Supporting Information

Metal-acid nanoplates-supported ultrafine Ru nanoclusters for efficient catalytic fractionation of lignin into aromatic alcohols

Naseeb Ullah, Atheer Hameid Odda, Kuang Liang, Miza Ali Kombo, Shafaq Sahar, Liu-Bo Ma, Xiao-xiang Fang and An-Wu Xu*

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China

Corresponding author:

An-Wu Xu, Fax: +86-551-63602346; E-mail: anwuxu@ustc.edu.cn

Tables of contents

Part 1: Catalyst analysis

- **1.1.** Catalyst characterization methods
- **1.2.** Supplementary figures
- **Fig. S1** FT-IR spectrum of α -HfP nanoplates.

Fig. S2 XPS spectra of Ru 3p (a) and P 2p (b) of Ru/ α -HfP nanocatalyst.

Fig. S3 N₂ adsorption-desorption isotherm and (inset) BJH pore-size distribution of Ru/ α -HfP catalyst.

Fig. S4 TGA/DTG analysis of α -HfP sample.

Fig. S5 Schematic structural representation of α -HfP.

Fig. S6 ICP-MS analysis of catalyst elements.

Fig.S7 Plausible reaction route of hydrogenated cyclic-alcohols via metal-acid bifunctional Ru/α -HfP reductive reaction.

Fig. S8 (a) SEM image (b) XRD pattern of recycled Ru/ α -HfP nanocatalyst.

Part 2: Substrate analysis

Table S1 content of C, H, N, S in lignocellulosic biomass.

Table S2 FTIR spectra of lignocellulosic biomass.

Table S3. Absorption peaks detected and corresponding functional groups in lignocellulosic biomass

Fig. S9 Composition analysis of lignocellulosic biomass.

Fig. S10 Solid state ¹³C CP MAS NMR of pine sawdust before and after reductive fractionation.

 Table S4. Signal assignment for the 13C CPMAS NMR spectrum of pine sawdust.

Fig. S11 Solid state ¹³C NMR of alkaline lignin.

Fig. S12 FTIR analysis of alkaline lignin.

Fig. S13 XRD pattern of alkaline lignin.

Fig. S14 UV-Vis absorption spectra of alkali lignin.

Fig. S15 TGA analysis of alkaline lignin.

Part 3: Product analysis

Table S5 Complete overview of GC-MS identified compounds in bio-oil obtained from depolymerisation of pine lignocellulose feedstock (3 h) by using Ru/α -HfP catalyst.

Table S6 Complete overview of GC-MS identified compounds in bio-oil obtained from depolymerisation of pine lignocellulose feedstock (6 h) by using Ru/α -HfP catalyst.

Table S7 Complete overview of GC-MS identified compounds in bio-oil obtained from depolymerisation of commercial lignin feedstock by using Ru/α -HfP catalyst.

Table S8 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Poplar feedstock.

Table S9 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Oak feedstock.

Table S10 GC-MS identification, peak area contribution of monomers bio-oil fractionated from Birch feedstock.

Table S11 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Walnut feedstock.

Table S12 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Miscanthus feedstock.

Table S13 Literature yields comparison of dihydroeugenol as product by using reductive fractionation using metal-acid catalyst.

 Table S14 Literature yields comparison of aromatic monomers derived from technical lignin by using metal-acid catalyst.

Part 3: Figures

Fig. S16 FTIR spectra of feedstock lignocellulose (pine and solid residue) before and after Ru/ α -HfP reductive fractionation.

Fig. S17 Gas chromatograms and peak identification of monomers in bio-oil derived from different lignocellulose by Ru/α -HfP catalyst.

Fig. S18 FTIR spectrum of bio-oil from alkaline lignin depolymerisation by Ru/α -HfP NPs.

Fig. S19 FTIR spectra of alkaline lignin before and after Ru/α -HfP depolymerization.

Fig. S20 Gas chromatographic comparison of liquid phase products of comparative experiments with bare α -HfP and without any catalyst.

Fig. S21 The post-processing flowchart of catalytic reductive fractionation of lignocellulose with Ru/α -HfP catalyst.

Fig. S22a Mass spectrograms of major monomers derived from pine sawdustreaction.

Fig. S22b Mass spectrograms of major monomers derived from pine lignocellulose (6 h) reaction.

Fig. S23 Mass spectograms of major monomers derived from alkaline lignin.

References

Part 1: Catalyst analysis

0.2. Characterization methods

i. X-ray Diffraction (XRD) Analysis

To examine the crystallinity of catalyst and lignin (alkaline, samples were analyzed by X-ray diffraction (XRD) performed on a Philips X'pert Pro Super diffractometer equipped with graphite monochromatized Cu K α radiation ($\lambda = 1.54178$ Å). The samples were finely crushed and dried in vacuum over (10⁻⁴ MPa), the operation voltage was maintained at 40 kV, and the current at 200 mA and sample scanning was done from a 2 θ value of 5° to 60° at the rate of 4.3 degree/min.

ii. Fourier Transform Infra-red (FT-IR) Spectroscopy

To assess the existence of functional group in catalyst, biomass feedstock and alkaline lignin FTIR spectra were recorded by using MAGNA-IR750 (Nicole instrument Co. USA) infrared spectrophotometer. The samples were measured using a KBr-pellet method (resolution of 4 cm⁻¹, wavenumber range 4000-400 cm⁻¹). Prior to the analysis samples were dried in vacuum over (10⁻⁴ Mpa) for 2 h.

iii. Scaning electon microscopy (SEM) analysis

Scanning electron microscopy (SEM) images were captured on a field-emission scanning electron microanalyzer (JEOL JSM-6700F, 15 kV).

