Supporting Information

Ionic Liquid Catalysed Aerobic Oxidative Amidation and Thioamidation of Benzylic Amines under Neat Conditions

Abhisek Joshi, Rahul Kumar, Rashmi Semwal, Deepa Rawat, and Subbarayappa Adimurthy*

Academy of Scientific & Innovative Research, CSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002. Gujarat (INDIA)

e-mail: adimurthy@csmcri.res.in

Table of Contents

S. No		Page number
1	Experimental Section & general procedure	S2
2	Characterization data	S2-S11
3	¹ H & ¹³ C- NMR Spectra of all products	S12-S49
4	HRMS of TEMPO adduct	S50
5	EPR spectra	\$50

EXPERIMENTAL SECTION

General. All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. ¹H and ¹³C NMR spectra were recorded at 600 and 150 MHz, respectively. The spectra were recorded in CDCl₃ and DMSO-d6 as solvent. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and so forth, and coupling constants (J) are given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peaks around delta values of ¹H NMR (7.26) and ¹³C NMR (77.0) correspond to the deuterated solvent chloroform (water peak at 1.5 ppm) and ¹H NMR (2.50) and ¹³C NMR (39.50) correspond to the deuterated solvent DMSO (water peak at 3.3 ppm), respectively. Mass spectra were obtained using the electron impact (EI) ionization method. Progress of the reactions was monitored by thin layer chromatography (TLC). All products were purified through column chromatography using silica gel with 100–200 mesh size using hexane/ethyl acetate as eluent unless otherwise indicated.

General procedure for 2a

A clean washed boiling tube equipped with a magnetic stir bar was charged with benzylamine **1a** (107.0 mg, 1.0 mmol), tetrabutylammonium hydroxide TBAOH ionic liquid (40% TBAOH+ 60% water) (100 μ L, 0.15 mmol), the above mixture was stirred for 12h at 70°C temperature in open atmosphere. After completion of the reaction, the mixture was purified through column chromatography using silica gel (30% EtOAc/hexane) to obtain benzamide **2a** in 95 % yield (107.0 mg)

Charecterisation data:

benzamide (2a)¹:

Yield (107 mg, 95% yield, white solid), eluent: 30% ethylacetate/hexane; ¹H H_2 NMR (600 MHz, DMSO-d6) δ 7.99 (s, 1H), 7.87 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.38 (s, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.99, 134.28, 131.29, 128.27, 127.51.

4-methylbenzamide (2b)¹

Yield (113.0 mg, 84% yield, white solid), eluent: 40% ethylacetate/hexane; NH_2 ¹H NMR (600 MHz, DMSO-d6) δ 7.90 (s, 1H), 7.77 (d, J = 7.9 Hz, 2H), 7.25 (t, J = 9.1 Hz, 3H), 2.34 (s, 3H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.88, 141.12, 131.48, 128.77, 127.54, 20.98.

4-methoxybenzamide (2c)¹

NH2 Yield (113.0 mg, 75% yield, white solid **NH2**), eluent: 40% ethylacetate/hexane); ¹H NMR (600 MHz, DMSO-d6) δ **MeO** 7.86 (d, J = 8.3 Hz, 3H), 7.21 (s, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.60, 161.65, 129.43, 126.52, 113.44, 55.34.

4-fluorobenzamide $(2d)^1$

Yield (112.0 mg, 80% yield, white solid), eluent: 30% ethylacetate/hexane; H_2 ¹H NMR (600 MHz, DMSO-d6) δ 8.04 (s, 1H), 7.97 – 7.93 (m, 2H), 7.43 (s, 1H), 7.27 – 7.24 (m, 2H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.08, 164.89, 163.24, 130.81 (d, J = 2.1 Hz), 130.25 (d, J = 9.3 Hz), 115.29, 115.15.

4-chlorobenzamide (2e)¹

Yield (110.0 mg, 71% yield, white solid), eluent: 30% NH_2 ethylacetate/hexane; ¹H NMR (600 MHz, DMSO-d6) δ 8.08 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.49 (s, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 166.96, 136.17, 133.05, 129.46, 128.37.

4-nitrobenzamide (2f)²

DMSO-d6) δ 166.24, 149.05, 139.99, 128.92, 123.44.

