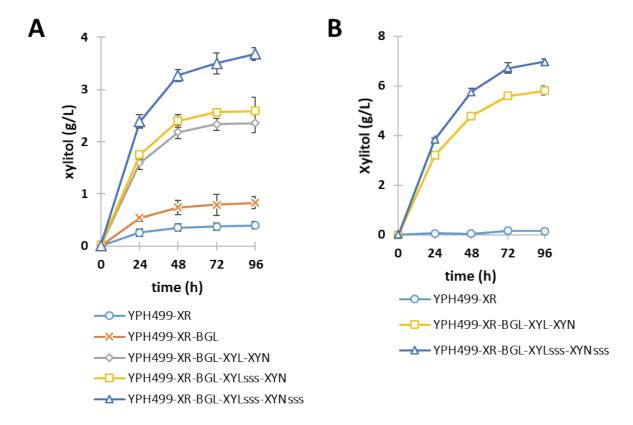
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)


Table S1 Yields of xylitol production in function of different parameters tested for the optimization of Kraft pulp fermentation by cell surface-engineered strain YPH499-XR-XYL-XYN of S. cerevisiae. The influence of parameters such as the amount of commercial hemicellulases cocktail ([CHC]; 0 to 0.1 g/g-DW) used during pretreatment, the amount of substrate (LBKP; 25 to 125 g-DW/L) or the amount of yeast cells (25 to 100 g-WW/L) added for the fermentation, on the yields of xylitol production has been evaluated. Values represent averages \pm standard deviation of the results from three independent experiments.

Parameters	Yields		
Amount of CHC	Yxylitol/xylose	Yxylitol/CHC	
(g/g-DW)	(g/g)	(g/mg)	
0	0.02 ± 0.01	ND	
0.01	0.05 ± 0.01	0.04 ± 0.01	
0.02	0.27 ± 0.03	0.11 ± 0.02	
0.05	0.42 ± 0.04	0.07 ± 0.01	
0.1	0.64 ± 0.05	0.05 ± 0.01	
Amount of LBKP	Yxylitol/xylose	Yxylitol/LBKP	
(g-DW/L)	(g/g)	(g/g-DW/L)	
25	0.26 ± 0.04	0.04 ± 0.01	
50	0.27 ± 0.03	0.04 ± 0.01	
75	0.13 ± 0.03	0.02 ± 0.01	
100	0.02 ± 0.01	0.004 ± 0.001	
125	0.01 ± 0.002	0.001 ± 0.0005	
Amount of yeast cells	Yxylitol/xylose	Yxylitol/yeast cells	
(g-WW/L)	(g/g)	(g/g-WW/L)	
25	0.09 ± 0.01	0.03 ± 0.01	
50	0.19 ± 0.02	0.03 ± 0.01	

75	0.24 ± 0.03	0.02 ± 0.005
100	0.27 ± 0.03	0.02 ± 0.01

Table S2 Yields of xylitol production from Kraft pulp by different cell surface-engineered strains YPH499-XR (control), YPH499-XR-XYL-XYN and YPH499-XR-XYLsss-XYNsss of S. cerevisiae. Values represent averages ± standard deviation of the results from three independent experiments.

Strains	Yields	
	Yxylitol/xylose	Yxylitol/CHC
	(g/g)	(g/mg)
YPH499-XR	0.05 ± 0.01	0.02 ± 0.01
YPH499-XR-BGL	0.10 ± 0.01	0.04 ± 0.01
YPH499-XR-BGL-XYL-XYN	0.28 ± 0.03	0.11 ± 0.02
YPH499-XR-BGL-XYLsss-XYN	0.30 ± 0.02	0.13 ± 0.01
YPH499-XR-BGL-XYLsss-XYNsss	0.44 ± 0.02	0.18 ± 0.01
YPH499-XR-BGL-XYLsss-XYNsss (scale up)	0.5 ± 0.01	0.2 ± 0.06

Figure S1 Time course monitoring of xylitol production by different strains and from different substrate. A: Fermentation of pretreated LBKP by different cell surface engineered strains of *S. cerevisiae* such as YPH499-XR (negative control), YPH499-XR-BGL, YPH499-XR-BGL-XYL-XYN, YPH499-XR-BGL-XYLsss-XYN and YPH499-XR-BGL-XYLsss-XYNsss. **B:** Fermentation of 50 % rice straw hydrolysate by YPH499-XR (negative control), YPH499-XR-BGL-XYL-XYN, and YPH499-XR-BGL-XYLsss-XYNsss, in absence of CHC in the same conditions than previously described [34].

Table S3 GenBank and/or UniProt accession numbers of the genes/proteins/promoters/signal sequences/anchors that were used for metabolic engineering in this study

Components	Accession No.	
Trichoderma reesei β-xylanase (XYN2)	U24191.1	
Aspergillus oryzae β-xylosidase A (XylA)	AB013851.1	
Aspergillus aculeatus β-glucosidase (BGL1)	D64088.1	
Saccharomyces cerevisiae TDH3 promoter	NC_001139.9 (883834884477, complement)	
Saccharomyces cerevisiae SED1 promoter	NC_001136.10 (599993600792)	
Rhizopus oryzae glucoamylase secretion signal sequence	D00049.1 (115188)	
Saccharomyces cerevisiae SED1 secretion signal sequence	NC_001136.10 (600793600849)	
Saccharomyces cerevisiae SAG1 anchor	NC_001142.9 (442909443871, complement)	
Saccharomyces cerevisiae SED1 anchor	NC_001136.10 (600796601809)	
Saccharomyces cerevisiae SAG1 terminator	NC_001142.9 (442464442899, complement)	