iv. High-Resolution Transmission electron microscopy analysis

The structural morphology and microstructure of Ru/α-HfP catalyst samples was examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) on JEM-2010 transmission electron microscope at an acceleration voltage of 200kV. The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and elemental mapping were taken on JEOL JEM-ARF200F atomic resolution analytical microscope. Powder samples were dispersed in ethanol by ultra-sonication and then deposited on carbon coated Cu grids. The elemental composition of the samples was determined by using the EDAX (JEOL X-ray micro analysis system TEM) installed on the same TEM machine.

v. Inductively coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis

The element content in Ru/HfP NPs catalyst was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) on a PerkinElmer Optima 8000 ICP-AES/ICP-OES spectrometer. Typically, 10 mg of Ru/ α -HfP catalyst sample was dissolved in H₂SO₄:H₂O₂ (4:1). Then, the mixture solution was transferred to Teflon lined stainless steel autoclave and placed at 180 °C oven for 3 h. Later, the digested solution was filtered using 0.22 micron syringe filter and diluted with ultra pure H₂O after that the samples were analyzed by PerkinElmer Optima 8000 ICP-AES/ICP-OES spectrometer.

vi. X-ray photoeletron spectroscopy analysis

X-ray photoelectron spectroscopy (XPS) was carried out at the catalysis and surface science endstation in National Synchrotron Radiation Laboratory (NSRL), Hefei. The X-ray photoelectron spectroscopy (XPS) measurement were conducted on an X-ray photoelectron spectrometer (ESCALAB250, Thermo-VG Scientific, USA) at room temperature under vacuum of 10^{-8} - 10^{-9} Torr using monochromatized Al K α radiation (1486.92 eV). The sample was exposed to air before assessment. During analysis the residual pressure was kept below 1×10^{-7} Pa. Meanwhile, C 1s peak was used for binding energy correction for all XPS spectra.

vii. Thermo Gravimetric Analysis –Differential Thermal Analysis (TGA-DTA)

Thermal decomposition of catalyst and lignin samples were carried out under N_2 atmosphere with a heating rate of 10 °C min⁻¹ with a Shimadzu TGA-50H thermogravimetric analyzer.

viii. Nuclear Magnetic resonance (NMR) analysis

Heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectra for extracted bio-oil sample were recorded on Bruker AVANCE 400MHz spectrometer. Bio-oil (60 mg) was dissolved deuterated chloroform (CDCl₃) 1 mL as solvent and tetramethylsilane (TMS) as reference. Chemical shifts were quoted as part per million (ppm) to 0.0 ppm for reference.

ix. Solid-state ¹³C NMR analysis

The technique was involved to study the functional groups in lignin. ¹³C NMR was done in Bruker Avance 400, Germany; at 10 kHz with a pulse program Cp, av and number of scans was 6214. The sample was vacuum dried before analysis.

x. Nitrogen sorption studies

Nitrogen sorption measurement was performed using a Coulter SA 3100 adsorption analyzer, giving adsorption/desorption isotherm, specific surface area and pore volume automatically. The Brunauer, Emmett and Teller (BET) equation was used to calculate the surface area, while the pore size was calculated from the adsorption branch of the isotherm using thermodynamic based Barret-Joyner-Halenda (BJH) method.

xi. Temperature programmed Desorption (TPD-NH₃) analysis

Ammonia-temperature-programmed desorption (NH₃-TPD) was measured on a setup (micromeritics instrument corporation AutoChem II 2920 Version 5.01), sample was loaded into U-shaped quartz micro reactor and pretreated at 400 °C for 0.5 h in He gas. After pretreatment, the sample was cooled down to 80 °C and saturated with NH₃ (30 cm³/min for 1 h and subsequently purged with He (60 cm³/min), for 2 h to remove the physisorbed ammonia. Finally, TPD was performed by heating the sample from 80 °C to 800 °C at a heating rate of 10 °C/min under He flow (50 cm³/min). The concentration of NH₃ in the exit gas was continuously detected by a gas chromatograph (SHIMADZU) with a thermal conductivity detector.

xii. Elemental analysis

The content of Carbon, Hydrogen, Nitrogen, and Sulfur elements in raw lignocellulose samples was determined by using a Vario EL elemental analyzer. The samples were first dried to remove moisture prior to analysis.

UV-Visible Spectroscopy

The UV-vis absorption spectrum was measured with a Shimadzu UV-2510 spectrophotometer in the region of 200 to 800 nm for alkaline lignin.

1.2. Supplementary figures

Fig. S1 FT-IR spectrum of α -HfP nanoplates.

Fig. S2 XPS spectra of Ru 3p (a) and P 2p (b) of Ru/ α -HfP nanocatalyst.

Fig. S3 N_2 adsorption-desorption isotherm and (inset) BJH pore-size distribution of Ru/α -HfP catalyst.

Fig. S4 TGA/DTG analysis of α -HfP sample.

Fig. S5 Schematic structural representation of α -HfP.

Fig. S6 ICP-MS analysis of catalyst elements.

Fig. S7 Plausible reaction route from lignin-derived monomer to hydrogenated cyclic-alcohols upon metal/acid bifunctional Ru/α -HfP catalyst.

Fig. S8 (a) SEM image (b) XRD pattern of recycled Ru/ α -HfP nanocatalyst.

