Supporting Information

Four-component thiazole formation from simple chemicals

under metal-free conditions

Jingjing Jiang, Huawen Huang,* and Guo-Jun Deng*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105, China E-mail: hwhuang@xtu.edu.cn; gjdeng@xtu.edu.cn

Table of Contents

General information	S2
Optimization of reaction conditions	S 3
General procedure for the synthesis of thiazoles	\$5
Characterization data of products	S7
Mechanistic studies	S40
Copies of ¹ H and ¹³ C NMR spectra of all products	S45

General information

All reactions were carried out under air atmosphere unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded with the Thermo Scientific LTQ Orbitrap XL mass spectrometer (ESI). The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. Ketoxime acetates were prepared according previously reported method. All other reagents were obtained from commercial suppliers and used without further purification. The molecular weight of S₈ is determined to be 32 g/mol unless otherwise noted.

Optimization of reaction conditions

Table S1.^{*a*}

O		add	itive	Ph
Ph	+ 2 PhCHO + "N"	+ S ₈ solvent,	150 °C, 20 h	S Ph
1a	2a			3a
entry	"N" source	additive	solvent	yield(%) ^b
		(x equiv)		
1	$(\mathrm{NH}_4)_2\mathrm{S}_2\mathrm{O}_8$	_	pyridine	32
2	NH ₄ Cl	-	pyridine	17
3	NH ₄ PF ₆	_	pyridine	37
4	NH ₄ OAc	_	pyridine	trace
5	$\rm NH_4I$	—	pyridine	47
6	$\rm NH_4I$	_	DMF	20
7	$\rm NH_4I$	—	DMSO	trace
8	$\rm NH_4I$	_	o-DCB	trace
9	$\rm NH_4I$	_	mesitylene	trace
10	$\rm NH_4I$	_	1,4-dioxane	10
11	$\rm NH_4I$	H ₂ O (3)	pyridine	60
12	$\rm NH_4I$	H ₂ O (6)	pyridine	77
13	$\rm NH_4I$	H ₂ O (9)	pyridine	75
14^c	$\rm NH_4 I$	H ₂ O (6)	pyridine	65
15^{d}	$\rm NH_4 I$	—	pyridine	n.d
16^e	$\rm NH_4 I$	H ₂ O (6)	pyridine	65

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), S₈ (0.4 mmol, 32 g/mol), NH₄I (0.4 mmol), pyridine (0.6 mL), under air at 150 °C for 20 h. ^{*b*} Isolated yields. ^{*c*} 120 °C, ^{*d*} Na₂S replace S₈, ^{*e*} 5 mmol gram-scale (1.063g).

Table S2.^{*a*}

			Ph		
<i>n</i> -Pr	} ↓ + 2 PhCHO ·		atalyst, additive	-N	
Ň	X	so	lvent, 120 °C, 5 h n-	Pr ⁽ S Ph	
1x	2a			5a	
entry	catalyst	additive	[O]	yield(%) ^b	
		(x mol%)			
1	Cu	_	—	35	
2	CuBr	-	—	43	
3	CuCl ₂	-	—	36	
4	FeCl ₃	-	—	33	
5	La(OTf) ₃	-	-	34	
6	Sc(OTf) ₃	-	—	17	
7	CuBr	BzOH	-	54 (50) ^{<i>c</i>}	
8	CuBr	AcOH	—	31	
9^d	CuBr	HCl (aq)	—	36	
10	_	BzOH		44	
11	-	BzOH (60)		54 (51) ^{<i>c</i>}	
12	_	BzOH (70)		40 (36) ^c	
13 ^e	-	-	H_2O_2	22	
14	_	_	TBHP	22	
15	_	_	O_2	34	
16	_	_	Ar	32	
17	_	_	_	37	

^{*a*} Reaction conditions: **1x** (0.2 mmol), **2a** (0.6 mmol), NH₄I (0.4 mmol), S₈ (0.8 mmol, 32 g/mol), catalyst (50 mol%), additive (30 mol%), pyridine (0.6 mL), under air at 120 °C for 5 h. ^{*b*} GC yields. ^{*c*} Isolated yields, ^{*d*} HCl (12 mol/L), ^{*e*} H₂O₂ (30%, 9.8 mol/L).

General procedure for the synthesis of thiazoles

General procedure A: Aromatic ketone **1a-1p** (0.2 mmol), aromatic aldehyde **2** (0.6 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol), H₂O (6 equiv) and pyridine (0.6 mL) were added successfully to a 10 mL oven-dried reaction vessel. The sealed reaction vessel was stirred at 150 °C for 20 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (10 mL) and water (10 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (10 mL) for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the desired product **3**.

General procedure B: Alphatic ketone **1q-1w** (0.2 mmol), aromatic aldehyde **2** (0.3 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol), H₂O (6 equiv) and pyridine (0.6 mL) were added successfully to a 10 mL oven-dried reaction vessel. The sealed reaction vessel was stirred at 150 °C for 15-20 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (10 mL) and water (10 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (10 mL) for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the desired product **4**.

General procedure C: Alphatic ketone 1x-1ac (0.2 mmol), aromatic aldehyde 2 (0.6 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (25.6 mg, 0.8 mmol), PhCOOH (60 mol%) and pyridine (0.6 mL) were added successfully to a 10 mL oven-dried reaction vessel. The sealed reaction vessel was stirred at 120 °C for 5 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (10 mL) and water (10 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (10 mL) for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/DCM) to yield the desired product 5.

5 mmol-scale reaction: Acetophenone **1a** (0.6 mL, 5 mmol), benzaldehyde **2a** (1.5 mL, 15 mmol), S_8 (0.32 g, 10 mmol), NH₄I (1.45 g, 10 mmol), H₂O (0.54 mL, 30 mmol) and pyridine (6 mL) were added successfully to a 100 mL round-bottom flask. The sealed round-bottom flask was stirred at 150 °C for 24 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (30 mL) and filtered through a short column of silica gel with additional ethyl acetate (30 mL) as the eluent. The filtrate was washed with brine (90 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc: 200/1) to afford **3a** as a white solid (1.063 g, 65%).

Characterization data of products

5-Benzyl-2,4-diphenylthiazole (3a)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3a** (50.4 mg, 77%) as a white solid. mp: 123-124 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 2.5 Hz, 2H), 7.75 – 7.67 (m, 2H), 7.48 – 7.30 (m, 8H), 7.28 – 7.21 (m, 3H), 4.30 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 152.5, 140.0, 134.9, 133.6, 133.0, 129.8, 128.8, 128.7, 128.5, 128.3, 127.9, 126.8, 126.3, 33.2. IR spectrum (v_{max} (KBr)/cm⁻¹) 3059, 1600, 1483, 982, 758, 696, 518. HRMS (ESI) m/z calcd for C₂₂H₁₈NS⁺ (M+H)⁺ 328.1155, found 328.1158.

5-Benzyl-2-phenyl-4-(p-tolyl)thiazole (3b)

The general procedure A was followed using 1-(*p*-tolyl)ethan-1-one (**1b**, 28 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3b** (45.0 mg, 66%) as a white solid. mp: 147-148 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 7.9, 2.6 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.46 – 7.37 (m, 3H), 7.33 (t, J = 7.2 Hz, 2H), 7.29 – 7.22 (m, 5H), 4.30 (s, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 159.4, 152.3, 140.1, 133.8, 131.8, 130.0, 129.7, 128.8, 128.7, 128.3, 127.6, 126.7, 126.3, 113.9, 55.3, 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3060, 1489, 1242, 978, 823, 768, 694, 520. HRMS (ESI) m/z calcd for C₂₃H₂₀NS⁺ (M+H)⁺ 342.1311, found 342.1313.

