Supporting Information

Production of 5α -androstene-3, 17-dione from phytosterols by coexpression of 5α -reductase and glucose-6-phosphate dehydrogenase in engineered *Mycobacterium neoaurum*

Yunqiu Zhao¹, Yanbing Shen¹*, Sai Ma¹, Jianmei Luo¹, Ouyang Wei¹, Haijie Zhou¹, Rui Tang², Min Wang*

¹ Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.

* Corresponding Author

Tel.: +86 22 60601256

Fax: +86 22 60602298

E-mail: minw@tust.edu.cn; shenyb@tust.edu.cn

Supplement materials

Supplementary Table 1A. Strains used in this study.

Supplementary Table 1B. Plasmids and primers used in this study.

Supplementary Table 2. ¹H and ¹³C data of the purified product.

Supplementary Fig. 1A. Gene cloning and construction of the recombinant plasmid pMV261- $5\alpha_{T.\ denticola}$ for 5α -reductase production in *E. coli* DH 5α , identification of recombinant plasmids. The length of 5α -reductase from *T. denticola* is 774 bp. The length of pMV261 is 4488 bp. M, DL5000 marker; lane 1-2, the amplified 5α -reductase gene by PCR; Lane 3-4, the recombinant plasmid pMV261- 5α digested by *Bam*H *I/Hind* III.

Supplementary Fig. 1B. Gene cloning and construction of the recombinant plasmid pMV261- 5α - $G62_{M.\ neoaurum}$ for G6PDH2 production in *E. coli* DH 5α , identification of recombinant plasmids. The length of G6PDH2 is 1521 bp. The length of recombinant plasmid pMV261- 5α is 5262 bp. M, DL5000 marker; lane 5-6, the amplified G6PDH2 gene by PCR; lane 7-8, the recombinant plasmid pMV261- 5α - $G6PDH2_{M.\ neoaurum}$ digested by *Hin*d III.

Supplementary Fig. 2. Lineweaver-Burk plot of 5α-reductase.

Supplementary Fig. 3. TLC results of biotransformation of PS and AD by *MNR* $M3 \Delta ks dd/261$ and *MNR* $M3 \Delta ks dd/261-5\alpha_{T. denticola}$.

Lane 1, standards of PS (purple), 5α -AD (yellow), AD (green). Lane 2-3, biotransformation of PS and AD respectively by *MNR* M3 Δ *ksdd*/261; lane 4-5,

biotransformation of PS and AD respectively by MNR M3Δksdd/261-5α.

Supplementary Fig. 4. GC-MS analysis of standard 5α-AD (up) and purified product (down).

Supplementary Fig. 5A. ¹H-NMR spectrum of the purified product.

Supplementary Fig. 5B. ¹³C-NMR spectrum of the purified product.

Supplementary Fig. 6A. HMBC spectrum of the purified product.

Supplementary Fig. 6B. HSQC spectrum of the purified product.

Supplementary Fig. 6C. ¹H-¹H COSY spectrum of the purified product.

Supplementary Fig. 6D. ¹H-¹H NOESY spectrum of the purified product.

Name	Description	Sources	
Strains			
<i>Escherichia coli</i> DH 5α	E. coli cloning host	Transgen Biotech	
Mycobacterium neoaurum	Source of G6PDH gene	This lab	
Saccharomyces cerevisiae	Source of G6PDH gene	This lab	
$MNR M3 \Delta ksdd$	ksdd-deletion mutant of MNR M3	This lab	
MNR M3 \(\Lap\)ksdd/261	<i>MNR</i> M3 Δ <i>ksdd</i> electro-transformed with	This study	
	pMV261 as control		
MNR M3 Δ ksdd/261-5 α_{Rat}	<i>MNR</i> M3 Δ <i>ksdd</i> expressing 5 α -reductase	This study	
	gene from Rat		
MNR M3 Δ ksdd/261-5 $\alpha_{T.}$	<i>MNR</i> M3 Δ <i>ksdd</i> expressing 5 α -reductase	This study	
denticola	gene from T. denticola		
MNR M3 $\Delta ksdd/261-5\alpha-G62_{S.}$	<i>MNR</i> M3 Δ <i>ksdd</i> expressing 5 α -reductase from	This study	
cerevisiae	T. denticola and G6PDH from S. cerevisiae		
<i>MNR</i> M3 Δ ksdd/261-5 α -	<i>ksdd</i> /261-5 α - <i>MNR</i> M3 Δ <i>ksdd</i> expressing 5 α -reductase from This		
G62 _{M.} neoaurum	T. denticola and G6PDH from M. neoaurum		

Supplementary Table 1A. Strains used in this study.

