Supporting information

Efficient Hydrodeoxygenation of Lignin-Derived Phenols and Dimeric Ethers with Synergistic [Bmim]PF₆-Ru/SBA-15 Catalysis Under Acid Free Conditions

Shaoqi Yang^{a, b}, Xingmei Lu^{*} ^{a, b}, Haoyu Yao^a, Jiayu Xin^a, Junli Xu^a, Ying Kang^a,

Yongqing Yang^a, Guangming Cai^a, Suojiang Zhang^{* a, b}

^a Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of

Green Process and Engineering, State Key Laboratory of Multiphase Complex

Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing

100190 (PR China)

^b Sino Danish College, University of Chinese Academy of Sciences, Beijing 100049

(PR China)

(Pages from S1-S13, Figures from S1-S8, Tables from S1-S2)

Corresponding Authors

*Xingmei Lu. Email: xmlu@ipe.ac.cn.

*Suojiang Zhang. Email: <u>sjzhang@ipe.ac.cn</u>.

Tel: +86 10 82627080; Fax: +86 10 82544875

1. ¹H/¹³C NMR spectrum of the ILs

1.1. [Bmim]PF₆

BPF6

1-Butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF₆): Colorless liquid, ¹H-NMR (DMSO, 600MHz): δ (ppm) = 9.07 (s, 1H), 7.73 (d, *J* = 1.1Hz 1H), 7.67 (d,

J = 1.0Hz, 1H), 4.16 (t, J = 7.2Hz, 2H), 3.85 (s, 3H), 1.84-1.71 (m, 2H), 1.33-1.21 (m, 2H), 0.91 (t, J = 7.4Hz, 3H); ¹³C NMR (D₂O, 600MHz) δ (ppm) = 136.93, 124.03, 122.67, 48.99, 36.13, 31.78, 19.21, 13.64. HRMS (m/z, micrOTOF-Q II): calculated for [Bmim]⁺ 139.1230, found 139.1259, calculated for ${}^{PF_{6}^{-}}$ 144.9647, found 144.9618. 1.2. [Bmim]BF₄

BBF4

1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF₄): Colorless liquid, ¹H-NMR (DMSO, 600MHz): δ (ppm) = 9.06 (s, 1H), 7.75 (t, J = 1.7Hz, 1H), 7.68 (t, J = 1.7Hz, 1H), 4.16 (t, J = 7.2Hz, 2H), 3.85 (s, 3H), 1.82-1.72 (m, 2H), 1.32-1.21 (m, 2H), 0.90 (t, J = 7.4Hz, 3H); ¹³C NMR (D₂O, 600MHz) δ (ppm) = 136.93, 124.05, 122.70, 48.97, 36.15, 31.80, 19.22, 13.68. HRMS (m/z, micrOTOF-Q II): calculated for [Bmim]⁺ 139.1230, found 139.1254, calculated for ^{BF}₄ 87.0035, found 86.9970. 1.3. [Bmim]NTf₂

1-n-butyl-3-methylimidazolium N-bis-(trifluoromethanesulfonyl) imidate ([Bmim]NTf₂): Colorless liquid, ¹H-NMR (DMSO, 600MHz): δ (ppm) = 9.11 (s, 1H), 7.75 (t, *J* = 1.7Hz, 1H), 7.69 (t, *J* = 1.7Hz, 1H), 4.17 (t, *J* = 7.2Hz, 2H), 3.86 (s, 3H), 1.85-1.71 (m, 2H), 1.34-1.21 (m, 2H), 0.91 (t, *J* = 7.4Hz, 3H); ¹³C NMR (D₂O, 600MHz) δ (ppm) = 136.96, 124.04, 122.69, 123.16-116.76 (m), 48.99, 36.13, 31.80, 19.20, 13.58. HRMS (m/z, micrOTOF-Q II): calculated for [Bmim]⁺ 139.1230, found 139.1259, calculated for $NTf_{\frac{1}{2}}$ 279.9178, found 279.9099.

1.4. [Emim]NTf₂

1-ethyl-3-methylimidazolium N-bis-(trifluoromethanesulfonyl) imidate ([Bmim]NTf₂): Colorless liquid, ¹H-NMR (DMSO, 600MHz): δ (ppm) = 9.10 (s, 1H), 7.77 (t, *J* = 1.7Hz, 1H), 7.68 (t, *J* = 1.7Hz, 1H), 4.19 (q, *J* = 7.3Hz, 2H), 3.85 (s, 3H), 1.42 (t, *J* = 7.3Hz, 3H); ¹³C NMR (D₂O, 600MHz) δ (ppm) = 136.69, 124.03, 122.42, 123.15-116.75 (m), 44.60, 36.13, 15.49. HRMS (m/z, micrOTOF-Q II): calculated for [Emim]⁺ 111.0917, found 111.0927, calculated for ^{NTf⁻/2} 279.9178, found 279.9038.