4-([1,1'-Biphenyl]-4-yl)-5-benzyl-2-phenylthiazole (3c)

The general procedure A was followed using 1-([1,1'-biphenyl]-4-yl)ethan-1-one (**1c**, 40 mg, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3c** (52.4 mg, 65%) as a white solid. mp: 149-150 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 7.9, 2.0 Hz, 2H), 7.80 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.48 – 7.31 (m, 8H), 7.29 – 7.24 (m, 3H), 4.35 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 152.2, 140.7, 140.6, 140.0, 134.0, 133.7, 133.1, 129.8, 129.1, 128.8, 128.8, 128.4, 127.4, 127.2, 127.1, 126.8, 126.3, 33.3. IR spectrum (v_{max} (KBr)/cm⁻¹) 3029, 2917, 1601, 1481, 978, 847, 767, 694. HRMS (ESI) m/z calcd for C₂₈H₂₂NS⁺ (M+H)⁺ 404.1468, found 404.1471.

5-Benzyl-4-(4-fluorophenyl)-2-phenylthiazole (3d)

The general procedure A was followed using 1-(4-fluorophenyl)ethan-1-one (**1d**, 22 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3d** (44.9 mg, 65%) as a colorless solid. mp: 119-120 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.6, 4.0 Hz, 2H), 7.71 – 7.65 (m, 2H), 7.43 – 7.37 (m, 3H), 7.34 (t, J = 7.3 Hz, 2H), 7.29 – 7.22 (m, 3H), 7.14 (t, J = 8.7 Hz, 2H), 4.27 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 162.5 (d, J = 246.0 Hz), 151.5, 139.8, 133.5, 132.8, 131.0 (d, J = 3.2 Hz), 130.5 (d, J = 8.8 Hz), 129.9, 128.8, 128.8, 128.3, 126.9, 126.3, 115.4 (d, J = 21.4 Hz), 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3062, 1602, 1489, 1223, 841, 760, 696. HRMS (ESI) m/z calcd for C₂₂H₁₇FNS⁺ (M+H)⁺ 346.1060, found 346.1065.

5-Benzyl-4-(4-chlorophenyl)-2-phenylthiazole (3e)

The general procedure A was followed using 1-(4-chlorophenyl)ethan-1-one (1e, 27 μ L, 0.2 mmol), benzaldehyde (2a, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded 3e (52.7 mg, 73%) as a white solid. mp: 159-160 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.90 (m, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.44 – 7.37 (m, 5H), 7.33 (t, J = 7.2 Hz, 2H), 7.29 – 7.21 (m, 3H), 4.27 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 151.3, 139.7, 133.8, 133.5, 133.4, 133.3, 130.0, 129.9, 128.8, 128.8, 128.7, 128.3, 126.9, 126.3, 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3059, 1601, 1481, 1089, 978, 835, 760, 702. HRMS (ESI) m/z calcd for C₂₂H₁₇ClNS⁺ (M+H)⁺ 362.0765, found 362.0768.

5-Benzyl-4-(4-bromophenyl)-2-phenylthiazole (3f)

The general procedure A was followed using 1-(4-bromophenyl)ethan-1-one (**1f**, 41 mg, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3f** (56.0 mg, 69%) as a white solid. mp: 167-168 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.90 (m, 2H), 7.63 – 7.53 (m, 4H), 7.45 – 7.37 (m, 3H), 7.33 (t, *J* = 7.3 Hz, 2H), 7.29 – 7.20 (m, 3H), 4.26 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 151.2, 139.7, 133.9, 133.5, 133.3, 131.6, 130.3, 129.9, 128.8, 128.8, 128.3, 126.9, 126.3, 122.0, 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3062, 1600, 1477, 1070, 978, 833, 758, 694, 519. HRMS (ESI) m/z calcd for C₂₂H₁₇BrNS⁺ (M+H)⁺ 406.0260, found 406.0254.

5-Benzyl-4-(4-methoxyphenyl)-2-phenylthiazole (3g)

The general procedure A was followed using 1-(4-methoxyphenyl)ethan-1-one (**1g**, 31 mg, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3g** (39.3 mg, 55%) as a white solid. mp: 91-92 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 7.8, 2.2 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H), 7.42 – 7.35 (m, 3H), 7.35 – 7.29 (m, 2H), 7.25 (t, J = 6.6 Hz, 3H), 7.01 – 6.94 (m, 2H), 4.27 (s, 2H), 3.83 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 159.4, 152.3, 140.1, 133.8, 131.8, 130.0, 129.7, 128.8, 128.7, 128.3, 127.6, 126.7, 126.3, 113.9, 55.3, 33.2. IR spectrum (v_{max} (KBr)/cm⁻¹) 3020, 2933, 1606, 1486, 1254, 1173, 1037, 835, 771, 696. HRMS (ESI) m/z calcd for C₂₃H₂₀NOS⁺ (M+H)⁺ 358.1260, found 358.1262.

5-Benzyl-2-phenyl-4-(4-(trifluoromethoxy)phenyl)thiazole (3h)

The general procedure A was followed using 1-(4-(trifluoromethoxy)phenyl)ethan-1-one (**1h**, 33 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether) yielded **3h** (61.7 mg, 75%) as a white solid. mp: 72-73 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.7, 3.2 Hz, 2H), 7.74 (d, J = 8.6 Hz, 2H), 7.43 – 7.38 (m, 3H), 7.36 – 7.22 (m, 7H), 4.29 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 151.0, 148.8, 139.6, 133.6, 133.5, 133.4, 130.2, 130.0, 128.9, 128.8, 128.3, 127.0, 126.3, 120.5 (q, J = 255.8 Hz), 116.6, 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3064, 1604, 1489, 1265, 1167, 762, 688. HRMS (ESI) m/z calcd for C₂₃H₁₇F₃NOS⁺ (M+H)⁺ 412.0977, found 412.0978.

5-Benzyl-2-phenyl-4-(4-(phenylethynyl)phenyl)thiazole (3i)

The general procedure A was followed using 1-(4-(phenylethynyl)phenyl)ethan-1-one (**1i**, 46 mg, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3i** (64 mg, 75%) as a white solid. mp: 153-154 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 2.8 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.55 (dd, J = 7.8, 2.4 Hz, 2H), 7.43 – 7.38 (m, 3H), 7.38 – 7.32 (m, 5H), 7.30 – 7.24 (m, 3H), 4.32 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 151.6, 139.8, 134.7, 133.6, 133.5, 131.7, 131.6, 129.9, 128.8, 128.8, 128.6, 128.3, 128.3, 126.9, 126.3, 123.2, 122.7, 90.2, 89.3, 33.3. IR spectrum (v_{max} (KBr)/cm⁻¹) 3062, 3022, 1600, 1492, 1452, 840, 760, 692. HRMS (ESI) m/z calcd for C₃₀H₂₂NS⁺ (M+H)⁺ 428.1468, found 428.1464.

5-Benzyl-2-phenyl-4-(*m*-tolyl)thiazole (3j)

The general procedure A was followed using 1-(*m*-tolyl)ethan-1-one (**1j**, 28 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3j** (49.8 mg, 73%) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.4, 2.0 Hz, 2H), 7.56 (s, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.42 – 7.37 (m, 3H), 7.33 (t, J = 7.2 Hz, 3H), 7.26 (t, J = 5.6 Hz, 3H), 7.19 (d, J = 7.6 Hz, 1H), 4.29 (s, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 152.7, 140.2, 138.1, 134.9, 133.8, 133.0, 129.7, 129.6, 128.8, 128.7, 128.7, 128.4, 128.3, 126.8, 126.4, 125.8, 33.3, 21.5. IR spectrum (v_{max}(KBr)/cm⁻¹) 3025, 2921, 1602, 1495, 1250, 793, 760, 690. HRMS (ESI) m/z calcd for C₂₃H₂₀NS⁺ (M+H)⁺ 342.1311, found 342.1310.

