Supporting Information

One-step preparation of phosphate-rich carbonaceous spheres based on hydrothermal process for phosphopeptides analysis

Haiyang Zhang^{a, b}, Xiaowei Li^{a, c}, Shujuan Ma^{a, b}, Junjie Ou^{a, c}*, Yinmao

Wei^{b,}*,Mingliang Ye^{a, c}

^a Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
^b Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China

^c University of Chinese Academy of Sciences, Beijing, 100049, China

To whom correspondence should be addressed:

(J.J. Ou) Tel: +86-411-84379576. Fax: +86-411-84379620. E-mail:

junjieou@dicp.ac.cn.

(Y.M. Wei) Tel: +86-29- 81535026. Fax: +86-29- 81535026. E-mail: ymwei@nwu.edu.cn.

Adsorption Experiment

Pyridoxal 5'-phosphate was firstly dissolved in 30% ACN (vt%) to form solutions. Then 5 mg of Ti⁴⁺-IMAC carbonaceous spheres were applied in 1 mL of pyridoxal 5'phosphate solution at room temperature with oscillation for a certain time. After centrifugation, the supernatant was determined by UV-is adsorption spectroscopy at the wavelength of 291 nm. The adsorption capacity was calculated by the following equation: $Q_e = V(C_0-C_e)/m$, where Q_e is the equilibrium adsorption capacity, C_0 and C_e are the initial and equilibrium concentrations, respectively, V is the volume of pyridoxal 5'-phosphate solution, and m is the weight of the added Ti⁴⁺-IMAC carbonaceous spheres

Figure S1. The SEM images of carbonaceous spheres prepared with different contents of glucose. (a, b) $G_5P_3N_0$, (c, d) $G_{15}P_3N_0$ and (e, f) $G_{20}P_3N_0$.

Figure S2. The SEM images of carbonaceous spheres $G_{10}P_0N_0$.

Figure S3. The SEM images of carbonaceous spheres prepared with different weight ratios of VPA to glucose. (a, b) $G_{10}P_1N_0$, (c, d) $G_{10}P_5N_0$ and (e, f) $G_{10}P_{10}N_0$.

Figure S4. The SEM images of carbonaceous spheres prepared with different weight ratios of VPA to glucose. (a, b) $G_{10}P_1N_1$ and (c, d) $G_{10}P_5N_1$.

Figure S5. The SEM images of carbonaceous spheres prepared with different contents of initiator. (a, b) $G_{10}P_3N_5$ and (c, d) $G_{10}P_3N_{10}$.

Figure S6. Full XPS spectrum of $G_{10}P_3N_0$ @Ti⁴⁺.

Figure S7. Water contact angle of carbonaceous sphere $G_{10}P_0N_0$.

Figure S8. Thermal gravimetric analysis of carbonaceous spheres (a) $G_{10}P_1N_0$, (b) $G_{10}P_3N_0$ and (c) $G_{10}P_3N_0@Ti^{4+}$. Heating rate, 10 °C/min in air. Residues: (a) 1.40%, (b) 3.79% and (c) 5.70%.

Figure S9. MADLI-TOF MS analysis of tryptic digest of β -casein. (a) Direct analysis without any enrichment; analysis of (b) 100 fmol, (c) 10 fmol and (d) 5 fmol tryptic digest of β -casein after enrichment by Ti⁴⁺-IMAC carbonaceous spheres. The asterisk (*) indicates phosphopeptides, and (#) indicates dephosphorylated peptides.

Figure S10. MADLI-TOF MS analysis of β -casein and BSA digests after enrichment by Ti⁴⁺-IMAC carbonaceous spheres at the molar ratios of (a) 500/1 and (b) 1000/1. The asterisk (*) indicates phosphopeptides, and (#) indicates dephosphorylated peptides.

No.	Peptide sequence	Observed m/z
HS_1	D[pS]GEGDFLAEGGGV	1389
HS_2	AD[pS]GEGDFLAEGGGV	1460
HS_3	D[pS]GEGDFLAEGGGVR	1545
HS_4	AD[pS]GEGDFLAEGGGVR	1616

Table S1. List of phosphopeptides from diluted human serum after enriched by Ti⁴⁺-IMAC carbonaceous spheres in MALDI-TOF MS analysis.