2. Characterization of the catalysts

Figure S1. SEM graphics of catalysts.

Figure S2. XRD patterns of the catalysts.

2 Theta (°)

Au/SBA-15 (PDF#04-0784)

Figure S3. TEM images of (a) Ru/C, (b) Ru/SiO₂, (c) Ru/γ-Al₂O₃, (d) Pd/SBA-15, (e) Au/SBA-15, (f) Re/SBA-15, (g) W/SBA-15, (h) Cu/SBA-15.

3. Experimental section

The conversions of substrates and yields of corresponding aliphatic alkanes were calculated based on the following formulas:

 $Conversion = \frac{Moles \ of \ phenols \ used - \ Moles \ of \ phenols \ remimed}{Moles \ of \ phenols \ used} \times 100\%$

 $Conversion = \frac{Moles \ of \ dimeric \ ethers \ used - \ Moles \ of \ dimeric \ ethers \ remimed}{Moles \ of \ dimeric \ ethers \ used} \times 100\%$

 $Yield of alkanes = \frac{Moles of alkanes generated}{Moles of phenols (dimeric ethers \times 2) used} \times 100\%$

	Catalyst [Bmim]PF ₆ ,	\rightarrow \bigcirc + 1a	ОН	lc	
Entra	Catalyst	Conversion		Yield (%) ^b	
Entry	Catalyst	(%) ^b	1a	1b	1c
1	None	0	0	0	0
2	SBA-15	0	0	0	0
3	Re/SBA-15	34.7	15.9	0	0
4	Pd/SBA-15	28.2	7.1	0	0
5	W/SBA-15	3.2	1.2	0	0
6	Cu/SBA-15	5.7	1.0	0	0
7	Au/SBA-15	1.0	0.7	0	0

Table S1. Catalytic activity of different catalysts for the HDO of phenol.^a

^a Reaction conditions: Phenol, 1 mmol; catalyst 0.1 g; [Bmim]PF₆, 2.0 g; reaction temperature, 130 °C; reaction time, 6 h; pressure of H_2 , 2 MPa. ^b The conversion and yields were determined by GC with n-dodecane as a internal standard.

ĺ	OH Ru/SBA-15 Solvent, H ₂	\rightarrow + 1a +	ОН	1c	
Entry	Solvent	Conversion	Yield (%) ^b		
		(%) ^b	1 a	1b	1c
1	[BHEM]mesy ^c	100	7.0	59.8	0
2	Methanol ^d	31.2	2.2	28.1	0
3	Ethanol ^d	6.3	4.6	0	0
4	n-Propanol ^d	100	1.6	67.8	0
5	n-Hexane ^d	100	3.4	76.5	0

Table S2. The effect of different solvents for the HDO of phenol.^a

^a Reaction conditions: Phenol, 1 mmol; Ru/SBA-15, 0.1 g; ^c IL, 2.0 g, ^d solvent, 4.0 g; reaction temperature, 130 °C; reaction time, 6 h; pressure of H₂, 2 MPa. ^c Refer to *Cellulose* **2018**, *25*, 3241-3254.

Figure S4. a) GC-MS of cyclohexanol HDO result, b) GC-MS of cyclohexanone HDO result. Reaction conditions: substrate, 1 mmol; $[Bmim]PF_6$, 2.0 g, reaction temperature, 130 °C; reaction time, 6 h; pressure of H₂, 2 MPa. N-dodecane was used as an internal standard.

Figure S5. GC-MS of diphenyl ether HDO result. Reaction conditions: diphenyl ether, 1 mmol; [Bmim]PF₆, 2.0 g, reaction temperature, 130 °C; reaction time, a) 0.2 h, b) 1

h, c) 4 h; pressure of H₂, 2 MPa. N-dodecane was used as an internal standard.

Figure S6. HDO of guaiacol at a) 130 °C for 6 hours, b) 150 °C for 6 hours. Reaction conditions: guaiacol, 1 mmol; [Bmim]PF₆, 2.0 g, Ru/SBA-15, 0.1 g; pressure of H_2 , 2 MPa. N-dodecane was used as an internal standard.

Figure S7. a) TEM images of recycle Ru/SBA-15, B) Electron diffraction rings for Ru NPs falling off from SBA-15.

Figure S8. The $^{1}H/^{13}C$ NMR spectroscopy of neat and recycled [Bmim]PF₆.