5-Benzyl-2-phenyl-4-(3-(trifluoromethyl)phenyl)thiazole (3k)

The general procedure A was followed using 1-(3-(trifluoromethyl)phenyl)ethan-1-one (**1k**, 31 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) vielded **3k** (55.3 mg, 70%) as a white solid. mp: 82-83 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.98 – 7.91 (m, 2H), 7.88 (d, J = 7.7 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.44 – 7.38 (m, 3H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 – 7.22 (m, 3H), 4.29 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 150.8, 139.5, 135.7, 134.1, 133.5, 131.8, 130.9 (q, J = 32.2 Hz), 130.0, 128.9, 128.9, 128.9, 128.3, 127.0, 126.3, 125.7 (q, J = 3.8 Hz), 124.6 (q, J = 3.7 Hz), 124.1 (q, J = 270.8 Hz), 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3060, 3035, 1600, 1342, 1308, 1163, 1122, 1074, 760, 698. HRMS (ESI) m/z calcd for C₂₃H₁₇F₃NS⁺ (M+H)⁺ 396.1028, found 396.1032.

5-Benzyl-4-(3-chlorophenyl)-2-phenylthiazole (31)

The general procedure A was followed using 1-(3-chlorophenyl)ethan-1-one (**11**, 27 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **31** (45.5 mg, 63%) as a white solid. mp: 83-84 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.75 (s, 1H), 7.58 – 7.53 (m, 1H), 7.42 – 7.38 (m, 3H), 7.36 – 7.30 (m, 4H), 7.29 – 7.22 (m, 3H), 4.28 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 150.8, 139.6, 136.6, 134.4, 134.0, 133.4, 130.0, 129.7, 128.9, 128.8, 128.8, 128.3, 128.0, 126.9, 126.7, 126.3, 33.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 3064, 3026, 1595, 1564, 1477, 1263, 1078, 756, 696. HRMS (ESI) m/z calcd for C₂₂H₁₇ClNS⁺ (M+H)⁺ 362.0765, found 362.0769.

5-Benzyl-2-phenyl-4-(o-tolyl)thiazole (3m)

The general procedure A was followed using 1-(*o*-tolyl)ethan-1-one (**1m**, 27 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **3m** (28.7 mg, 42%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 5.5 Hz, 2H), 7.38 (d, J = 5.3 Hz, 3H), 7.35 – 7.19 (m, 7H), 7.14 (d, J = 7.4 Hz, 2H), 4.02 (s, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 152.9, 140.0, 137.8, 134.3, 134.2, 133.7, 130.5, 130.2, 129.7, 128.8, 128.6, 128.5, 128.3, 126.6, 126.3, 125.6, 32.9, 20.1. IR spectrum (v_{max} (KBr)/cm⁻¹) 3061, 2924, 1681, 1600, 1479, 1248, 979, 761, 688. HRMS (ESI) m/z calcd for C₂₃H₂₀NS⁺ (M+H)⁺ 342.1311, found 342.1313.

5-Benzyl-4-(naphthalen-2-yl)-2-phenylthiazole (3n)

The general procedure A was followed using 1-(naphthalen-2-yl)ethan-1-one (**1n**, 35 mg, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3n** (52.8 mg, 70%) as a white solid. mp: 88-89 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.97 (dd, J = 8.0, 2.1 Hz, 2H), 7.91 – 7.81 (m, 4H), 7.50 – 7.45 (m, 2H), 7.43 – 7.36 (m, 3H), 7.35 – 7.29 (m, 2H), 7.28 – 7.22 (m, 3H), 4.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 152.4, 140.0, 133.7, 133.4, 133.2, 132.8, 132.3, 129.8, 128.8, 128.8, 128.4, 128.2, 128.1, 127.7, 127.6, 126.8, 126.8, 126.3, 126.2, 33.3. IR spectrum (v_{max} (KBr)/cm⁻¹) 3055, 1601, 1493, 1454, 822, 756, 711, 698, 683. HRMS (ESI) m/z calcd for C₂₆H₂₀NS⁺ (M+H)⁺ 378.1311, found 378.1314.

5-Benzyl-2-phenyl-4-(thiophen-2-yl)thiazole (30)

The general procedure A was followed using 1-(thiophen-2-yl)ethan-1-one (**10**, 22 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **30** (40.6 mg, 61%) as a gray solid. mp: 101-102 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.89 (m, 2H), 7.42 – 7.31 (m, 7H), 7.30 – 7.25 (m, 3H), 7.11 – 7.06 (m, 1H), 4.38 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 145.9, 139.2, 137.9, 133.3, 131.9, 129.9, 128.8, 128.4, 127.5, 126.9, 126.4, 125.7, 125.5, 33.3. IR spectrum (v_{max}(KBr)/cm⁻¹) 3104, 1602, 1493, 1211, 970, 762, 708. HRMS (ESI) m/z calcd for C₂₀H₁₆NS₂⁺ (M+H)⁺ 334.0719, found 334.0721.

5-Benzyl-4-(furan-2-yl)-2-phenylthiazole (3p)

The general procedure A was followed using 1-(furan-2-yl)ethan-1-one (**1p**, 21 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3p** (25.4 mg, 40%) as a brown liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 7.5, 3.9 Hz, 2H), 7.52 (s, 1H), 7.42 – 7.38 (m, 3H), 7.34 – 7.25 (m, 5H), 6.88 (d, J = 3.3 Hz, 1H), 6.55 – 6.51 (m, 1H), 4.50 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 150.4, 142.6, 142.1, 139.9, 133.3, 133.0, 130.0, 128.8, 128.7, 128.5, 126.8, 126.4, 111.3, 108.8, 32.9. IR spectrum (v_{max}(KBr)/cm⁻¹) 3060, 2927, 1682, 1495, 1248, 762, 688. HRMS (ESI) m/z calcd for C₂₀H₁₆NOS⁺ (M+H)⁺ 318.0947, found 318.0948.

5-(4-Methylbenzyl)-4-phenyl-2-(*p*-tolyl)thiazole (3q)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 4-methylbenzaldehyde (**2b**, 73 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **4a** (48.3 mg, 68%) as a white solid. mp: 110-111 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H), 7.73 – 7.69 (m, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (s, 4H), 4.25 (s, 2H), 2.37 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 152.1, 140.0, 137.1, 136.4, 135.0, 133.0, 131.1,

129.5, 129.4, 128.8, 128.4, 128.2, 127.8, 126.3, 32.9, 21.4, 21.0. IR spectrum (v_{max} (KBr)/cm⁻¹) 3022, 1600, 1511, 1483, 978, 823, 771, 696, 482. HRMS (ESI) m/z calcd for C₂₄H₂₂NS⁺ (M+H)⁺ 356.1468, found 356.1469.

2-([1,1'-Biphenyl]-4-yl)-5-([1,1'-biphenyl]-4-ylmethyl)-4-phenylthiazole (3r)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), [1,1'-biphenyl]-4-carbaldehyde (**2c**, 113 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3r** (67.1 mg, 70%) as a white solid. mp: 147-148 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 7.4 Hz, 2H), 7.69 – 7.54 (m, 8H), 7.52 – 7.29 (m, 11H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 152.8, 142.5, 140.7, 140.3, 139.8, 139.1, 135.0, 132.9, 132.7, 128.9, 128.8, 128.8, 128.8, 128.5, 128.0, 127.7, 127.5, 127.4, 127.3, 127.0, 127.0, 126.8, 33.0. IR spectrum (v_{max} (KBr)/cm⁻¹) 3030, 1600, 1487, 1261, 843, 766, 696. HRMS (ESI) m/z calcd for C₃₄H₂₆NS⁺ (M+H)⁺ 480.1781, found 480.1783.