Part 2: Substrate analysis

Substrate	Analyze time	C (%)	H (%)	N (%)	S (%)
Pine	1	47.33	6.25	0.62	0.14
	2	47.12	6.28	0.59	0.11
	Average	47.22	6.26	0.60	0.12
Poplar	1	48.54	6.28	0.23	0.01
	2	46.83	6.23	0.21	0.02
	Average	47.68	6.25	0.22	0.015
Walnut	1	47.23	6.61	1.48	0.10
	2	48.01	6.55	1.48	0.10
	Average	47.62	6.58	1.48	0.10
Miscanthus	1	43.22	5.18	0.24	0.00
	2	43.31	5.14	0.22	0.00
	Average	42.95	5.16	0.23	0.00
Birch	1	48.26	6.43	0.10	0.05
	2	48.14	6.33	0.08	0.03
	Average	48.2	6.38	0.09	0.04
Oak	1	44.32	5.32	0.05	0.02
	2	43.88	5.33	0.04	0.03
	Average	44.10	5.32	0.04	0.02
Lionin	1	50.95	-	0.30	3.69
alkaline	2	51.12	-	0.21	3.12
(commercial)	Average	51.04	-	0.25	3.41

Table S1 The contents of C, H, N, S in different lignocellulosic biomass

The elemental compositions of wood material are based on the multiple ways of combining the basic elements carbon, hydrogen and oxygen obtained from the air. The chemical composition varies among the tree parts (root, stem, or branch), with geographic location, with climate or with soil conditions.¹

Fig. S9 FTIR spectra of different untreated lignocellulosic biomass

Table S2. Absorption peaks detected and corresponding functional groups in lignocellulosic biomass

Wavenumber, cm ⁻¹	Functional groups
1031	C-O, C=C, C-C-O vibrational stretching
1043	C-O, C-C and C-OH stretching vibrations of cellulose,
	hemicellulose and lignin
1060	C-OH stretching vibration (cellulose -hemicelluloses)
1157	C-O-C ring vibrational stretching (glycosidic linkage)
1266	Syringyl ring breathing and C-O stretching (lignin)
1319	C-H in plane bending (cellulose)
1370	Aliphatic C-H stretching (methyl and phenol alcohol)
1427	Aromatic skeletal combined with C-H in plane
	deformation
1457	The aliphatic part (lignin)
1511	C=C stretching vibration of the aromatic ring (lignin)
1640	C=O stretching vibrations in conjugated carbonyl
1730	C=O stretching (hemicellulose)
2855, 2890, 2923	C-H stretching
3392, 3412 (broad)	-OH bond stretching vibration

		Woigh	t fraction	(wt%)b		Extractives		Moisture	
^a Biomass		weigh	it maction	(000)		Lightin		(wt%) ^c	(wt%)℃
	Glu	Xyl	Gal	Ara	Man	ASL	KL		
Pine	39.70	6.17	0.86	0.29	9.53	1.55	28.35	8.53	9.50
Poplar	43.32	16.44	-	-	0.57	1.14	22.30	3.82	8.51
Birch	39.05	20.11	0.71	1.13	1.71	4.72	23.25	2.91	6.65
Walnut	41.02	17.22	3.4	2.73	4.27	2.10	49.30	3.62	7.44
Oak	47.21	15.14	1.5	1.33	3.02	3.71	22.39	331	7.23
Miscanthus	37.81	18.44	1.03	2.24	0.1	2.81	21.10	3.11	6.52

Table S3 Detailed compositional analysis of different lignocellulosic biomass

^aScotch pine (Pinus sylvestris), Poplar (Populus), Birch (Betula), Walnut (Juglans regia), Oak (Quercus) and Grass (Miscanthus)

^bbased on dried extracted biomass

^cbased on wet biomass (Moisture analyzer: Halogen-HB43-S, Mettler-Tolledo instruments, Shanghai, China)

Abbreviations: Glu (glucose); Xyl (xylose); Gal (galactose); Ara (arabinose); Man (mannose); KL (Klason lignin); and ASL (acid-soluble lignin).

The detailed compositional analysis can be approached to ref.²

Fig. S10 Solid state ¹³C CP MAS NMR analysis of pine sawdust.

Chemical shift (ppm)	Assignment		
173	CO ₂ in acetyl groups of hemicelluloses		
153	G 4e		
148	G 3		
146	G4f		
136	G1e		
133	G1f		
120	G6		
116	G5		
112	G2		
105	C-1 of cellulose		
102	C-1 of hemicellulose		
89	C-4 of crystalline of cellulose		
84	C-4 of amorphous		
72-75	C-2/C-3/C-5 of cellulose		
65	C-6 of crystalline cellulose		
62	C-6 of amorphous cellulose		
56	$-OCH_3$ in lignin		
21	CH ₃ in acetyl groups of hemicellulose		
and the set of the set			

Table S4 Signal assignment for the ¹³C CPMAS NMR spectrum of pine sawdust

G= guaiacyl, e=etherified C-4, f=free phenolic C-4, Crs (crystal), amr (amorphous)

Fig. S11 Solid state ¹³C NMR of alkaline lignin.

Fig. S12 FTIR analysis of alkaline lignin.

Fig. S13 XRD pattern of lignin alkaline.

Fig. S14 UV-Vis absorption spectra of alkali lignin.

TCI		
	Specificatio	n
		Dec 31, 2018 (JST)
		TOKYO CHEMICAL INDUSTRY CO.,LTD. 4-10-1 Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023 Japan
Chemical Name: Lignin (Alkaline)		
Product Number: L0082	CAS RN: 8	068-05-1
Tests		Specifications
pH Methoxyl Group Ignition residue(Sulfate) Water	8.0 to 10.0 10.0 to 12 20.0 to 29 max. 10.0	(50g/L, 20 deg-C) 0 %(calcd on anh.substance) 0 %(calcd on anh.substance) %
The contents of the specifications are subject to chan product labels display a different specification, however	ge without advance notice. The specification value er, the product quality still meets the latest specific	s displayed here are the most up to date values. There may be cases where the ation.
Customer service: TCI EUROPE N.V. Tel: +32-3-735-0700 Fax: +32-3-735-0701 E-mail: Sales-EU@TCIchemicals.com	TCI Deutschland GmbH Tel: +49 6196 64053-00 Fax: +49 6196 64053-01 E-mail: Sales-DE@TCIchemicals.com	Tokyo Chemical Industry UK Ltd Tet: +44 1865 78 45 60 Fax: +44 1865 78 45 61 E-mail: Sales-UK@TCichemicals.com