Name	Description Sources				
Plasmids					
pUC57-5α	The codon-optimized 5α -reductase gene	GENEWIZ			
	delivered by pUC57, Amp ^R	Biotechnology Co., Ltd			
pMV261	Shuttle vector of Mycobacterium and E. coli,	Dr. W. R. Jacobs Jr. for			
	Phsp60, Kan ^R	providing pMV261			
pMV261-5 α_{Rat}	pMV261 containing 5α-reductase gene from	This study			
	Rat, Kan ^R				
pMV261-5a _{T. denticola}	pMV261 containing 5α-reductase gene from	This study			
	<i>T. denticola</i> , Kan ^R				
pMV261-G6PDH	pMV261 containing G6PDH gene, Kan ^R	This study			
pMV261-5α-G62 _{S. cerevisiae}	pMV261 containing 5α-reductase from <i>T. denticola</i>	This study			
	and G6PDH from <i>S. cerevisiae</i> , Kan ^R				
pMV261-5α-G62 _{M. neoaurum}	pMV261 containing 5α-reductase from <i>T. denticola</i>	This study			
	and G6PDH from <i>M. neoaurum</i> , Kan ^R				
Primers 5'-3'					
P1	CGC <u>GGATCC</u> ATGGAGCGGCTCATCTTCATCT	ГС (<i>Bam</i> H I)			
P2	CCC <u>AAGCTT</u> TCAGAAAATGAACGGGAAGACG	GC (<i>Hin</i> d III)			
P3	CCG <u>GAATTC</u> ATGAGCACAGCCGAGGCAT (<i>Eco</i> R I)				
P4	AACAAGCTTTCACGGCCGCCGCCACTC (Hind III)				
P5	CCCAAGCTTTAAGTAGCGGGGGTTGCCGTCACC (Hind III)				
P6	AACAAGCTTTCACGGCCGCCGCCACTC (Hind	III)			

Supplementary Table 1B. Plasmids and primers used in this study.

Notes: Amp^R ampicillin-resistant, Kan^R kanamycin-resistant, the restriction enzyme

sites were underlined.

Supplementary Fig. 1A. Gene cloning and construction of the recombinant plasmid pMV261- $5\alpha_{T.\ denticola}$ for 5α -reductase production in *E. coli* DH 5α , identification of recombinant plasmids. The length of 5α -reductase from *T. denticola* is 774 bp. The length of pMV261 is 4488 bp. M, DL5000 marker; lane 1-2, the amplified 5α -reductase gene by PCR; Lane 3-4, the recombinant plasmid pMV261- 5α digested by *Bam*H *I/Hind* III.

Supplementary Fig. 1B. Gene cloning and construction of the recombinant plasmid pMV261- 5α - $G62_{M.\ neoaurum}$ for G6PDH2 production in *E. coli* DH 5α , identification of recombinant plasmids. The length of G6PDH2 is 1521 bp. The length of recombinant plasmid pMV261- 5α is 5262 bp. M, DL5000 marker; lane 5-6, the amplified G6PDH2 gene by PCR; lane 7-8, the recombinant plasmid pMV261- 5α - $G6PDH2_{M.\ neoaurum}$ digested by *Hind* III.

Supplementary Fig. 2. Lineweaver-Burk plot of 5α-reductase.

Supplementary Fig. 3. TLC results of biotransformation of PS and AD by *MNR* $M3 \Delta ks dd/261$ and *MNR* $M3 \Delta ks dd/261-5\alpha_{T. denticola}$.

Lane 1, standards of PS (purple), 5α -AD (yellow), AD (green). Lane 2-3, biotransformation of PS and AD respectively by *MNR* M3 Δ *ksdd*/261; lane 4-5, biotransformation of PS and AD respectively by *MNR* M3 Δ *ksdd*/261-5 α .

x10 5 +EI Scan (rt: 16.229-16.330, 16.853-16.910 min, 49 scans) 5AD.D

Supplementary Fig. 4. GC-MS analysis of standard 5α-AD (up) and purified product

(down).

Supplementary Fig. 5A. ¹H-NMR spectrum of the purified product.

Supplementary Fig. 5B. ¹³C-NMR spectrum of the purified product.

	_^^ M	umit r	_AMAM	~_~~~_		mhan		lhn		
				- 1-			୍କରାପାଦାର କରସାପରାଖ୍ୟ ।		*0.01.05	
	0 - 41		e9 + 1	ю			2.0		1.14	
		7 x					and the second		• 00 52	
	4-0 03-	8 1 - 9 2 1	· #	-1 -31	100.000		*x× 00€2x 10.2 Åt - 0.0 0.0	8	125 + 0 88	
	-65 73 62 69	*0 22 F	·	a 1 1; Harto,	1.4 P	1. 05 ····	- 10 - 0.50 50++0	6	00 00	
								440		
1										

Supplementary Fig. 6A. HMBC spectrum of the purified product.

Supplementary Fig. 6B. HSQC spectrum of the purified product.

Supplementary Fig. 6C. ¹H-¹H COSY spectrum of the purified product.

Supplementary Fig. 6D. ¹H-¹H NOESY spectrum of the purified product.

Carbon No	¹³ C	$^{1}\mathrm{H}$
	(ð, ppm)	(δ, ppm)
1	38.55	1.95, 1.82
2	38.17	2.43, 2.28
3	211.67	_
4	44.69	2.35, 2.06
5	46.71	1.43
6	28.73	1.72, 1.41
7	31.60	1.62, 1.40
8	35.07	1.33
9	51.35	0.80
10	35.92	_
11	20.82	1.55, 1.26
12	30.64	1.52, 1.28
13	47.83	_
14	54.00	1.02
15	21.89	2.06, 1.85
16	35.92	2.10, 2.42
17	220.99	_
18	13.91	0.89
19	11.56	1.04

Supplementary Table 2. ¹H and ¹³C data of the purified product.