5-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-4-phenylthiazole (3s)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 4-methoxybenzaldehyde (**2d**, 75 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4

mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 20/1) vielded **3s** (55.0 mg, 71%) as a white solid. mp: 122-123 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.8 Hz, 2H), 7.73 – 7.68 (m, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.22 (s, 2H), 3.83 (s, 3H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 161.0, 158.4, 151.8, 135.0, 132.8, 132.3, 129.4, 128.8, 128.4, 127.8, 126.7, 114.1, 114.1, 55.3, 55.2, 32.4. IR spectrum (v_{max}(KBr)/cm⁻¹) 3070, 2833, 1608, 1510, 1251, 1171, 1034, 825, 698. HRMS (ESI) m/z calcd for C₂₄H₂₂NO₂S⁺ (M+H)⁺ 388.1366, found 388.1365.

5-(4-Fluorobenzyl)-2-(4-fluorophenyl)-4-phenylthiazole (3t)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 4-fluorobenzaldehyde (**2e**, 66 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3t** (45.0 mg, 62%) as a white solid. mp: 108-109 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.68 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.41 – 7.36 (m, 1H), 7.22 – 7.16 (m, 2H), 7.12 – 7.06 (m, 2H), 7.04 – 6.98 (m, 2H), 4.26 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 163.8 (d, J = 248.6 Hz), 161.7 (d, J = 243.8 Hz), 152.5, 135.6 (d, J = 3.1 Hz), 134.6, 132.9, 129.9, 129.8 (d, J = 8.0 Hz), 128.7, 128.5, 128.3 (d, J = 8.4 Hz), 128.1, 115.9 (d, J = 21.9 Hz), 115.6 (d, J = 21.3 Hz), 32.4. IR spectrum (v_{max}(KBr)/cm⁻¹) 3060, 1599, 1504, 1223, 1155, 982, 839, 771, 696, 542. HRMS (ESI) m/z calcd for C₂₂H₁₆F₂NS⁺ (M+H)⁺ 364.0966, found 364.0968.

5-(4-Chlorobenzyl)-2-(4-chlorophenyl)-4-phenylthiazole (3u)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 4-chlorobenzaldehyde (**2f**, 86 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) vielded **3u** (56.1 mg, 71%) as a white solid. mp: 91-92 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.69 – 7.63 (m, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 8.5 Hz, 3H), 7.29 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.3 Hz, 2H), 4.26 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 152.8, 138.3, 135.8, 134.5, 132.7, 132.0, 129.7, 129.1, 128.9, 128.7, 128.6, 128.2, 127.5, 32.6. IR spectrum (v_{max} (KBr)/cm⁻¹) 3057, 1599, 1479, 1092, 984, 825, 771, 696. HRMS (ESI) m/z calcd for C₂₂H₁₆Cl₂NS⁺ (M+H)⁺ 396.0375, found 396.0378.

5-(4-Bromobenzyl)-2-(4-bromophenyl)-4-phenylthiazole (3v)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 4-bromobenzaldehyde (**2g**, 112 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3v** (73.6 mg, 76%) as a white solid. mp: 87-88 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.70 – 7.65 (m, 2H), 7.56 – 7.52 (m, 2H), 7.48 – 7.37 (m, 5H), 7.10 (d, *J* = 8.3 Hz, 2H), 4.24 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 152.9,

138.8, 133.4, 132.6, 132.6, 132.0, 131.9, 130.0, 128.7, 128.6, 128.2, 127.8, 124.1, 120.8, 32.7. IR spectrum (v_{max} (KBr)/cm⁻¹) 3051, 2910, 1485, 1068, 1008, 978, 827, 771, 698. HRMS (ESI) m/z calcd for C₂₂H₁₆Br₂NS⁺ (M+H)⁺ 483.9365, found 483.9367.

4-Phenyl-5-(4-(trifluoromethyl)benzyl)-2-(4-(trifluoromethyl)phenyl)thiazole (3w)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 4-(trifluoromethyl)benzaldehyde (**2h**, 84 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether) yielded **3w** (37 mg, 40%) as a white solid. mp: 158-159 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.2 Hz, 2H), 7.71 – 7.64 (m, 4H), 7.59 (d, J = 8.1 Hz, 2H), 7.50 – 7.32 (m, 5H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 153.7, 143.7, 136.7, 134.4, 132.8, 131.6 (q, J = 32.4 Hz), 129.4 (q, J = 32.4 Hz), 128.7, 128.7, 128.4, 126.6, 126.0, 125.9 (q, J = 3.7 Hz), 125.8 (q, J = 3.7 Hz), 124.1 (q, J = 270.4 Hz), 123.9 (q, J = 270.5 Hz), 33.1. IR spectrum (v_{max} (KBr)/cm⁻¹) 3070, 1616, 1490, 1331, 1130, 843, 700. HRMS (ESI) m/z calcd for C₂₄H₁₆F₆NS⁺ (M+H)⁺ 464.0902, found 464.0904.

5-(2-Methylbenzyl)-4-phenyl-2-(o-tolyl)thiazole (3x)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 2-methylbenzaldehyde (**2i**, 71 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4

mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3x** (51.8 mg, 73%) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.68 (m, 3H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.28 – 7.17 (m, 7H), 4.28 (s, 2H), 2.64 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 151.4, 138.5, 136.5, 136.1, 135.1, 133.3, 132.9, 131.4, 130.4, 129.7, 129.1, 128.7, 128.6, 128.4, 127.8, 127.1, 126.3, 125.9, 31.3, 21.7, 19.4. IR spectrum (v_{max}(KBr)/cm⁻¹) 3062, 2925, 1602, 1489, 1230, 972, 763, 696, 445. HRMS (ESI) m/z calcd for C₂₄H₂₂NS⁺ (M+H)⁺ 356.1468, found 356.1469.

5-(2-Chlorobenzyl)-2-(2-chlorophenyl)-4-phenylthiazole (3y)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 2-chlorobenzaldehyde (**2j**, 69 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3y** (66.4 mg, 84%) as a white solid. mp: 123-124 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.29 (m, 1H), 7.69 (d, *J* = 7.3 Hz, 2H), 7.47 – 7.27 (m, 7H), 7.23 – 7.15 (m, 3H), 4.43 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 151.8, 137.5, 134.8, 133.8, 132.7, 132.0, 131.8, 130.6, 130.5, 130.1, 130.0, 129.6, 128.6, 128.5, 128.3, 127.9, 127.1, 126.9, 30.8. IR spectrum (v_{max}(KBr)/cm⁻¹) 3068, 1564, 1468, 1446, 1273, 1036, 978, 752, 700. HRMS (ESI) m/z calcd for C₂₂H₁₆Cl₂NS⁺ (M+H)⁺ 396.0375, found 396.0379.

5-(2-Bromobenzyl)-2-(2-bromophenyl)-4-phenylthiazole (3z)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 2-bromobenzaldehyde (**2k**, 70 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3z** (77.4 mg, 80%) as a white solid. mp: 116-117 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 7.9, 1.7 Hz, 1H), 7.78 – 7.64 (m, 3H), 7.60 (dd, J = 8.0, 1.0 Hz, 1H), 7.50 – 7.34 (m, 4H), 7.31 – 7.10 (m, 4H), 4.44 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 152.0, 139.2, 139.2, 134.7, 134.1, 134.0, 133.0, 132.8, 131.4, 130.3, 130.1, 128.6, 128.5, 128.0, 127.8, 127.4, 124.3, 121.5, 33.6. IR spectrum (v_{max}(KBr)/cm⁻¹) 3062, 1485, 1461, 1413, 1022, 760, 700. HRMS (ESI) m/z calcd for C₂₂H₁₆Br₂NS⁺ (M+H)⁺ 483.9365, found 483.9369.