4-(trifluoromethyl)benzamide (2g)¹

Yield (88.0 mg, 43% yield, white solid), eluent: 43% ethylacetate/hexane; ¹H NMR (600 MHz, DMSO-d6) δ 7.28 (s, 1H), 7.13 (d, J = 8.1 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.71 (s, 1H). ¹³C NMR (150

MHz, DMSO-d6) δ 166.88, 138.15, 131.40, 131.19, 128.42, 125.33 (d, J = 3.4 Hz), 124.94, 123.14.

2-methylbenzamide (2h)²

Yield (120.0 mg, 89% yield, white solid), eluent: 30% ethylacetate/hexane; $^{\text{NH}_2}$ ^{1}H NMR (600 MHz, DMSO-d6) δ 7.70 (s, 1H), 7.35 (d, J = 7.4 Hz, 2H), 7.30 (td, J = 7.5, 1.3 Hz, 1H), 7.21 (dd, J = 13.5, 7.2 Hz, 2H), 2.36 (s, 3H). ^{13}C NMR (150 MHz, DMSO-d6) δ 171.17, 137.07, 135.16, 130.51, 129.24, 127.05, 125.46, 19.62.

2-fluorobenzamide (2i)¹

F O Yield (118.0 mg, 85% yield, white solid), eluent: 40% ethylacetate/hexane; ¹H NH₂ NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 1H), 7.28 (s, 1H), 7.01 (t, J = 8.1 Hz, 1H), 6.62 (t, J = 7.5 Hz, 1H), 6.53 (d, J = 8.3 Hz, 1H), 5.94 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 167.17, 157.77, 133.28, 132.41, 121.12, 120.76, 111.29.

2-methoxybenzamide (2j)²

OME O Yield (80.0 mg, 53% yield, white solid), eluent: 40% ethylacetate/hexane; ¹H **NMR** (600 MHz, DMSO-d6) δ 7.82 – 7.79 (m, 1H), 7.65 (s, 1H), 7.52 (s, 1H), 7.47 (dd, J = 11.4, 4.7 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (150 MHz, DMSO-d6) δ 166.43, 157.29, 132.56, 130.79, 122.68, 120.46, 112.01, 55.84.

2-chlorobenzamide (2k)¹

Yield (78.0 mg, 50% yield, white solid), eluent: 30% ethylacetate/hexane; ¹H NH₂ NMR (600 MHz, DMSO-d6) δ 7.88 (s, 1H), 7.59 (s, 1H), 7.49 – 7.46 (m, 1H), 7.42 (ddd, J = 15.2, 7.5, 1.6 Hz, 2H), 7.37 (td, J = 7.4, 1.0 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 168.28, 137.14, 130.62, 129.65, 128.70, 127.07.

3-chlorobenzamide (2l)²

Yield (100.0 mg, 64% yield, white solid), eluent: 40% ethylacetate/hexane; ¹H MH₂ NMR (600 MHz, DMSO-d6) δ 8.13 (s, 1H), 7.91 (t, J = 1.8 Hz, 1H), 7.85 –

7.82 (m, 1H), 7.57 – 7.53 (m, 2H), 7.46 (t, J = 7.9 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 166.82, 136.35, 133.35, 131.25, 130.37, 127.48, 126.31.

3-methoxybenzamide (2m)¹

Yield (125.0 mg, 83% yield, white solid), eluent: 40% ethylacetate/hexane; ¹H NH₂ NMR (600 MHz, DMSO-d6) δ 7.97 (s, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.42 (s, 1H), 7.39 – 7.33 (m, 2H), 7.07 (dd, J = 8.0, 1.8 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.72, 159.16, 135.73, 129.38, 119.72, 117.11, 112.65, 55.25.

2-nitrobenzamide (2n)³

NO₂ O Yield (66.4 mg, 40% yield, yellow solid), eluent: 50% ethylacetate/hexane; NH₂ ¹H NMR (600 MHz, DMSO-d6) δ 8.17 (d, J = 7.7 Hz, 1H), 7.99 (dd, J = 8.1, 0.8 Hz, 1H), 7.76 (td, J = 7.5, 1.1 Hz, 1H), 7.70 (s, 1H), 7.67 (td, J = 7.9, 1.4 Hz, 1H), 7.62 (dd, J = 7.6, 1.3 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.41, 147.30, 133.51, 132.65, 130.78, 128.95, 124.08.

