Supporting Information

Lignin oxidation by MnO₂ under the irradiation of blue light

Jinhuo Dai,^{aş} Antonio F. Patti,^{a*} Gavin N. Styles,^{aş} Sepa Nanayakkara,^a Leone Spiccia,^a† Francesco Arena,^b Cristina Italiano,^c Kei Saito^{a*}

9 Pages, 14 Figures, 3 Tables

^{a.} School of Chemistry, Monash University, Wellington Rd., Clayton, 3800, Victoria, Australia

^{b.} Dipartimento di Ingegneria Elettronica, Chimica e Ingegneria Industriale, Università degli Studi di Messina, I-98166 Messina, Italy

^{c.} CNR Institute of Advanced Technology for Energy "Nicola Giordano", Via Salita S. Lucia 5, 98126 Messina, Italy

[§] These authors contributed equally to this research work

Corresponding authors email: email: tony.patti@monash.edu, tel: +61(0)399051620, email:

kei.saito@moansh.edu, tel: +61(0)399054600

Fig. S1. ¹H-NMR of 1-phenylethanol under the irradiation of blue light with standard condition (Table 2 Entry 4, 98% conversion)

Fig. S2. (a): GC chromatogram of oxidation of 1-phenylethanol under the standard condition; (b) Mass spectra of acetophenone with the retention time of 9.131 min (98% conversion); (c) Mass spectra of unreacted 1-phenylethanol with the retention time of 5.439 min

Fig. S3. ¹H-NMR of 1-phenylethanol under the irradiation of UV light (365 nm), with 5 mmol MnO₂ (Table 2, Entry 2, 26%)

Fig. S4. ¹H-NMR of lignin model 1 under the irradiation of blue light with standard condition (94% conversion)

Fig. S5. ¹H-NMR of lignin model 2 under the irradiation of blue light with standard condition (95%)

The conversion of lignin model 2 was based on the ratio of the signal form proton at the position "e" before to after oxidaiton. The signal of this proton shifted after oxidaiton.

Fig. S6. ¹H-NMR of lignin model 3 under the irradiation of blue light with standard condition (94% conversion)

The conversion of lignin model 3 was based on the ratio of the signal form proton at the position "e" before to after oxidaiton. The signal of this proton shifted after oxidaiton.

Entry	Table 1	Table 2	Table 3	Table 4	Table 5
1	58%	97%	75%	27%	76%
2	60%	26%	29%	0%	19%
3	75%	75%	37%	73%	67%
4	13%	98%	26%	67%	10%
5	97%	51%	-	97%	-
6	97%	25%	-	0%	-
7	-	97%	-	94%	-
8	-	-	-	95%	-
9	-	-	_	94%	_

Table S1: Conversions of all the screening reaciton on model compounds.

Fig. S7. XRD of recycled δ -MnO₂ after reactive in the furnace at the temperature of 475°C for 4 hours The XRD of recycled δ -MnO₂ showed it's still δ -MnO₂.

Fig. S8. TGA spectrum of recovered δ -MnO₂.

Fig. S9. HSQC-NMR of native kraft lignin

Fig. S10. HSQC-NMR of native alkali lignin

Fig. S11. HSQC-NMR of native organosolv lignin

Table S2 Integrations of three native lignin structure

	Kraft lignin	Alkali lignin	Organosolv lignin
G2	721.87	427.73	61.90
G'2	0	0	0
G'6	0	0	0
S2,6	0	17.43	100
S'2,6	1.29	0.93	2.53
H2,6	8.32	3.82	5.32
G _{total} =G2+G'2+G'6-H2,6	713.55	423.91	56.58
S _{total} =(S2,6+S'2,6)/2	0.645	9.18	51.265
H _{total} =H2,6	8.32	3.82	5.32
Total= G _{total} + S _{total+} H _{total}	722.515	436.91	113.165
Αα	88.51	98.16	27.77
Percentage of β- <i>O</i> -4	12.25%	23.16%	24.54%
linkage= Aα/Total x 100			

Table S3 Analysis of three native lignin structu
--

	Kraft lignin	Alkali lignin	Organosolv lignin
S/G/H units ratio	0.1% / 99.3% / 0.6%	2% / 97% / 1%	44%/53%/3%
β-0-4*	12.25%	23.16%	24.54%
	Oxidized Kraft lignin	Oxidized Alkali lignin	Oxidized Organosolv lignin
β- <i>O</i> -4*	1%	3%	2%
* per aromatic circle			

Fig. S12. Structure of three basic units in lignin

Fig. S13. GC-MS spectrum of ethyl acetate soluble fraction from depolymerised organosolv lignin

Fig. S14. Optical microscope imgage of MnO₂