5-(3-Methylbenzyl)-4-phenyl-2-(*m*-tolyl)thiazole (3aa)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 3-methylbenzaldehyde (**2l**, 73 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3aa** (49.7 mg, 70%) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.75 – 7.69 (m, 3H), 7.45 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.06 (t, J = 8.3 Hz, 3H), 4.26 (s, 2H),

2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 152.3, 140.0, 138.5, 138.4, 135.0, 133.6, 133.1, 130.6, 129.1, 128.8, 128.7, 128.6, 128.5 127.9, 127.5, 126.9, 125.4, 123.6, 33.2, 21.4, 21.3. IR spectrum (v_{max} (KBr)/cm⁻¹) 3055, 2917, 1740, 1605, 1483, 787, 769, 692. HRMS (ESI) m/z calcd for C₂₄H₂₂NS⁺ (M+H)⁺ 356.1468, found 356.1471.

5-(3-Chlorobenzyl)-2-(3-chlorophenyl)-4-phenylthiazole (3ab)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 3-chlorobenzaldehyde (**2m**, 70 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether) yielded **3ab** (45.8 mg, 58%) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.78 (d, J = 7.1 Hz, 1H), 7.67 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.4 Hz, 2H), 7.42 – 7.30 (m, 3H), 7.28 – 7.19 (m, 3H), 7.10 (t, J = 6.2 Hz, 1H), 4.27 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 153.1, 141.7, 135.2, 134.9, 134.6, 134.5, 132.6, 130.1, 130.0, 129.8, 128.7, 128.6, 128.5, 128.2, 127.1, 126.5, 126.2, 124.5, 32.9. IR spectrum (v_{max} (KBr)/cm⁻¹) 3062, 2925, 1595, 1475, 1246, 1076, 777, 698. HRMS (ESI) m/z calcd for C₂₂H₁₅Cl₂NS⁺ (M+H)⁺ 396.0375, found 396.0380.

5-(3-Bromobenzyl)-2-(3-bromophenyl)-4-phenylthiazole (3ac)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 3-bromobenzaldehyde (**2n**, 72 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether) yielded **3ac** (55.2 mg, 57%) as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 7.2 Hz, 2H), 7.53 – 7.36 (m, 6H), 7.27 (t, J = 8.1 Hz, 1H), 7.21 – 7.12 (m, 2H), 4.26 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 153.2, 142.1, 135.5, 134.5, 132.7, 132.6, 131.4, 130.3, 130.1, 129.1, 128.7, 128.6, 128.2, 128.0, 127.0, 125.0, 123.0, 122.9, 32.8. IR spectrum (v_{max}(KBr)/cm⁻¹) 3060, 2927, 1591, 1477, 1240, 1070, 993, 773, 698. HRMS (ESI) m/z calcd for C₂₂H₁₆Br₂NS⁺ (M+H)⁺ 483.9365, found 483.9370.

4-Phenyl-2-(thiophen-3-yl)-5-(thiophen-3-ylmethyl)thiazole (3ad)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), thiophene-3-carbaldehyde (**2o**, 54 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3ad** (30.5 mg, 45%) as a brown solid. mp: 104-105 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 2.8, 0.9 Hz, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.56 (dd, J = 5.0, 1.1 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.39 – 7.34 (m, 2H), 7.32 – 7.29 (m, 1H), 7.07 – 7.03 (m, 1H), 6.97 (dd, J = 5.0, 1.2 Hz, 1H), 4.27 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 151.9, 140.3, 135.9, 134.8, 131.8, 128.7, 128.5, 128.0, 127.8, 126.5, 126.2, 126.2, 123.5, 121.7, 28.1. IR spectrum (v_{max}(KBr)/cm⁻¹) 3089, 1481, 1248, 860, 781, 696, 648. HRMS (ESI) m/z calcd for C₁₈H₁₄NS₃⁺ (M+H)⁺ 340.0283, found 340.0287.

4-Phenyl-2-(thiophen-2-yl)-5-(thiophen-2-ylmethyl)thiazole (3ae)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), thiophene-2-carbaldehyde (**2p**, 57 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3ae** (24.4 mg, 36%) as a brown solid. mp: 122-123 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.66 (m, 2H), 7.47 – 7.41 (m, 3H), 7.40 – 7.34 (m, 2H), 7.20 (dd, J = 5.1, 1.0 Hz, 1H), 7.06 – 7.02 (m, 1H), 6.98 – 6.94 (m, 1H), 6.90 (d, J = 2.5 Hz, 1H), 4.42 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 152.0, 142.6, 137.4, 134.4, 131.6, 128.8, 128.5, 128.1, 127.7, 127.5, 127.0, 126.4, 125.5, 124.5, 27.7. IR spectrum (v_{max}(KBr)/cm⁻¹) 3077, 2925, 1483, 1413, 1259, 843, 775, 708. HRMS (ESI) m/z calcd for C₁₈H₁₄NS₃⁺ (M+H)⁺ 340.0283, found 340.0289.

2-(Naphthalen-2-yl)-5-(naphthalen-2-ylmethyl)-4-phenylthiazole (3af)

The general procedure A was followed using acetophenone (**1a**, 24 μ L, 0.2 mmol), 2-naphthaldehyde (**2q**, 94 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **3af** (64.1 mg, 75%) as a white solid. mp: 145-146 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 0.8 Hz, 1H), 8.07 (dd, J = 8.6, 1.7 Hz, 1H), 7.88 – 7.77 (m, 8H), 7.70 (s, 1H), 7.50 – 7.44 (m, 6H), 7.41 – 7.22 (m, 2H), 4.48 (s, 2H). ¹³C NMR (100 MHz,

CDCl₃) δ 165.4, 152.8, 137.6, 134.9, 134.0, 133.6, 133.3, 133.2, 132.4, 131.1, 128.8, 128.6, 128.5, 128.0, 127.8, 127.7, 127.7, 126.8, 126.7, 126.6, 126.3, 125.8, 125.7, 123.9, 33.5. IR spectrum (v_{max} (KBr)/cm⁻¹) 3055, 1595, 1493, 856, 812, 748, 698, 472. HRMS (ESI) m/z calcd for $C_{30}H_{22}NS^+$ (M+H)⁺ 428.1468, found 428.1466.

5-Methyl-2,4-diphenylthiazole (4a)

The general procedure B was followed using propiophenone (**1q**, 27 μ L, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **4a** (25.1 mg, 50%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.1, 1.8 Hz, 2H), 7.76 – 7.69 (m, 2H), 7.49 – 7.38 (m, 6H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 163.8, 151.8, 134.8, 133.6, 129.7, 128.8, 128.7, 128.4, 127.7, 126.4, 12.8. IR spectrum (v_{max} (KBr)/cm⁻¹) 3060, 2925, 1666, 1483, 1248, 764, 698. HRMS (ESI) m/z calcd for C₁₆H₁₄NS⁺ (M+H)⁺ 252.0842, found 252.0843.

2,4,5-Triphenylthiazole (4b)

The general procedure B was followed using 1,2-diphenylethan-1-one (**1r**, 40 mg, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **4b** (32.6 mg, 52%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 7.8, 1.9 Hz, 2H), 7.60 (dd, J = 7.8, 2.2 Hz, 2H), 7.48 – 7.42 (m, 3H), 7.41 – 7.37 (m, 2H), 7.35 – 7.28 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 150.7, 134.9, 133.6, 133.1, 132.0, 130.0, 129.6, 129.1, 128.9, 128.7, 128.3, 128.2, 127.8, 126.4. IR spectrum (v_{max} (KBr)/cm⁻¹) 3050, 1599, 1477, 978, 764, 692. HRMS (ESI) m/z calcd for C₂₁H₁₆NS⁺ (M+H)⁺ 314.0998, found 314.0998.