Specifications file of commercially acquired lignin (TCI Chemicals Tokyo Chemical Industry UK Ltd.)³

Part 3: Product analysis

Product analysis

In literature, the product yields are typically based on the amount of acid insoluble lignin in lignocellulose depolymerization, also called Klason lignin. For the determination of the Klason lignin content of pine lignocellulose standard NREL method was adopted.² Initially, a suitable mass of lignocellulose samples were milled and sieved to particle size below <0.5 mm and then dried at 105 °C overnight before study. A soxtec extraction method was adopted initially to remove any extractives like fat, waxes, resins and terpenoids/steroids, which can manipulate the Klason lignin determination. The detailed composition of lignocellulose samples can be found in **Table S2**.

After the reductive fractionation reaction the aqueous phase mixture was subjected to threefold liquid-liquid extraction by using diethyl ether (DEE) as an extractant to separate the soluble sugar and lignin-derived products. Afterward, the extracted DEE phase was dried under reduced pressure in a rotary evaporator at 40 °C and the final obtained lignin-oil was used to determine the degree of delignification (based on Klason lignin weight). Preliminary, monomer identification was performed by (Thermo Fisher Scientific) gas chromatography equipped with ISQ mass spectrometry (GC-MS). The compounds were separated by using an ISQ HP-5 capillary column (30 m × 0.25 mm × 0.25 μ m). The detailed program was as follow: 1.0 μ L of the sample was injected into the GC at an inlet temperature of 280 °C and was operated in a split mode (split flow of 30 mL/min, split ratio = 50). Helium (99.99%) was used as a carrier gas with a constant flow rate of 1 mL/min. The temperature of the GC was held at 40 °C for 5 min, then increased at a rate 5 °C/min up to 280 °C, and held at this temperature for 5 min. The MS was used until the end of GC run with a solvent delay of 5.0 min. The ion source was maintained at temperature of 250 °C, and the MS was operated in scan mode. The instrument control and data processing were carried out using the installed Thermo Xcalibur 2.2 software to identify each appeared peak by National Institute of Standards and Technology library (NIST MS). All results were based on the average value of three reactions. Given the complexity of lignin monomer mixtures, whenever possible, we compared the GC retention time and GC-MS spectra of the lignin monomer mixture with authenticated standards. Quantification of liquid extracted product was performed by using GC-FID (Thermo Scientific TRACE 1300 GC), weighted amount of external standard (accetophenone) was added to the lignin-oil after which the content was completely re-solublized in 2 mL DEE. The products peak sequence in the GC-FID appears in the same orders as are those in GC-MS due to keeping same GC conditions and the use of a similar capillary column. The sensitivity factors of products were obtained by calibration with commercial standards or attained by ECN-based calculations,^{4,5} due to lack of commercial standards. The yield of monomer was calculated based on the peak area of monomer and peak area of external standard (accetophenone) in GC chromatogram. Calculations are based on the following equations:

Conversion (wt%) =
$$\frac{W_b - W_a}{W_b} \times 100\%$$

... ...

Whereas, W_b is the weight of feedstock before reaction, W_a is weight of solid residue after reaction.

Yield monomer (wt%) =
$$\frac{m_{product A}}{\left(m_{lignocellulose}\right) \times \left(wt\%_{Klason \ lignin}\right)} \times 100\%$$

In the above descriptions, $m_{product A}$ is the mass of product A, $m_{lignocellulose}$ is the mass of the initial lignocellulose substrate, wt%_{Klason lignin} is the weight percentage of Klason lignin in the feedstock lignocellulose.

Selctivity (%) =
$$\frac{\text{yield }_{monomer A}}{\sum \text{Yield }_{all monomers}} \times 100\%$$

After liquid-liquid organic phase separation by DEE, the remanant H_2O phase was analyzed to detect the sugar contents. Following standard NREL procedure,⁶ the sample was analyzed by HPLC (Hitachi-L 2130 pumps, a Shodex Sugar SH-1011 column (\emptyset 8 × 300 mm), using water as mobile phase at flow rate of 0.6 mL/min.

Table S5 Complete overview of GC-MS identified compounds in bio-oil obtained from depolymerisation of pine lignocellulose feedstock by using Ru/α -HfP catalyst

Entry	RTª (m	in) Identification	Formula	Match (%)
1	5.16	2-Methyl Cyclopentanone	C ₆ H ₁₀ O	45
2	6.2	2 methyl-2-cyclopentenone	C ₆ H ₈ O	53
3	7.06	3,3-Dimethyl-2-oxo butanal, hemihydrate	$C_6H_{10}O_2$	67
4	7.60	Phenol	C ₆ H ₆ O	85
5	8.18	3 methyl Cyclopentenedione	$C_6H_8O_2$	65
6	9.27	2-methoxyphenol	$C_7H_8O_2$	92
7	11.85	4-Propylphenol	$C_9H_{12}O$	81
8	12.14	4-ethyl-2-methoxyphenol	$C_9H_{12}O_2$	90
9	13.41	2-Methoxy-4-propylphenol	$C_{10}H_{14}O_2$	98
10	14.61	2-(Octadecyloxy)ethanol	$C_{20}H_{42}O_2$	48
11	15.26	2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)-	$C_{10}H_{12}O$	79
12	16.69	4-hydroxy-3-methoxy-Benzenepropanol	$C_{10}H_{14}O_3$	83
13	23.41	2-Methoxy-6-methylaniline	C₀H₁₁NO	66

