Supporting Information

Visible Light-catalytic Dehydrogenation of Benzylic Alcohols to Carbonyl Compounds by Using Eosin Y and Nickel-Thiolate Complex Dual Catalyst System

Xiu-Jie Yang, $*^{a,b,c}$ Yi-Wen Zheng, a,c Li-Qiang Zheng, c Li-Zhu Wu, a,d Chen-Ho Tung a,c,d and Bin Chen $*^{a,d}$

^{*a*} Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China

^b State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266555, China

^c Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong University Jinan, Shandong 250100, China

^d School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

1. Materials

Eosin Y, Ni(OAc)₂, 3-mercaptopropionic acid, benzyl alcohol, 4-methylbenzyl alcohol, 4-methoxybenzyl alcohol, 4-isopropylbenzyl alcohol, 4-chlorobenzyl alcohol, 4-bromobenzyl alcohol, 4-hydroxybenzyl alcohol, 1-(4-methoxyphenyl)ethanol, 1-phenyl-1-propanol, benzhydrol, 4-phenyl-2-butanol, 3-phenyl-1-propanol, 1-phenyl-1,3-butanedione were purchased from Acros, TCI or Sigma-Aldrich. Other chemicals are of analytical grade without further purification unless otherwise noted. The ultrapure water with 18.2 M Ω cm (Mettler Toledo, FE20, China) was used throughout the experiment.

2. General procedure for photocatalytic dehydrogenation of benzylic alcohols reaction

A 10 mL Pyrex tube equipped with a rubber septum and magnetic stir bar was charged with 5 mL aqueous solution of 0.2 mmol substrate, Ni-MPA catalyst (0.015 mmol Ni(OAc)₂ and 0.15 mmol 3-mercaptopropionic acid) and eosin Y(0.002 mmol), then adjusted the pH to 8.50. The Pyrex tube was sealed and the mixture was bubbled with argon gas for 20 min. Then, 500 μ L CH₄ was injected to the Pyrex tube as the internal standard. The mixture was then irradiated with a green LED light (λ = 525 nm) for 24 h at room temperature. After irradiation, gas composition is analyzed by gas chromatography (14B, Shimadzu) using thermal conductivity detector (TCD) with a 5 Å molecular sieve column and argon as the carrier gas. The solution was extracted with EtOAc (50 mL×3), washed with brine (50 mL×3), dried over Na₂SO₄. The products obtained after concentrated in vacuo were identified by ¹H NMR.

3. Detection of hydrogen

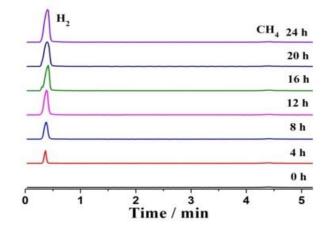
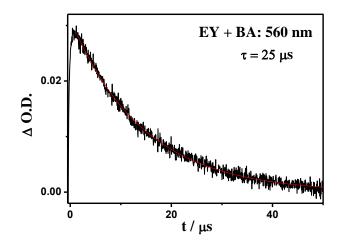
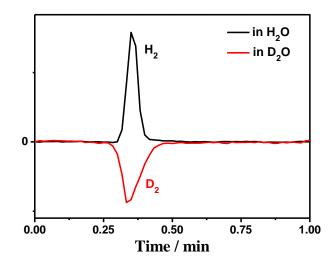




Fig. S1 GC/TCD chromatograph of H₂ production over time. Condition: LED (green light, 525 nm); room temperature; benzyl alcohol (0.2 mmol); Ni-MPA (7.5 mol%); eosin Y (1 mol%); H₂O (5 mL).

4. Mechanism study

Fig. S2 Kinetic trace at 560 nm when adding benzyl alcohol (BA, 1×10^{-3} M) to eosin Y (1×10^{-5} M) with 532 nm light in de-aerated H₂O-CH₃CN (3:2).

Fig. S3 GC/TCD chromatograph of H_2 production over time monitored by GC-TCD using He as carrier gas. Condition: LED (green light, 525 nm); room temperature; benzyl alcohol (0.2 mmol); Ni-MPA (7.5 mol%); EY (1 mol%); 5 mL H₂O or D₂O.

5. Large scale reaction of benzylic alcohol

Benzylic alcohol (2 mmol) was first dissolved in 1 mL CH₃CN solvent in a 100 mL reactor, followedby add 40 mL aqueous solution of Ni-MPA catalyst (0.15 mmol Ni(OAc)₂ and 1.5 mmol 3-mercaptopropionic acid) and eosin Y (0.02 mmol), then adjusted the pH to 8.50. The reactor was sealed and the mixture was bubbled with argon gas for 20 min. The reactor was then irradiated with a 300 W xenon equipped with a filter (λ > 400 nm) for 27 h. The solution was extracted with EtOAc (50 mL×3), washed with brine (50 mL×3), and then dried over Na₂SO₄. Solvent was removed by rotary evaporation. The product was purified by flash chromatography with petroleum/EtOAc (10:1) and the isolated yield is 72%.