Electronic supplementary information (ESI)

Eco-friendly acetylcholine-carboxylate bio-ionic liquids for controllable *N*methylation and *N*-formylation using ambient CO₂ at low temperatures

Wenfeng Zhao ^a, Xiaoping Chi ^b, Hu Li ^{a,*}, Jian He ^a, Jingxuan Long ^a, Yufei Xu ^a, Song Yang ^{a,*}

^{*a*} State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China

^b Beijing National Laboratory of Molecular Science, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding authors: E-mails: jhzx.msm@gmail.com (SY); hli13@gzu.edu.cn (HL) Tel: (+86)851 88292171; Fax: (+86)851 88292170

Table of contents:

Figure S1 Theoretically calculated/simulated diagram of CC-AA catalyst.

Figure S2 ¹H NMR spectra of ionic liquid catalysts: acetylcholine formate (ACH-FA), acetylcholine acetate (ACH-AA), acetylcholine propionate (ACH-PA) and acetylcholine valerate (ACH-VA) with d_6 -DMSO as deuterated solvent

Figure S3 ¹³C NMR spectra of ionic liquid catalysts: acetylcholine formate (ACH-FA), acetylcholine acetate (ACH-AA), acetylcholine propionate (ACH-PA), and acetylcholine valerate (ACH-VA) with d_6 -DMSO as deuterated solvent

Figure S4 ¹H NMR spectra of ionic liquid catalysts: thyltrimethylammonium (ETA-AA), choline (CH-AA) and chlormequat (CC-AA) acetate with d_6 -DMSO as deuterated solvent

Figure S5 ¹³C NMR spectra of ionic liquid catalysts: thyltrimethylammonium (ETA-AA), choline (CH-AA) and chlormequat (CC-AA) acetate with d_6 -DMSO as deuterated solvent

Table S1 Effect of solvent species on catalytic performance of methylation of N- methylaniline using CO_2

Figure S6 Images for the reaction mixture treated by adding water after the reaction for isolating the used ACH-AA IL

Figure S7 Catalyst recycling study. Reaction conditions: 0.25 mmol *N*-methylaniline, 6% mol ACH-AA, 0.75 mmol PhSiH₃, 2 mL CH₃CN, 1.0 bar CO₂, 50 °C and 6 h. Recycling process: the extracted ionic liquid mixed with water, and activated carbon was added; the resulting slurry was stirred (200 rpm) at room temperature for 24 h, and the activated carbon was subsequently separated by filtration.

Figure S8 The FT-IR spectra of reused and fresh catalysts

Figure S9 ¹H NMR spectra of PhSiH₃ (A) and its mixture with ACH-AA (B) (Solvent: CD₃CN, 25 °C)

Figure S10 ¹H NMR spectra of silvl formate formed from PhSiH₃, ACH-AA and 1 bar CO₂ in CD₃CN under 50 °C for 6 h

Figure S11 ¹H NMR spectra of the mixture of *N*-methylaniline and ACH-AA (A), and *N*-methylaniline (B) (Solvent: CD₃CN, 25 °C)

Figure S12 ¹H NMR spectra of *N*-methylaniline (A), PhSiH₃ (B) and their mixture (C) (Solvent: CD₃CN, 25 °C)

Figure S13 ¹H NMR spectra of *N*-methylaniline (A), its mixture of PhSiH₃ under room condition in CD₃CN (B), and standard reaction in the absence of $CO_2(C)$.

Figure S14 Representative GC-MS spectra for producing *N*, *N*-dimethylaniline and *N*-methylformylaniline from *N*-methylaniline using different H-donors under standard reaction conditions: (A) and (B) with PhSiH₃ in CD₃CN; (C) and (D) with Ph₂SiD₂ in CD₃CN.

Figure S15 The reaction energy profiles (in kcal/mol) for the hydrosilylation of N-methylformanilidewithorwithoutCC-AA.

Figure S1 Calculated/simulated representative atomic diagram of CC-AA catalyst. Fairly strong hydrogen-bond interaction between anion and cation of the bio-IL CC-AA was observed.