Isophthalamide (20)⁴

Yield (140.0 mg, 85% yield, white solid); ¹H NMR (600 MHz, DMSO-d6) δ NH₂ NH

Terephthalamide (2p)⁴

O
NH2Yield (155.8 mg, 95% yield, white solid); ¹H NMR (600 MHz, DMSO-
d6) δ 8.08 (s, 2H), 7.93 (s, 4H), 7.50 (s, 2H). ¹³C NMR (150 MHz,
DMSO-d6) δ 167.31, 136.58, 127.38, 126.68.

pyrene-1-carboxamide (2q)⁵

Yield (120.0)49% yield, yellow solid). eluent: 40% mg, ethylacetate/hexane; ¹H NMR (600 MHz, DMSO-d6) δ 8.62 (d, J = 9.2 Hz, 1H), 8.35 – 8.30 (m, 3H), 8.25 (dd, J = 12.3, 9.1 Hz, 3H), 8.22 – 8.17 (m, 2H), 8.10 (t, J = 7.6 Hz, 1H), 7.80 (s, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 171.15, 131.78 (d, J = 18.7 Hz), 130.81, 130.28, 128.38, 128.14, 127.86, 127.31, 126.67, 125.89, 125.69, 125.37, 124.92, 124.50, 123.95, 123.76.

Picolinamide (2r)¹

Yield (88.0 mg, 72% yield, white solid), eluent: 30% ethylacetate/hexane; ¹H 0 NMR (600 MHz, DMSO-d6) δ 8.61 (d, J = 4.4 Hz, 1H), 8.14 (s, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.97 (t, J = 7.9 Hz, 1H), 7.66 (s, 1H), 7.57 (dd, J = 6.9, 5.2 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 166.24, 150.30, 148.56, 137.76, 126.58, 122.02.

Nicotinamide $(2s)^2$

Yield (91.0 mg, 74% yield, white solid, eluent: ethylacetate; ¹H NMR (600 0 MHz, DMSO-d6) δ 9.04 (s, 1H), 8.68 (d, J = 3.7 Hz, 1H), 8.21 (d, J = 7.7 Hz, 2H), 7.64 (s, 1H), 7.47 (dd, J = 7.4, 5.1 Hz, 1H). ¹³C NMR (150 MHz, DMSO-

d6) δ 166.82, 152.04, 148.79, 135.37, 129.80, 123.60.

furan-2-carboxamide (2t)¹

Yield (89.0 mg, 80% yield, white solid), eluent: 50% ethylacetate/hexane; ¹H **NH**₂ NMR (600 MHz, DMSO-d6) δ 7.80 (s, 1H), 7.77 (d, J = 0.9 Hz, 1H), 7.39 (s, 1H), 7.10 (d, J = 3.4 Hz, 1H), 6.58 (dd, J = 3.4, 1.7 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 159.76, 148.09, 145.21, 113.95, 112.00.

thiophene-2-carboxamide $(2u)^2$

Yield (90.0 mg, 71% yield, white solid), eluent: 40% ethylacetate/hexane; ¹H ^{NH}₂ NMR (600 MHz, DMSO-d6) δ 7.97 (s, 1H), 7.74 (d, J = 3.4 Hz, 1H), 7.72 (d, J

= 4.9 Hz, 1H), 7.39 (s, 1H), 7.18 – 7.07 (m, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 162.92, 140.31, 130.99, 128.69, 127.90.

N-benzylbenzothioamide (3a)⁶

S Yield (80.0 mg, 70 % yield, yellow solid), eluent: 10% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 3H), 7.47 – 7.43 (m, 1H), 7.41 – 7.34 (m, 7H), 5.00 (d, J = 5.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 199.14, 141.60, 136.15, 131.14, 129.01, 128.50, 128.35, 128.22, 126.66, 51.06.

4-methyl-N-(4-methylbenzyl)benzothioamide (3b)⁶

S Yield (100.0 mg, 79 % yield, yellow solid), eluent: 5% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 7.84 (s, 1H), 7.64 (d, J = 7.5 Hz, 2H), 7.25 (d, J = 7.4 Hz, 2H), 7.17 (d, J = 7.0 Hz, 2H), 7.13 (d, J = 7.5 Hz, 2H), 4.90 (d, J = 4.5 Hz, 2H), 2.35 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 198.43, 141.47, 137.69, 133.12, 129.43, 128.89, 128.13, 126.58, 50.49, 21.16, 21.00.