^aRetention time

Reaction conditions: 1 g feedstock (pine), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

Entry	RT ^a (min)	Identification	Formula	Match (%)
1	6.22	Hydroperoxide, heptyl	$C_7H_{16}O_2$	20
2	7.31	2-ethylhexanol	C ₈ H ₁₈ O	40
3	-	unknown	-	-
4	7.76	1,4-dimethyl-2-octadecyl cyclohexane	$C_{26}H_{52}$	55
5	8.35	1,2-dimethylcyclohexane	C ₈ H ₁₆	45
6	8.70	2-ethylcyclohexyl ester hexanoic acid	$C_{14}H_{28}O_2$	35
7	9.23	1-cyclohexylbutan-1-ol	$C_{10}H_{20}O$	55
8	9.35	unknown	-	-
9	9.42	2-propylcyclohexanol	$C_9H_{18}O$	75
10	10.26	Cyclohexanepropanol	$C_9H_{18}O$	95
11	11.29	4-ethylcyclohexanol	C ₈ H ₁₆ O	90
12	11.33	2-decanol (2-hydroxy decane)	$C_{10}H_{22}O$	35
13	11.91	5-Methoxymethoxyhex-3-yn-2-ol	$C_8H_{12}O_2$	35
14	12.56	1-Penten-3-ol, 2-methyl-	$C_6H_{12}O$	33
15	13.17	1-Hepten-4-ol	C ₇ H ₁₄ O	28
16	13.39	unknown	-	-
17	13.43	2-methoxy-4-propylphenol	$C_{10}H_{14}O_2$	68
18	13.60	trans-1,4-Cyclohexanedicarboxylic acid dimethyl ester	$C_{10}H_{16}O_4$	35
19	14.03	2-Octanone, 1-nitro-	$C_8H_{15}NO_3$	40
20	14.32	Heptanal	C ₇ H ₁₄ O	45
21	14.39	2,4-bis(1,1-dimethylethyl)-5-methylphenol,	$C_{15}H_{24}O$	30
22	14.46	3-Hepten-1-ol, acetate	$C_9H_{16}O_2$	35
23	14.90	Unknown	-	-
24	15.21	1,2-dicyclohexylpropane	$C_{15}H_{28}$	38
25	17.57	unknown	-	-

 $\label{eq:second} \textbf{Table S6} \ \text{Complete overview of GC-MS} \ identified \ \text{compounds in bio-oil obtained from depolymerisation} \\ of \ \text{pine lignocellulose feedstock by using } Ru/\alpha-HfP \ \text{catalyst} \\ \end{array}$

^aRetention time

Reaction conditions: 1 g feedstock (pine), 0.2 g Ru/ α -HfP catalyst, 6 h, 190 °C, 3.5 MPa H₂.

E. t.	RT	1	F	Match
Entry	(min)	Identification	Formula	(%)
1	5.41	2-(1-Isopropoxyethoxy)propane	C ₈ H ₁₈ O	45.1
2	5.54	2-hydroxy-, 1-methylethyl ester propanoic acid,	$C_6H_{12}O_3$	62.3
3	6.00	Trans-2-methylcyclopentanol	C ₆ H ₁₂ O	52.9
4	6.43	2-butoxyethanol	$C_6H_{14}O_2$	76.2
5	7.06	1-methylhexyl Hydroperoxide,	$C_7 H_{16} O_2$	41.8
6	7.54	3-methyloxirane-2-carboxylic Acid	$C_4 H_6 O_3$	40.5
7	7.60	Carbamic acid, phenyl ester	C ₇ H ₇ NO ₂	43.1
8	7.60	3-methylpyridazine	$C_5H_6N_2$	35.2
9	8.22	3,6-octadecadiynoic acid, methyl ester	C ₁₉ H ₃₀ O ₂	44.6
10	8.40	3-thioxobutanoate benzyl	C11H12O2S	24.4
11	8.95	4-methoxyphenol	$C_7H_8O_2$	80.1
12	9.28	2-methoxyphenol	C ₇ H ₈ O ₂	83.4
13	10.55	2-methoxy-5-methylphenol	$C_8H_{10}O_2$	60.2
14	10.77	2-methoxy-6-methylphenol	C ₈ H ₁₀ O ₂	59.1
15	10.89	2-methoxy-4-methylphenol	C ₈ H ₁₀ O ₂	75.6
16	11.65	2.4-dimethyl-1.3-dioxolane-2-methanol	C ₆ H ₁₂ O ₃	35.4
17	12.12	4-ethyl-2-methoxyphenol	C ₀ H ₁₂ O ₂	82.7
18	12.56	2-methoxy-4-vinylphenol	C ₀ H ₁₀ O ₂	56.9
19	12.95	2.6-dimethoxyphenol	C ₀ H ₁₀ O ₂	63.2
20	13.21	4-formyl-2-methoxyphenyl acetate	C10H10O4	50.2
21	13.36	2-methoxy-4-propylphenol	C10H14O2	88.4
22	13.69	4-hydroxy-3-methoxybenzaldehyde	C.H.O.	92.2
23	13.77	1-phenyl-2-propanone	CoH100	66.3
24	14 26		-	-
25	14.39	4-allyl-2-methoxyphenol, acetate	C12H14O2	53.5
26	14.80	1-(4-Hydroxy-3-methoxyphenyl)ethanone	CoH10O2	76.5
27	15.00	3.4-dimethoxy-, methylmonoacetal benzaldehyde.	C10H14O4	73.3
28	15.11	4-hydroxy-3-methoxybenzyl alcohol, di(isopropyl) ether	C14H22O2	70.8
29	15.27	1-(4-hydroxy-3-methoxyphenyl)propan-2-one	C10H12O2	65.7
30	15.31	9-octadecen-12-vnoic acid, methyl ester	C10H22O2	34.3
31	15.36	2-methyldecane	C11H24	44.5
32	15.93	1-propanone, 1-(2-hydroxy-5-methoxyphenyl)-	C10H12Q	36.4
33	16.33	4-hydroxy-3-methoxy-, benzoic acid		48.8
34	16.79	4-(3-hydroxypropyl)-2-methoxyphenol	C10H14O2	44.6
35	16.90	3-methoxy-4-hydroxy-phenylacetic acid	CoH1004	39.6
36	17.11	2-isopropenyl-5.5-dimethyl-cyclohexanone	C11H10	19.4
37	17 32	2-cyclopropyl-2-methylspiro[2 2]pentane-1-carboxylic acid		32.9
38	17.55	Unknown	-	-
39	17.88	2.3.5.8-tetramethyldecane	C14Hao	34.8
40	18.12	N-(2-cvano-1-methylethyl)-4-nitro-benzenesulfonamide.		61.9
41	18 23	4 7-dimethyl-5-decyne-4 7-diol	C12H22O2	29.4
42	18.62	Unknown	-	
43	19.13	1-(1-Hydroxy-2.6.6-trimethyl-2.4-cyclohexadien-1-yl)ethanone	$C_{11}H_{12}O_{2}$	31.9
44	19 24	1-(4 5-Diethyl-2-methylcyclopenten-1-yl)ethanone	C12H200	173
45	20.19	N-hexadecanoic acid		45.6
46	22 19	Unknown	-	-
47	22 94	3.6-dinitro-4-cyclohexene-1.2-dicarboxylic acid	CoHoNaOo	35.2
48	23 40	3.5.7-cvcloheptatriene-1.3-dimethanol	$C_0H_{12}O_2$	41 5
40 49	25 17	Disooctyl phthalate	Ca4HaaO4	55.2
50	27.30	9-octadecenamide, (Z)-	C ₁₈ H ₃₅ NO	41.2

