An environmentally benign multi-component reaction: Regioselective synthesis of fluorinated 2-aminopyridines using diverse properties of nitro group

Xuan-Xuan Du, Quan-Xing Zi, Yu-Meng Wu, Yi Jin,* Jun Lin* and Sheng-Jiao Yan*

Supporting Information

Table of Contents

X-ray Structure and Data of 4a & 5s	S4
Figure S1. X-Ray crystal structure of 4a.	S4
Table S1. Crystal data and structure refinement for 4a	S4
Figure S2. X-Ray crystal structure of 5s.	S5
Table S2. Crystal data and structure refinement for 5s	S5
Figure S3. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4a	S6
Figure S4. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4a	S7
Figure S5. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4b	S8
Figure S6. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 4b	S9
Figure S7. ¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 4b	S10
Figure S8. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4c	S11
Figure S9. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4c	S12
Figure S10. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4d	S13
Figure S11. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4d	S14
Figure S12. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4e	S15
Figure S13. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4e	S16
Figure S14. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4f	S17
Figure S15. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4f	S18
Figure S16. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4g	S19
Figure S17. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4g	S20
Figure S18. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 4h	S21
Figure S19. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4h	S22
Figure S20. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4i	S23

Figure S21. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4i	S24
Figure S22. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4j	S25
Figure S23. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 4j	S26
Figure S24. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4k	S27
Figure S25. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4k	S28
Figure S26. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 41	S29
Figure S27. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 41	S30
Figure S28. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4m	S31
Figure S29. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4m	
Figure S30. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4n	S33
Figure S31. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4n	S34
Figure S32. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 40	S35
Figure S33. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 40	S36
Figure S34. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4p	S37
Figure S35. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound $4p$	S38
Figure S36. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4q	S39
Figure S37. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4q	S40
Figure S38. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5a	S41
Figure S39. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5a	S42
Figure S40. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5b	S43
Figure S41. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5b	S44
Figure S42. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 5c	S45
Figure S43. ¹³ C NMR (150 MHz, $CDCl_3$) spectra of compound 5c	S46
Figure S44. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5d	S47
Figure S45. ¹³ C NMR (125MHz, DMSO- d_6) spectra of compound 5d	S48
Figure S46. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5e	S49
Figure S47. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5e	S50
Figure S48. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 5f	S51
Figure S49. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 5f	S52
Figure S50. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 5g	S53
Figure S51. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 5g	S54
Figure S52. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5h	S55
Figure S53. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5h	S56
Figure S54. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5i	S57
Figure S55. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5i	S58
Figure S56. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 5j	S59
Figure S57. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 5j	S60
Figure S58. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 5k	S61
Figure S59. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 5k	S62
	S2

Figure S60. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 51	S63
Figure S61. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 51	S64
Figure S62. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5m	S65
Figure S63. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 5m	S66
Figure S64. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5n	S67
Figure S65. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 5n	S68
Figure S66. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 50	S69
Figure S67. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 50	S70
Figure S68. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5p	S71
Figure S69. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 5p	
Figure S70. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5q	
Figure S71. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 5q	S74
Figure S72. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 5r	S75
Figure S73. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 5r	S76
Figure S74. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5s	S77
Figure S75. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 5s	S78
Figure S76. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5t	S79
Figure S77. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5t	S80
Figure S78. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5u	
Figure S79. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5u	S82
Figure S80. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5v	S83
Figure S81. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5v	S84
Figure S82. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5w	S85
Figure S83. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5w	S86
Figure S84. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5x	S87
Figure S85. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5x	S88
Figure S86. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5f'	S89
Figure S87. ¹³ C NMR (150MHz, DMSO- d_6) spectra of compound 5f'	S90
Figure S88. HPLC of the reaction mixture	S 91
Figure S89. HRMS of intermediate 11	
Figure S90. HRMS of intermediate 12/13	
Figure S91. HRMS of compound 4h	S94
Figure S92. HRMS of compound 5h	S95

X-ray Structure and Data of 4a & 5s

Figure S1. X-Ray crystal structure of 4a; ellipsoids are drawn at the 30% probability level.

Identification code	1
Empirical formula	$C_{21}H_{14}F_5N_3O_4$
Formula weight	467.35
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 8.2387(14) A alpha = $78.884(2) deg$.
	b = 9.1226(15) A beta = 77.335(2) deg.
	c = 15.647(3) A gamma = $63.875(2) deg.$
Volume	1023.9(3) A^3
Z, Calculated density	2, 1.516 Mg/m^3
Absorption coefficient	0.136 mm^-1
F(000)	476
Crystal size	0.300 x 0.250 x 0.230 mm
Theta range for data collection	2.502 to 24.995 deg.
Limiting indices	-9<=h<=9, -10<=k<=10, -18<=l<=18
Reflections collected / unique	7987 / 3571 [R(int) = 0.0226]
Completeness to theta $= 25.242$	96.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.969 and 0.960
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3571 / 0 / 300
Goodness-of-fit on F^2	1.094
Final R indices [I>2sigma(I)]	R1 = 0.0501, wR2 = 0.1497
R indices (all data)	R1 = 0.0658, wR2 = 0.1619
Extinction coefficient	0.023(5)
Largest diff. peak and hole	0.432 and -0.275eA^-3

Table S1. Crystal data and structure refinement for 4a

Figure S2. X-Ray crystal structure of 5s; ellipsoids are drawn at the 30% probability level.