3-methoxy-N-(3-methoxybenzyl)benzothioamide (3c)⁶

4-methoxy-N-(4-methoxybenzyl)benzothioamide (3d)⁶

Yield (120.0 mg, 83 % yield, yellow solid), eluent: 10% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H),

6.85 (d, J = 8.3 Hz, 2H), 6.78 (d, J = 8.9 Hz, 2H), 4.86 (d, J = 5.4 Hz, 2H), 3.76 (s, 3H), 3.76

(s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 197.32, 161.91, 159.14, 133.53, 129.49, 128.42, 128.29, 114.04, 113.32, 55.24, 55.10, 50.11.

2-chloro-N-(2-chlorobenzyl)benzothioamide (3e)⁶

CI S **CI** Yield (70.0 mg, 58 % yield, yellow solid), eluent: 10% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (s, 1H), 7.56 (dd, J = 8.7, 4.8 Hz, 2H), 7.44 – 7.40 (m, 1H), 7.34 (dd, J = 10.2, 3.4 Hz, 1H), 7.31 – 7.27 (m, 4H), 5.11 (d, J = 5.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 197.42, 141.74, 134.11, 133.23, 131.28, 130.43, 130.05, 129.95, 129.73, 129.72, 128.51, 127.20, 126.99, 48.16.

3-chloro-N-(3-chlorobenzyl)benzothioamide (3f)⁷

4-chloro-N-(4-chlorobenzyl)benzothioamide (3g)⁷

Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 197.79, 139.56, 137.46, 134.48, 134.02, 129.59, 129.08, 128.60, 128.01, 49.99.

2-fluoro-N-(2-fluorobenzyl)benzothioamide (3h)⁶

F S F Yield (68.3 mg, 52 % yield, yellow solid), eluent: 10% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 8.14 (t, J = 8.1 Hz, 1H), 7.47 (dd, J = 8.0, 6.5 Hz, 1H), 7.40 (td, J = 6.5, 4.1 Hz, 1H), 7.33 (td, J = 7.9, 1.8 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 9.2 Hz, 1H), 7.06 (dd, J = 11.9, 8.3 Hz, 1H), 5.11 (d, J = 5.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 193.60, 161.96, 160.32, 158.52, 156.87, 133.54, 132.46 (d, J = 8.9 Hz), 130.77 (d, J = 3.9 Hz), 130.00 (d, J = 8.4 Hz), 127.80, 124.58, 124.43 (d, J = 3.1 Hz), 122.88, 115.97, 115.75 (d, J = 18.9 Hz), 115.55, 44.84.

4-fluoro-N-(4-fluorobenzyl)benzothioamide (3i)⁷

(dt, J = 21.8, 8.4 Hz, 4H), 4.93 (d, J = 5.3 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 197.65, 165.31, 163.63, 163.26, 161.62, 137.50, 131.85, 130.04 (d, J = 7.8 Hz), 128.88 (d, J = 8.8 Hz), 115.87, 115.73, 115.43, 115.29, 50.04.

4-(trifluoromethyl)-N-(4-(trifluoromethyl)benzyl)benzothioamide (3j)⁷

Yield (120.7 mg, 66 % yield, yellow solid), 10% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 7.80 (d, J = 5.8 Hz, 2H), 7.62 (dd, J = 15.9, 7.6 Hz, 4H),

7.49 (t, J = 8.6 Hz, 2H), 5.07 (d, J = 4.1 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 198.22, 144.37, 139.88, 128.41, 127.07, 125.90, 125.54, 49.99.

N-(pyridin-2-ylmethyl)pyridine-2-carbothioamide (3k)⁶

S Yield (40.0 mg, 35 % yield, yellow solid), eluent: 10% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 11.21 (s, 1H), 8.72 (d, J = 7.9 Hz, 1H), 8.66 (d, J = 4.7 Hz, 1H), 8.58 (d, J = 4.6 Hz, 1H), 7.84 (t, J = 7.4 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 5.1 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.29 – 7.20 (m, 1H), 5.15 (d, J = 4.9 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 191.01, 155.06, 151.44, 149.48, 147.38, 137.21, 136.94, 126.09, 124.87, 122.73, 122.34, 50.56.