Table S7 Complete overview of GC-MS identified compounds in bio-oil obtained from depolymerisation of commercial lignin feedstock by using Ru/ α -HfP catalyst

^aRetention time

Reaction conditions: 0.4 g feedstock (alkali lignin), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

RT	Identification	Structure	Relative content (area%)
7.57	Phenol	OH	8.12
9.23	2-methoxyphenol	HO	0.64
12.15	4-ethyl-2-methoxyphenol,	↓ ^o	0.71
12.95	2,6-dimethoxyphenol	OH OH	0.24
13.37	2-methoxy-4-propylphenol,	A state of the	18.02
13.89	2-methoxy-4-(1-propenyl)-phenol,	OH C C C C	0.51
14.38	2-methoxy-4-(1-propenyl)-, (Z)-phenol,	OH O	3.97
15.29	2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)-		2.18
15.91	1-Propanone, 1-(2-hydroxy-5-methoxyphenyl)-		0.52
16.31	2,6-dimethoxy-4-propylphenol,		23.29
17.29	2,6-dimethoxy-4-(2-propenyl)-phenol,		3.97
18.04	2,6-dimethyl-4-nitrophenol,		0.68
18.61	1-(4-hydroxy-3,5-dimethoxyphenyl) ethanone,		0.94

Table S8 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Poplar feedstock by using Ru/ α -HfP catalyst (Fig. S17 for corresponding gas chromatogram)

area%: the relative contents in percentage calculated with area normalization method. Reaction conditions: 1 g feedstock (Poplar), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

RTª	Identification	Structure	Relative content (area%)
13.37	2-methoxy-4-propylphenol	OH C C C	0.88
14.39	2-methoxy-4-(1-propenyl)-phenol,	OH O	1.13
15.25	1-(4-hydroxy-3-methoxyphenyl)-2-propanone	OH O O	0.8
15.90	1-(2-hydroxy-5-methoxyphenyl)-1-propanone	OH C	0.24
16.30	2,6-dimethoxy-4-propylphenol	OH OH OH	41.35
16.74	2,6-dimethoxy-4-(2-propenyl)-phenol,		1.02
17.30	(E)-2,6-Dimethoxy-4-(prop-1-en-1-yl)phenol	OH OH OH	29.91
17.94	2,6-dimethyl-4-nitrophenol,	HO HO ON ^t O.	0.99

Table S9 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Oak feedstock by using Ru/ α -HfP catalyst (Fig. S17 for corresponding gas chromatogram)

area%: the relative contents in percentage calculated with area normalization method. ^aRetention time

Reaction conditions: 1 g feedstock (Oak), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

RTª	Identification	Structure	Relative content (area%)
9.24	2-methoxyphenol	HO OH	0.21
12.12	4-ethyl-2-methoxyphenol		0.10
13.37	2-methoxy-4-propylphenol		35.33
13.86	2-methoxy-4-(1-propenyl)-phenol,	OH OH	31.65
14.36	2-methoxy-4-(1-propenyl)-, (Z)-phenol		0.29
16.29	2,6-dimethoxy-4-propylphenol	OH OH	4.7

Table S10 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Birch feedstockby using Ru/ α -HfP catalyst (Fig. S17 for corresponding gas chromatogram)

area%: the relative contents in percentage calculated with area normalization method. ^aRetention time

Reaction conditions: 1 g feedstock (Birch), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

