
Н	-1.59912300	-0.21202600	-0.00001300

D-I2

С	1.39984800	-0.06537700	-0.00001600
Н	1.90030800	0.90237400	-0.00016900
Η	1.71123600	-0.63378000	-0.87989100
Η	1.71115000	-0.63336600	0.88019800
0	-0.71232800	-1.11430000	0.00000000
С	-0.09562500	0.09418300	-0.00000500
Ν	-0.79618100	1.14994100	0.00000100
Η	-0.21393700	1.98317800	-0.00001600
Η	-1.66220700	-0.92643200	-0.00000100

D-TS3

C -1	.49071400	-0.33662100	-0.00396000
------	-----------	-------------	-------------

Н	-1.60903700	-0.96921700	0.87766000
Н	-1.56406300	-0.96588300	-0.89158300
Н	-2.28129100	0.41690100	-0.01713700
С	-0.18886300	0.34679700	0.01777400
Ν	0.49325000	1.33571500	0.01909900
Н	1.39906700	0.42801300	-0.03345700
0	1.16768500	-0.87073400	-0.10806600
Н	1.33856100	-1.35500100	0.71246400
Ace	etone		
С	1.29145800	-0.61343500	-0.00153000
Н	1.30313800	-1.33167800	-0.82705100
Η	1.37484100	-1.19120700	0.92492400
Η	2.14149200	0.06221200	-0.08499200
С	-0.00000200	0.18640600	0.00000000
0	-0.00000300	1.39552100	0.00000000
С	-1.29145300	-0.61343700	0.00153000
Η	-1.37482900	-1.19121500	-0.92492200
Η	-1.30313700	-1.33167800	0.82705500
Н	-2.14150000	0.06219300	0.08498300
E-T	[S1		
С	-0.86514400	1.27872300	-0.25475900
Η	-1.75391900	1.34398800	0.37693900
Η	-1.18006500	1.30534100	-1.30288500
Η	-0.24400700	2.14944000	-0.03079500
С	-0.11018400	-0.00000700	0.12645700
0	0.44277400	0.00003200	1.34954600
Ν	1.31983000	-0.00027600	-0.66778100
Η	1.53924500	-0.83587700	-1.20631500
Η	1.54354500	-0.00031000	0.50118700
Η	1.53939500	0.83542200	-1.20609200
С	-0.86558500	-1.27847800	-0.25462900
Η	-1.75461200	-1.34315000	0.37681100
Н	-1.18019600	-1.30516700	-1.30287200
Н	-0.24491200	-2.14944500	-0.03028900
			
E-I	1 2(222(00	0.00001.000	0 2025 4200
U U	-1.26332600	-0.80291500	-0.29354300
H	-1.33842300	-1.00055/00	0.3/152500
H	-1.25386700	-1.15633800	-1.32//1600
H C	-2.14828000	-0.18031300	-0.14032400
C	-0.00250000	0.01162100	0.01234600
U	-0.14398900	0.42240900	1.3/119100

Ν	0.13546200	1.22931400	-0.79219200
Н	0.40113300	1.01138800	-1.74746900
Н	0.51960600	1.10983300	1.50442700
Н	-0.75290300	1.72194600	-0.82549700
С	1.26865800	-0.82851200	-0.16206100
Н	1.24596700	-1.67828700	0.52178400
Н	1.36550400	-1.20741400	-1.18435400
Η	2.14794800	-0.21988900	0.06298600
E-'	TS2		
С	0.28779000	1.52305300	0.06849100
Η	0.33340900	1.84012900	-0.97308800
Н	1.15961600	1.93791000	0.59318400
Н	-0.61073500	1.91670100	0.53979000
С	0.33189300	0.02982100	0.19342000
0	-1.53431900	-0.33989400	-0.69002300
Ν	-0.29805500	-0.51752000	1.23939500
Н	-1.32919400	-0.40199000	0.68788500
Η	-2.12965000	0.21621400	-1.21012300
Η	-0.09680600	-1.51189800	1.31464700
С	1.38766300	-0.71240400	-0.57019700
Н	2.32549100	-0.68995100	-0.00110600
Н	1.09155700	-1.75163900	-0.71457000
Η	1.57316600	-0.25650100	-1.54248000
E-]	[2		
С	1.34982800	-0.50626000	-0.00002600
Н	1.46598300	-1.14877900	-0.87942000
Н	1.46620200	-1.14783300	0.88005500
Η	2.13324100	0.24998100	-0.00041600
С	-0.00402100	0.16162000	-0.00008000
Ν	-0.05892400	1.43257900	0.00004800
Η	-1.03210600	1.74922800	-0.00022500
С	-1.19956600	-0.76814600	-0.00003900
Η	-2.13901900	-0.21155000	-0.00089700
Η	-1.17921300	-1.42208700	-0.87810500
Η	-1.18006700	-1.42029100	0.87953900
E- ′	TS3		
С	-1.19262500	-0.90157200	-0.00004300
Н	-1.00751900	-1.50859500	0.88758200
Н	-1.00577000	-1.50950900	-0.88665400
Η	-2.23093900	-0.55963800	-0.00120100
С	-0.33428600	0.31639400	0.00020500

Ν	-0.35688400	1.53351400	-0.00005000
Н	0.81471300	0.86954900	-0.00019900
С	1.57307400	-0.44766000	0.00001000
Η	1.62242100	-1.05218100	-0.90426900
Η	2.40454000	0.27324900	-0.00132100
Η	1.62376200	-1.05044800	0.90538300

Fig. S9 Evolution pathways and energy diagrams for acetonitrile formation from acetic acid and acetone