Figure S2 ¹H NMR spectra of ionic liquid catalysts: acetylcholine formate (ACH-FA), acetylcholine acetate (ACH-AA), acetylcholine propionate (ACH-PA) and acetylcholine valerate (ACH-VA) with d_6 -DMSO as deuterated solvent.

Figure S3 ¹³C NMR spectra of ionic liquid catalysts: acetylcholine formate (ACH-FA), acetylcholine acetate (ACH-AA), acetylcholine propionate (ACH-PA), and acetylcholine valerate (ACH-VA) with d₆-DMSO as deuterated solvent

Figure S4 ¹H NMR spectra of ionic liquid catalysts: thyltrimethylammonium (ETA-AA), choline (CH-AA) and chlormequat (CC-AA) acetate with d_6 -DMSO as deuterated solvent

Figure S5 13 C NMR spectra of ionic liquid catalysts: thyltrimethylammonium (ETA-AA), choline (CH-AA) and chlormequat (CC-AA) acetate with d₆-DMSO as deuterated solvent

	H + Co 1a	D ₂ + PhSiH ₃ <u>50 °C,6</u> Cat.	$h \rightarrow 1b$	
Entry	Solvent	Conv. (1a, %)	Yield (1b, %)	Yield (1c, %)
1	CH ₃ CN	100	96	2
2	DMF	98	86	11
3	EtOH	0	0	0
4	EA	53	38	3
5	THF	76	65	2
6	<i>n</i> -hexane	0	0	0
7	Solvent-free	85	24	45

Table S1 Effect of solvent species on catalytic performance of methylation of N-methylaniline using CO2

Reaction conditions: 0.25 mmol **1a**, 0.75 mmol PhSiH₃, 6 mol% ACH-AA, 2.0 mL solvent, 1 bar CO_2 , 50 °C and 6 h. Conversion of **1a**, and yield of **1b** and **1c** were determined by GC using naphthalene as internal standard.

Figure S6 Images of the reaction mixture treated by adding wate and diethyl ether after the reaction for isolating the used ACH-AA IL

Figure S7 Catalyst recycling study. Reaction conditions: 0.25 mmol *N*-methylaniline, 6% mol ACH-AA, 0.75 mmol PhSiH₃, 2 mL CH₃CN, 1.0 bar CO₂, 50 °C and 6 h. Recycling process: the extracted ionic liquid mixed with water, and activated carbon was added; the resulting slurry was stirred (200 rpm) at room temperature for 24 h, and the activated carbon was subsequently separated by filtration.

Figure S8 The FT-IR spectra of reused and fresh ACH-AA catalysts

Figure S9 ¹H NMR spectra of PhSiH₃ (A) and its mixture with ACH-AA (B) (Solvent: CD₃CN, 25 °C)

Figure S10 ¹H NMR spectra of silvl formate formed from PhSiH₃, ACH-AA and 1 bar CO_2 in CD₃CN under 50 °C for 6 h

Figure S11 ¹H NMR spectra of the mixture of *N*-methylaniline and ACH-AA (A), and *N*-methylaniline (B) (Solvent: CD₃CN, 25 °C)

Figure S12 ¹H NMR spectra of *N*-methylaniline (A), PhSiH₃ (B) and their mixture (C) (Solvent: CD₃CN, 25 °C)

Figure S13 ¹H NMR spectra of *N*-methylaniline (A), its mixture of PhSiH₃ under room condition in CD₃CN (B), and standard reaction in the absence of CO_2 (C).

Figure S14 Representative GC-MS spectra for producing *N*, *N*-dimethylaniline and *N*-methylformylaniline from *N*-methylaniline using different H-donors under standard reaction conditions: (A) and (B) with PhSiH₃ in CD₃CN; (C) and (D) with Ph₂SiD₂ in CD₃CN.

Figure S15 The reaction energy profiles (in kcal/mol) for the hydrosilylation of *N*-methylformanilide with or without CC-AA.