RTª	Identification	Structure	Relative content (area%)
12.99	2,6-dimethoxyphenol,	OH OH OH	0.26
13.42	2-methoxy-4-propylphenol,		30.42
13.86	2-methoxy-4-(1-propenyl)-phenol,		0.07
14.42	2-methoxy-4-(1-propenyl)-, (Z)-phenol,	OH O	4.23
15.31	1-(4-hydroxy-3-methoxyphenyl)-2-propanone,	OH O	0.43
15.96	1-(2-hydroxy-5-methoxyphenyl)-1-propanone,	ОН	0.03
16.34	2,6-dimethoxy-4-propylphenol,		32.67
17.33	(E)-2,6-Dimethoxy-4-(prop-1-en-1-yl)phenol	OH	4.95

Table S11 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Walnut feedstock by using Ru/ α -HfP catalyst (Fig. S17 for corresponding gas chromatogram)

area%: the relative contents in percentage calculated with area normalization method. aRetention time

Reaction conditions: 1 g feedstock (Walnut), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

RTª	Identification	Structure	Relative content (area%)
12.12	4-ethyl-2-methoxyphenol,	OH O	1.48
14.39	2-methoxy-4-(1-propenyl) phenol,	OH OH	1.12
13.38	2-methoxy-4-propyl phenol,	OH C	44.99
16.29	2,6-dimethoxy-4-propyl-phenol,	OH C	1.86

Table S12 GC-MS identification, peak area contribution of monomers in bio-oil fractionated from Miscanthus feedstock by using Ru/α -HfP catalyst (Fig. S17 for corresponding gas chromatogram)

area%: the relative contents in percentage calculated with area normalization method. ^aRetention time

Reaction conditions: 1 g feedstock (Miscanthus), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

	Feedstock	Lignin	Yield monomer	Selectivity	Yield dihydroeugenol		Reaction conditions	Def
Catalyst system		wt%	wt% lignin	S _{dihydroeugenol} %	wt% lignin	wt% wood	(solvent, temp. P _{H2})	Ket.
Ru/a-HfP	Softwood Pine (<i>Pinus</i> sylvesteris)	28.3ª	19.86	83	18.54	5.2	Water, 190 °C, 3.5 MPa, 3 h	This work
Ru/C , LiTaMoO ₆ , H ₃ PO ₄	Pine	26.5ª	21.2	31	6.5	1.4	Water, 230 °C, 6 MPa, 24 h	7
Ru/C	Pine /Spruce	27 ª	20.5 ^d	80	16.3	4.4	Methanol, 250 °C, 3 MPa, 3 h	8
Rh/C, нсі	Spruce (Picea glauca)	27.3ª	-	-	13.4 ^e	3.7	HCl, dioxane, water	9
Pd/C, ZnCl ₂	Pine (Pinus concorta) Hardwood	31 ^b	19	100	19.0	5.9	Methanol, 250 °C, 5 MPa, 12 h	10
Rh/C, H ₃ PO ₄	Birch (<i>Betula</i> platyphylla)	19ª	45.5	22	9.9	1.9	dioxane, water	11
Ru/C	Poplar	21.2ª	43.9 ^d	29	12.8	2.7	Methanol, 250 °C, 3 MPa, 3 h	9
Ru/C	Birch (betula pendula)	19.1ª	51.4 ^d	20	10.3	2.0	Methanol, 250 °C, 3 MPa, 3 h	12
Pd/C, ZnCl ₂	Poplar	19 ^c	54	45	24.3	4.6	Methanol, 250 °C, 5 MPa, 12 h	10
	Grasses							
Ru/C , LiTaMoO ₆ , H ₃ PO ₄	Wheat straw	20.2ª	39.0	17	6.7	1.4	Water, 230 °C, 6 MPa, 24 h	7
Ru/C	Miscanthus	24.3ª	26.8	24	6.3	1.5	Methanol, 250 °C, 3 MPa, 3 h	9
Ni/C	Miscanthus	13	67.0	33	22	2.9	Methanol, 225 °C, 3.5 MPa, 12 h	13
MoS ₂	Corn stover	18.15°	18.67	20.3	3.39	-	Methanol, 250 °C, 5 MPa, 2h	14

Table S13 Literature yields comparison of dihydroeugenol as product by using reductive fractionation using metalacid catalyst unless indicated otherwise

^aKlason lignin method, ^bAcetyl bromide-soluble lignin (ABSL) analysis, ^cKraft pulping, ^dexpressed as carbon yield, ^ereported as percentage of Klason lignin

Entry	Catalyst system	Feedstock	Reaction condition (solvent, temp. P _{H2} , t)	Monomer yield Wt% lignin	Ref.
1 ^a	Ru/α-HfP	Alkaline lignin	Isopropanol, 190 °C, 3.5 MPa, 3 h	27.97	This study
2	Ru/Al_2O_3	Kraft lignin	Water, 450 °C, 10 MPa, 4 h	22	15
3	Ru/TiO₂	Organosolv lignin	Water, 400 °C, 10 MPa, 4 h	22.1	16
4 ^b	Ru∕C- HTaMoO ₆	Kraft lignin	Dioxane/water,320 °C, 2 MPa, 2 h	8.2	17
5	Ru/C, MgO/ZrO	Kraft lignin	Ethanol, 350 °C, 3 MPa, 1 h	4.52	18
6	Ru/C, Al₂O₃/ZrO	Kraft lignin	Ethanol, 350 °C, 3 MPa, 1 h	6.10	18
7	Pt/Al_2O_3	Kraft lignin	Water, 450 °C, 10 MPa, 4 h	29.8	15
9	PtMgAlOx	Protobind alkali lignin	Ethanol, 300 °C, 1 MPa, 4 h	6	16
8 ^c	Ru/C	Kraft lignin	Water, 450 °C, 10 MPa,4 h	27.30	15
10 ^d	TiO ₂	Protobind alkali lignin	Ethanol, 340 °C, 1 MPa, 1 h	9	19
11 ^e	Ru	Organosolv lignin	Water, 130 °C, 1 MPa, 12 h	1.50	20
12 ^f	Ru/Ni	Organosolv lignin	Water, 130 °C, 1 MPa, 12 h	6.8	20

Table S14 Literature yields comparison of aromatic monomers derived from technical lignin by using metal-acidcatalyst unless indicated otherwise

^a acid-supported, ^bacid co-cat., ^cnon-acid support, ^dnon-supported, ^esingle metal, ^f bi-metalic

Fig. S16 FTIR spectra of feedstock lignocellulose (pine and solid residue) before and after Ru/α -HfP reductive fractionation.