5-Ethyl-2-phenyl-4-propylthiazole (4c)

The general procedure B was followed using heptan-4-one (**1s**, 28 μ L, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 200/1) yielded **4c** (22.7 mg, 49%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.86 (m, 2H), 7.41 – 7.36 (m, 3H), 2.80 (q, *J* = 7.5 Hz, 2H), 2.69 (t, 2H), 1.75 (q, *J* = 15.0, 7.5 Hz, 2H), 1.30 (t, *J* = 7.5 Hz, 3H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 152.7, 134.7, 134.1, 129.3, 128.8, 126.2, 31.1, 23.1, 19.9, 16.7, 13.9. IR spectrum (v_{max}(KBr)/cm⁻¹) 3064, 2960, 1684, 1458, 760, 688. HRMS (ESI) m/z calcd for C₁₄H₁₈NS⁺ (M+H)⁺ 232.1155, found 232.1151.

2-Phenyl-4,5,6,7-tetrahydrobenzo[d]thiazole (4d)

The general procedure B was followed using cyclohexanone (**1t**, 21 μ L, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **4d** (18.9 mg, 44%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.80 (m, 2H), 7.41 – 7.29 (m, 3H), 2.86 – 2.72 (m, 4H), 1.90 – 1.79 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 151.2, 133.9, 129.2, 129.0, 128.6, 126.0, 26.7, 23.5, 23.2, 22.8. IR spectrum (v_{max} (KBr)/cm⁻¹) 3062, 2937, 1541, 1458, 974, 760, 688. HRMS (ESI) m/z calcd for C₁₃H₁₄NS⁺ (M+H)⁺ 216.0842, found 216.0846.

2-Phenyl-5,6,7,8-tetrahydro-4H-cyclohepta[d]thiazole (4e)

The general procedure B was followed using cycloheptanone (**1u**, 24 μ L, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **4e** (28.9 mg, 63%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.41 – 7.34 (m, 3H), 3.03 – 2.99 (m, 2H), 2.86 – 2.81 (m, 2H), 1.90 – 1.84 (m, 2H), 1.78 – 1.69 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 156.4, 133.9, 133.0, 129.2, 128.7, 126.0, 31.9, 31.6, 28.0, 26.6. IR spectrum (v_{max} (KBr)/cm⁻¹) 3062, 2924, 1599, 1537, 1500, 1458, 1234, 760, 688. HRMS (ESI) m/z calcd for C₁₄H₁₆NS⁺ (M+H)⁺ 230.0998, found 230.1001.

2-Phenyl-4,5,6,7,8,9-hexahydrocycloocta[d]thiazole (4f)

The general procedure B was followed using cyclooctanone (**1v**, 26 mg, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **4f** (33.0 mg, 68%) as a brown solid. mp: 61-62 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.43 – 7.34 (m, 3H), 2.95 – 2.87 (m, 4H), 1.80 – 1.69 (m, 4H), 1.49 – 1.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 154.4, 134.1, 131.6, 129.2, 128.7, 126.1, 31.5, 29.8, 28.3, 26.0, 25.4, 24.7. IR spectrum (v_{max}(KBr)/cm⁻¹) 3062, 2927,

1539, 1458, 1238, 987, 758, 685. HRMS (ESI) m/z calcd for $C_{15}H_{18}NS^+$ (M+H)⁺ 244.1155, found 244.1159.

2-Phenyl-4,5,6,7,8,9,10,11,12,13-decahydrocyclododeca[d]thiazole (4g)

The general procedure B was followed using cyclododecanone (**1w**, 37 mg, 0.2 mmol), benzaldehyde (**2a**, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **4g** (38.3 mg, 64%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 6.8 Hz, 2H), 7.43 – 7.33 (m, 3H), 2.82 (t, J = 6.9 Hz, 2H), 2.74 (t, J = 6.7 Hz, 2H), 1.94 – 1.84 (m, 2H), 1.79 – 1.72 (m, 2H), 1.46 – 1.24 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 153.4, 134.1, 134.0, 129.4, 128.7, 126.2, 30.1, 27.4, 25.8, 24.8, 24.6, 24.4, 24.1, 23.5, 22.6, 22.2. IR spectrum (v_{max}(KBr)/cm⁻¹) 2929, 2856, 1664, 1468, 1250, 1051, 760, 687. HRMS (ESI) m/z calcd for C₁₉H₂₆NS⁺ (M+H)⁺ 300.1781, found 300.1788.

2-(4-Methoxyphenyl)-5,6,7,8-tetrahydro-4H-cyclohepta[d]thiazole (4h)

The general procedure B was followed using cyclooctanone (**1v**, 26 mg, 0.2 mmol), 4-methoxybenzaldehyde (**2d**, 38 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 50/1) yielded **4h** (43.7 mg, 80%) as a white solid. mp: 66-67 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 2.93 – 2.84 (m, 4H), 1.73 (d, J = 24.6 Hz, 4H), 1.49 – 1.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 160.5, 154.0, 130.5, 127.5, 127.1, 114.0, 55.3, 31.4, 29.8, 28.2, 26.0, 25.4, 24.6. IR spectrum (v_{max} (KBr)/cm⁻¹) 2927, 1608, 1517, 1450, 1248, 1026, 820, 594. HRMS (ESI) m/z calcd for C₁₆H₂₀NOS⁺ (M+H)⁺ 274.1260, found 274.1263.

2-(4-Bromophenyl)-5,6,7,8-tetrahydro-4H-cyclohepta[d]thiazole (4i)

The general procedure B was followed using cyclooctanone (**1v**, 26 mg, 0.2 mmol), 4-bromobenzaldehyde (**2g**, 56 mg, 0.3 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **4i** (38.0 mg, 59%) as a yellow solid. mp: 89-90 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 2.95 – 2.86 (m, 4H), 1.74 (d, J = 19.7 Hz, 4H), 1.49 – 1.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 154.7, 133.0, 132.2, 131.9, 127.5, 123.3, 31.4, 29.8, 28.3, 26.0, 25.4, 24.7. IR spectrum (v_{max}(KBr)/cm⁻¹) 2920, 1537, 1493, 1440, 1240, 1068, 987, 829. HRMS (ESI) m/z calcd for C₁₅H₁₇BrNS⁺ (M+H)⁺ 322.0260, found 322.0259.

2-(2-Chlorophenyl)-5,6,7,8-tetrahydro-4H-cyclohepta[d]thiazole (4j)

The general procedure B was followed using cycloheptanone (**1v**, 26 mg, 0.2 mmol), 2-chlorobenzaldehyde (**2j**, 35 μ L, 0.4 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (12.8 mg, 0.4 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **4j** (36.1 mg, 65%) as a brown liquid.

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.35 – 7.25 (m, 2H), 2.97 – 2.91 (m, 4H), 1.80 – 1.71 (m, 4H), 1.49 – 1.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 153.2, 133.7, 132.4, 131.5, 130.5, 129.5, 126.9, 31.5, 29.8, 28.1, 25.9, 25.4, 24.5. IR spectrum (v_{max} (KBr)/cm⁻¹) 3066, 2929, 1703, 1539, 1479, 1271, 1065, 985, 754. HRMS (ESI) m/z calcd for C₁₅H₁₇ClNS⁺ (M+H)⁺ 278.0765, found 278.0767.

(*E*)-2-Phenyl-5-propyl-4-styrylthiazole (5a)

The general procedure C was followed using hexan-2-one (**1x**, 26 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5a** (31.1 mg, 51%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.1, 1.6 Hz, 2H), 7.64 (d, J = 15.7 Hz, 1H), 7.57 (d, J = 7.5 Hz, 2H), 7.45 – 7.34 (m, 5H), 7.29 – 7.24 (m, 1H), 7.08 (d, J = 15.7 Hz, 1H), 2.91 (t, J = 7.5 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.04 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 149.6, 137.6, 135.5, 133.8, 131.1, 129.8, 128.8, 128.6, 127.6, 126.6, 126.5, 119.1, 28.2, 25.2, 13.7. IR spectrum (v_{max}(KBr)/cm⁻¹) 3061, 2962, 2871, 1470, 960, 756, 692. HRMS (ESI) m/z calcd for C₂₀H₂₀NS⁺ (M+H)⁺ 306.1311, found 306.1314.