Identification code	1
Empirical formula	$C_{23}H_{19}F_5N_2O_2$
Formula weight	450.40
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P -1
Unit cell dimensions	a = 8.6308(16) A alpha = $78.895(2) deg.$
	b = 9.4049(18) A beta = 81.887(2) deg.
	c = 13.955(3) A gamma = 74.726(2) deg.
Volume	1067.4(3) A^3
Z, Calculated density	2, 1.401 Mg/m^3
Absorption coefficient	0.120 mm^-1
F(000)	464
Crystal size	0.350 x 0.300 x 0.200 mm
Theta range for data collection	1.494 to 25.150 deg.
Limiting indices	-10<=h<=10, -11<=k<=11, -16<=l<=16
Reflections collected / unique	8534 / 3809 [R(int) = 0.0261]
Completeness to theta = 25.242	98.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.976 and 0.959
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3809 / 0 / 290
Goodness-of-fit on F^2	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0512, wR2 = 0.1386
R indices (all data)	R1 = 0.0861, wR2 = 0.1679
Extinction coefficient	n/a
Largest diff. peak and hole	0.383 and -0.235 e.A^-3

Table S2. Crystal data and structure refinement for 5s

Symmetry transformations used to generate equivalent atoms:

Figure S3. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4a

Figure S5. ¹H NMR (600 MHz, CDCl₃) spectra of compound 4b

Figure S7. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 4b

Figure S8. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4c**

DEPT135

Figure S10. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 4d

Figure S11. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4d

Figure S12. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4e

Figure S13. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound **4e**

Figure S14. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **4f**

Figure S15. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4f

Figure S16. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4g

Figure S17. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **4g**

Figure S18. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4h

Figure S20. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4i

Figure S21. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4i

Figure S22. ¹H NMR (600 MHz, CDCl₃) spectra of compound 4j

Figure S24. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4k

DEPT135

Figure S25. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4k

Figure S26. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4**

Figure S28. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4m

DEPT135

Figure S30. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 4n

Figure S31. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4n

Figure S32. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 40

Figure S33. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 40

Figure S34. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4p

Figure S35. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4p

Figure S36. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 4q

Figure S37. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4q

Figure S38. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5a

Figure S39. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **5a**

Figure S40. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **5b**

Figure S42. ¹H NMR (600 MHz, CDCl₃) spectra of compound 5c

Figure S43. ¹³C NMR (150 MHz, CDCl₃) spectra of compound **5**c

DEPT135

Figure S44. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5d

Figure S45. ¹³C NMR (125MHz, DMSO-*d*₆) spectra of compound 5d

Figure S46. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **5e**

Figure S47. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound **5e**

Figure S48. ¹H NMR (600 MHz, CDCl₃) spectra of compound 5f

Figure S49. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 5f

DEPT135

Figure S50. ¹H NMR (500 MHz, CDCl₃) spectra of compound 5g

Figure S52. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5h

Figure S54. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **5**i

Figure S55. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5i

Figure S56. ¹H NMR (500 MHz, CDCl₃) spectra of compound 5j

Figure S57. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 5j

Figure S58. ¹H NMR (600 MHz, CDCl₃) spectra of compound 5k

Figure S59. ¹³C NMR (150 MHz, CDCl₃) spectra of compound **5**k

Figure S60. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 51

Figure S61. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 51

Figure S62. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 5m

Figure S63. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5m

Figure S64. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5n

Figure S65. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5n

Figure S66. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 50

Figure S67. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 50

Figure S68. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5p

Figure S69. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound **5p**

Figure S70. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5q

Figure S71. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5q

DEPT135

Figure S74. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5s

Figure S75. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5s

Figure S76. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **5t**

Figure S77. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **5t**

Figure S78. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 5u

Figure S79. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5u

Figure S80. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **5v**

Figure S81. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **5v**

Figure S82. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **5w**

S85

Figure S83. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 5w

S86

Figure S84. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **5**x

Figure S85. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound **5**x

DEPT135

Figure S86. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5f'

DEPT135

S90

Figure S88. HPLC of the reaction mixture

Figure S89. HRMS of intermediate 11

Figure S90. HRMS of intermediate 12/13

Figure S92. HRMS of compound 5h