Fig. S17 Gas chromatograms and peak identification of monomers in bio-oil derived from different lignocellulose by Ru/α -HfP catalyst.

Reaction conditions: 1 g feedstock, 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

Fig. S18 FTIR spectrum of bio-oil from alkaline lignin depolymerisation by Ru/ α -HfP NPs.

Fig. S19 FTIR spectra of alkaline lignin before and after depolymerisation by using Ru/ α -HfP NPs.

Fig. S20 Gas chromatographic comparison of liquid phase products of comparative experiments with bare α -HfP and without any catalyst.

Reaction conditions: 0.4 g of lignin, initial 3.5 MPa of H_2 , 40 mL of isopropanol, 190 °C, 3 h.

Fig. S21 The post-processing flowchart of catalytic reductive fractionation of lignocellulose with Ru/α -HfP catalyst.

Fig. S22a Mass spectrogram of major monomeric products from pine sawdust.

Reaction conditions: 1 g feedstock (pine), 0.2 g Ru/ α -HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂.

S33

Fig. S22b Mass spectrogram of major monomeric products from pine sawdust.

Reaction conditions: 1 g feedstock (pine), 0.2 g Ru/ α -HfP catalyst, 6 h, 190 °C, 3.5 MPa H₂.

Fig. S23 Mass spectrogram of major monomeric products from technical lignin.

Reaction conditions: 0.4 g lignin, 0.2 g Ru/α-HfP catalyst, 3 h, 190 °C, 3.5 MPa H₂, Isopropanol (solvent).

Reference

- 1 R. C. Pettersen, *Advances in Chemistry; American Chemical Society*: Washington, DC, 1984, 57– 126.
- 2 X. Huang, J. Zhu, T. I. Korányi, M. D. Boot and E. J. M. Hensen, *ChemSusChem*, 2016, **9**, 3261.
- 3 https://www.tcichemicals.com/eshop/en/gb/commodity/L0082/
- 4 J. T. Scanlon and D. E. Willis, *J. Chromatogr. Sci.*, 1985, **23**, 333–340.
- 5 L. A. Colón and L. J. Baird, *Modern Practice of Gas Chromatography*, John Wiley & Sons, Inc., 2004, 275-337.
- 6 A. Sluiter, B. Hames, R. O. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. of Energy, *Tech. Rep. NREL/TP-510-42618*, 2011, 1–15.
- 7 Y. Liu, L. Chen, T. Wang, Q. Zhang, C. Wang, J. Yan and L. Ma, *ACS Sustainable Chem. Eng.*, 2015, **3**, 1745-1755.
- 8 S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S.-F. Koelewijn, T. Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M. Courtin, B. Lagrain, W. Boerjan and B. F. Sels., *Energy Environ. Sci.*, 2015, **8**, 1748-1763.
- 9 J. M. Pepper and P. Supathna, *Can. J. Chem.*, 1978, **56** (7), 899-902.
- 10 T. Parsell, S. Yohe, J. Degenstein, T. Jarrell, I. Klein, E. Gencer, B. Hewetson, M. Hurt, J. I. Kim, H. Choudhari, B. Saha, R. Meilan, N. Mosier, F. Ribeiro, W. N. Delgass, C. Chapple, H. I. Kenttämaa, R. Agrawal and M. M. Abu-Omar, *Green Chem.*, 2015, **17**, 1492-1499.
- 11 N. Yan, C. Zhao, P. J. Dyson, C. Wang, L.-T. Liu and Y. Kou, *ChemSusChem*, 2008, **1**, 626-629.
- 12 S. Van den Bosch, W. Schutyser, S.-F. Koelewijn, T. Renders, C. M. Courtin and B. F. Sels, *Chem. Commun.*, 2015, **51**, 13158-13161.
- 13 H. Luo, I. M. Klein, Y. Jiang, H. Zhu, B. Liu, H. I. Kenttämaa, and M. M. Abu-Omar, *ACS Sustainable Chem*. Eng., 2016, **4**, 2316-2322.
- 14 S. Li, W. Li, Q. Zhang, R. Shu, H. Wang, H. Xin and L. Ma, *RSC Adv.*, 2018, **8**, 1361–1370.
- 15 I. Hita, P. J. Deuss, G. Bonura, F. Frusteri and H. J. Heeres, *Fuel Process. Technol.*, 2018, **179**, 143– 153.
- 16 A. Kloekhorst and H. J. Heeres, *ACS Sustain. Chem. Eng.*, 2015, **3**, 1905–1914.
- 17 L. Jin, W. Li, Q. Liu, J. Wang, Y. Zhu, Z. Xu, X. Wei and Q. Zhang, *Fuel Process. Technol.*, 2018, **178**, 62–70.
- 18 S. O. Limarta, J. M. Ha, Y. K. Park, H. Lee, D. J. Suh and J. Jae, J. Ind. Eng. Chem., 2018, 57, 45–54.
- 19 X. Huang, T. I. Korµnyi, M. D. Boot and E. J. M. Hensen, *ChemSusChem.*, 2014, **7**, 2276–2288.
- 20 J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura and N. Yan, ACS Catal., 2014, 4, 1574–1583.