(E)-5-Butyl-2-phenyl-4-styrylthiazole (5b)

The general procedure C was followed using heptan-2-one (**1y**, 29 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5b** (35.7 mg, 56%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 7.9, 1.5 Hz, 2H), 7.64 (d, J = 15.7 Hz, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.46 – 7.34 (m, 5H), 7.29 – 7.24 (m, 1H), 7.08 (d, J = 15.7 Hz, 1H), 2.94 (t, J = 7.6 Hz, 2H), 1.75 – 1.66 (m, 2H), 1.51 – 1.40 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 149.5, 137.5, 135.8, 133.8, 131.1, 129.8, 128.8, 128.6, 127.6, 126.6, 126.5, 119.1,

34.0, 25.9, 22.2, 13.8. IR spectrum ($v_{max}(KBr)/cm^{-1}$) 3059, 2954, 1466, 1250, 960, 754, 692. HRMS (ESI) m/z calcd for $C_{21}H_{22}NS^+$ (M+H)⁺ 320.1468, found 320.1466.

(*E*)-5-Pentyl-2-phenyl-4-styrylthiazole (5c)

The general procedure C was followed using octan-2-one (1z, 32 μ L, 0.2 mmol), benzaldehyde (2a, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded 5c (34.0 mg, 51%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.0, 1.5 Hz, 2H), 7.64 (d, J = 15.7 Hz, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.45 – 7.34 (m, 5H), 7.29 – 7.24 (m, 1H), 7.08 (d, J = 15.7 Hz, 1H), 2.93 (t, J = 7.6 Hz, 2H), 1.76 – 1.68 (m, 2H), 1.44 – 1.34 (m, 4H), 0.92 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 149.5, 137.6, 135.9, 133.8, 131.0, 129.8, 128.8, 128.6, 127.6, 126.6, 126.5, 119.1, 31.6, 31.3, 26.2, 22.4, 14.0. IR spectrum (v_{max} (KBr)/cm⁻¹) 3062, 2926, 1470, 960, 754, 692. HRMS (ESI) m/z calcd for C₂₂H₂₄NS⁺ (M+H)⁺ 334.1624, found 334.1621.

(E)-5-Heptyl-2-phenyl-4-styrylthiazole (5d)

The general procedure C was followed using decan-2-one (**1aa**, 39 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5d** (43.3 mg, 60%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.0, 1.6 Hz, 2H), 7.64 (d, J = 15.7 Hz, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.45 – 7.34 (m, 5H), 7.29 – 7.24 (m, 1H), 7.07 (d, J = 15.7 Hz, 1H), 2.92 (t, J = 7.6 Hz, 2H), 1.76 – 1.66 (m, 2H), 1.42 – 1.26 (m, 8H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 149.5, 137.6, 135.9, 133.8, 131.0, 129.8, 128.8, 128.6, 127.6, 126.6, 126.5, 119.1, 31.9, 31.7, 29.1, 29.0, 26.2, 22.6, 14.1. IR spectrum (v_{max} (KBr)/cm⁻¹) 3062, 2927, 1500, 1460, 960, 754, 688. HRMS (ESI) m/z calcd for C₂₄H₂₈NS⁺ (M+H)⁺ 362.1937, found 362.1938.

(*E*)-5-Isobutyl-2-phenyl-4-styrylthiazole (5e)

The general procedure C was followed using 5-methylhexan-2-one (**1ab**, 29 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5e** (35.7 mg, 56%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.3 Hz, 2H), 7.65 (d, J = 15.7 Hz, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.46 – 7.40 (m, 3H), 7.37 (t, J = 7.6 Hz, 2H), 7.29 – 7.24 (m, 1H), 7.07 (d, J = 15.7 Hz, 1H), 2.80 (d, J = 7.1 Hz, 2H), 2.01 – 1.90 (m, 1H), 1.02 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 150.2, 137.6, 134.4, 133.8, 131.0, 129.8, 128.8, 128.6, 127.6, 126.6, 126.4, 119.3, 35.2, 31.2, 22.3. IR spectrum (v_{max}(KBr)/cm⁻¹) 3062, 2958, 1693, 1466, 962, 760, 692. HRMS (ESI) m/z calcd for C₂₁H₂₂NS⁺ (M+H)⁺ 320.1468, found 320.1469.

(E)-5-Benzyl-2-phenyl-4-styrylthiazole (5f)

The general procedure C was followed using 4-phenylbutan-2-one (**1ac**, 32 μ L, 0.2 mmol), benzaldehyde (**2a**, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5f** (41.0 mg, 58%) as a yellow solid. mp: 114-115 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.70 (d, J = 15.7 Hz, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.44 – 7.31 (m, 7H), 7.30 – 7.25 (m, 4H), 7.17 (d, J = 15.7 Hz, 1H), 4.28 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 149.9, 139.4, 137.3, 133.8, 133.4, 132.1, 130.1, 128.8, 128.8, 128.7, 128.4, 127.8, 126.9, 126.7, 126.5, 118.7, 32.2. IR spectrum (v_{max} (KBr)/cm⁻¹) 3028, 1599, 1470, 960, 760, 706. HRMS (ESI) m/z calcd for C₂₄H₂₀NS⁺ (M+H)⁺ 354.1311, found 354.1315.

(E)-5-Butyl-2-(4-fluorophenyl)-4-(4-fluorostyryl)thiazole (5g)

The general procedure C was followed using heptan-2-one (**1y**, 29 μ L, 0.2 mmol), 4-fluorobenzaldehyde (**2e**, 66 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5g** (36.9 mg, 52%) as a yellow solid. mp: 57-58 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.92 (m, 2H), 7.62 – 7.49 (m, 3H), 7.13 (t, *J* = 8.5 Hz, 2H), 7.06 (t, *J* = 8.5 Hz, 2H), 6.98 (d, *J* = 15.7 Hz, 1H), 2.92 (t, *J* = 7.5 Hz, 2H), 1.74 – 1.66 (m, 2H), 1.49 – 1.42 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8 (d, *J* = 248.6 Hz), 163.2, 162.4 (d, *J* = 245.9 Hz), 149.2, 135.7, 133.6 (d, *J* = 3.3 Hz), 130.0 (d, *J* = 3.1 Hz), 129.9, 128.3 (d, *J* = 8.4 Hz), 128.1 (d, *J* = 7.9 Hz), 118.7 (d, *J* = 2.1 Hz), 115.9 (d, *J* = 21.9 Hz), 115.6 (d, *J* = 21.5 Hz), 34.0, 25.9, 22.2, 13.8. IR spectrum (v_{max} (KBr)/cm⁻¹) 3039, 2956, 1599, 1512, 1230, 1155, 827, 494. HRMS (ESI) m/z calcd for $C_{21}H_{20}F_2NS^+$ (M+H)⁺ 356.1279, found 356.1287.

(*E*)-5-Butyl-2-(4-chlorophenyl)-4-(4-chlorostyryl)thiazole (5h)

The general procedure C was followed using heptan-2-one (**1y**, 29 μ L, 0.2 mmol), 4-chlorobenzaldehyde (**2f**, 86 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5h** (48.9 mg, 63%) as a yellow solid. mp: 53-54 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 15.7 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 15.7 Hz, 1H), 2.92 (t, J = 7.5 Hz, 2H), 1.73 – 1.65 (m, 2H), 1.48 – 1.41 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 149.3, 136.6, 135.8, 135.7, 133.2, 132.1, 129.8, 129.0, 128.8, 127.8, 127.6, 119.3, 34.0, 25.9, 22.2, 13.8. IR spectrum (v_{max} (KBr)/cm⁻¹) 3045, 2929, 1593, 1490, 1462, 1090, 833. HRMS (ESI) m/z calcd for C₂₁H₂₀Cl₂NS⁺ (M+H)⁺ 388.0688, found 388.0691.