N-(thiophen-2-ylmethyl)thiophene-2-carbothioamide (31)⁸

S Yield (90.0 mg, 75 % yield, yellow solid), eluent: 10% ethylacetate/hexane; NH ¹H NMR (600 MHz, CDCl₃) δ 7.73 (s, 1H), 7.48 (d, J = 4.2 Hz, 1H), 7.41 (d, J S = 3.7 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.11 (s, 1H), 7.06 – 6.97 (m, 2H), 5.14 (d, J J = 4.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 188.14, 146.15, 138.09, 132.43, 127.79, 127.42, 127.00, 126.01, 124.65, 44.69.

benzophenone (5a)9

Yield (147.0 mg, 81 % yield, white solid), eluent: 2% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 196.65, 137.50, 132.33, 129.97, 128.19.

phenyl(pyridin-2-yl)methanone (5b)⁹

Yield (137.2 mg, 81 % yield, white solid), 5% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, J = 4.3 Hz, 1H), 8.07 (d, J = 7.7 Hz, 2H), 8.03 (d, J = 7.8 Hz, 1H), 7.88 (t, J = 7.7 Hz, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.47 (dd, J = 14.2, 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.71, 154.92, 148.40, 136.91, 136.12, 132.77, 130.83, 128.01, 126.03, 124.45.

benzil (5c)⁹

Yield (69.0 mg, 33 % yield, yellow solid), eluent: 1% ethylacetate/hexane; ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H). ¹³C NMR (150

MHz, CDCl₃) δ 194.55, 134.86, 132.93, 129.85, 128.98.

9H-fluoren-9-one (5d)⁹

Yield (149.0 mg, 83 % yield, yellow solid), eluent: 2% ethylacetate/hexane; δ^{1} H NMR (600 MHz, CDCl₃) δ 7.63 (d, J = 7.2 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.26 (t, J = 6.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 193.83, 144.33, 134.60, 134.05, 128.98, 124.20, 120.23.

References:

- 1. S. Ghosh and C. K. Jana. J. Org. Chem. 2018, 83, 260-266.
- 2. R. Ray, A. S. Hazari, S. Chandra, D. Maiti and G. K. Lahiri, Chem. Eur. J. 2018, 24, 1067 1071
- 3. W. Zhan, L. Ji, Ze-mei Ge, X. Wang and Run-tao Li. Tetrahedron 2018, 74, 1527-1532.
- 4. P. K. Verma, U. Sharma, M. Bala, N. Kumar and B. Singh, RSC Adv., 2013, 3, 895-899
- 5. A. Wrona-Piotrowicz, J. Zakrzewski, R. Métivier, A. Brosseau, A. Makalc and K. Woźniakc. *RSC Adv.*, 2014,4, 56003-56012
- 6. B. Kurpil, B. Kumru, T. Heil, M. Antonietti and A. Savateev. Green Chem., 2018, 20, 838-842
- 7. H. Zheng Li, W. J. Xue, G. D. Yin and A. X. Wu. Tetrahedron Letters 2015, 56 5843-5846
- 8. Journal of Sulfur Chemistry 2012, 33, 33-41.
- 9. S. Nakai, T. Uematsu, Y. Ogasawara, K. Suzuki, K, Yamaguchi and N. Mizuno. *ChemCatChem* 2018,**10**,1096–1106.

¹H,¹³C & HRMS spectra

¹³C NMR of 2e

¹H NMR of 2f

¹H NMR of 2i

¹H NMR of 2I

¹³C NMR of 2m

¹H NMR of 2n

¹H NMR of 2q

¹H NMR of 2s

¹³C NMR of 2t

¹H NMR of 2u

¹H NMR of 3d

¹³C NMR of 3k

¹³C NMR of 3I

¹H NMR of 5a

¹³C NMR of 5a

¹H NMR of 5b

¹H NMR of 5c

¹³C NMR of 5c

¹H NMR of 5d

¹³C NMR of 5d

HRMS Spectra of TEMPO adduct

EPR spectra recorded at -160° C in acetonitrile solution.