(E)-5-Benzyl-4-(4-methylstyryl)-2-(p-tolyl)thiazole (5i)

The general procedure C was followed using 4-phenylbutan-2-one (**1ac**, 32 μ L, 0.2 mmol), 4-methylbenzaldehyde (**2b**, 73 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5i** (30.5 mg, 40%) as a yellow solid. mp: 153-154 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 2H), 7.65 (d, *J* = 15.7 Hz, 1H), 7.45 (d, *J* = 7.9 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.28 – 7.16 (m, 7H), 7.11 (d, *J* = 15.7 Hz, 1H), 4.25 (s, 2H), 2.37 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 150.0, 140.1, 139.6, 137.6, 134.5, 132.8, 131.7, 130.9, 129.5, 129.4, 128.7, 128.4, 126.8, 126.6, 126.3, 117.9, 32.1, 21.4, 21.3. IR spectrum (v_{max} (KBr)/cm⁻¹) 3020, 1600, 1520, 1468, 970, 800, 702, 584. HRMS (ESI) m/z calcd for C₂₆H₂₄NS⁺ (M+H)⁺ 382.1624, found 382.1630.

(E)-5-Benzyl-2-(4-fluorophenyl)-4-(4-fluorostyryl)thiazole (5j)

The general procedure C was followed using 4-phenylbutan-2-one (**1ac**, 32 μ L, 0.2 mmol), 4-fluorobenzaldehyde (**2e**, 66 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5j** (28.8 mg, 37%) as a yellow solid. mp: 137-138 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.63 (d, *J* = 15.7 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.36 – 7.32 (m, 2H), 7.26 (d, *J* = 7.0 Hz, 3H), 7.14 – 7.03 (m, 5H), 4.26 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 163.9 (d, *J* = 248.9 Hz), 162.5 (d, *J* = 246.0 Hz), 149.8, 139.3, 133.7, 133.4 (d, *J* = 3.3 Hz), 130.8, 129.8 (d, *J* = 3.0 Hz), 128.8, 128.4, 128.3, 128.2 (d, *J* = 8.0 Hz), 127.0, 118.4 (d, *J* = 2.1 Hz), 115.9 (d, *J* = 21.9 Hz), 115.6 (d, *J* = 21.5 Hz), 32.1. IR spectrum (v_{max} (KBr)/cm⁻¹) 3023, 1599, 1514, 1225, 965, 835, 694, 581, 497. HRMS (ESI) m/z calcd for C₂₄H₁₈F₂NS⁺ (M+H)⁺ 390.1123, found 390.1124.

(E)-5-Benzyl-2-(4-chlorophenyl)-4-(4-chlorostyryl)thiazole (5k)

The general procedure C was followed using 4-phenylbutan-2-one (**1ac**, 32 μ L, 0.2 mmol), 4-chlorobenzaldehyde (**2f**, 86 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5k** (44.7 mg, 53%) as a yellow solid. mp: 156-157 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 15.7 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 7.9 Hz, 4H), 7.25 (d, J = 7.1 Hz, 3H), 7.09 (d, J = 15.7 Hz, 1H), 4.25 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.09, 149.9, 139.2, 135.9, 135.7, 134.5, 133.4, 132.0, 130.7, 129.0, 128.8, 128.7, 128.3, 127.8, 127.6, 127.0, 119.1, 32.1. IR spectrum (v_{max}(KBr)/cm⁻¹) 3027, 1489, 1093, 1007, 966, 831, 808, 696. HRMS (ESI) m/z calcd for C₂₄H₁₈Cl₂NS⁺ (M+H)⁺ 422.0532, found 422.0530.

(E)-5-Benzyl-2-(4-bromophenyl)-4-(4-bromostyryl)thiazole (5l)

The general procedure C was followed using 4-phenylbutan-2-one (**1ac**, 32 μ L, 0.2 mmol), 4-bromobenzaldehyde (**2g**, 112 mg, 0.6 mmol), NH₄I (58 mg, 0.4 mmol) and S₈ (25.6 mg, 0.8 mmol). Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **5I** (42.9 mg, 42%) as a yellow solid. mp: 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.6, 1.8 Hz, 2H), 7.62 (d, J = 15.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.25 (m, 4H), 7.13 (dd, J = 15.8, 1.6 Hz, 1H), 4.27 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 149.7, 139.1, 136.1, 134.7, 132.1, 131.9, 131.2, 131.2, 128.9, 128.4, 128.3, 128.0, 127.1, 124.6, 121.7, 119.0, 32.4. IR spectrum (v_{max}(KBr)/cm⁻¹) 3026, 1485, 1392, 1070, 966, 808, 698. HRMS (ESI) m/z calcd for C₂₄H₁₈Br₂NS⁺ (M+H)⁺ 509.9521, found 509.9522.

(2,4-Diphenylthiazol-5-yl)(phenyl)methanone (6a)

The mixture of 5-benzyl-2,4-diphenylthiazole (65.4 mg, 0.2 mmol), CuI (19.2 mg, 50 mol%), AcOH (40 μ L, 3.5 equiv), TBHP (168 μ L, 6 equiv) and DMSO (1.0 mL) was stirred at 100 °C under air for 12 h. Purification by column chromatography on silica gel (petroleum ether/EtOAc: 100/1) yielded **6a** (49.8 mg, 73%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.04 (m, 2H), 7.69 (d, J = 7.9 Hz, 2H), 7.57 – 7.47 (m, 5H), 7.40 (t, J = 7.3 Hz, 1H), 7.27 – 7.18 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 170.0, 158.7, 137.0, 134.1, 132.9, 132.8, 131.4, 131.1, 129.7, 129.7, 129.1, 128.8, 128.1, 128.0, 127.0. IR spectrum (v_{max}(KBr)/cm⁻¹) 3064, 1736, 1637, 1475, 1335, 1257, 764, 690. HRMS (ESI) m/z calcd for C₂₂H₁₆NOS⁺ (M+H)⁺ 342.0947, found 342.0949.

(E)-Phenyl(2-phenyl-4-styrylthiazol-5-yl)methanone (6b)

The mixture of (*E*)-5-benzyl-2-phenyl-4-styrylthiazole (70.6 mg, 0.2 mmol), CuI (19.2 mg, 50 mol%), AcOH (40 μ L, 3.5 equiv), TBHP (168 μ L, 6 equiv) and DMSO (1.0 mL) was stirred at 100 °C under air for 12 h. Purification by column chromatography on silica gel (petroleum ether/DCM: 4/3) yielded **6b** (38.9 mg, 53%) as a yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.05 (m, 2H), 7.96 (d, *J* = 15.8 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.65 – 7.58 (m, 2H), 7.55 – 7.48 (m, 7H), 7.37 – 7.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6, 170.3, 158.5, 140.1, 137.1, 136.6, 132.8, 132.8, 131.4, 129.5, 129.1, 129.1, 128.7, 128.7, 128.6, 127.4, 127.2, 121.0. IR spectrum (v_{max}(KBr)/cm⁻¹) 3419, 2975, 1633, 1430, 1050, 758, 693. HRMS (ESI) m/z calcd for C₂₄H₁₈NOS⁺ (M+H)⁺ 368.1104, found 368.1104.

Mechanistic studies

(a) Treatment of ketone 1a-d₈: A mixture of ketone (1a-d₈, 24 μ L, 0.2 mmol), benzaldehyde (2a, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol) and H₂O (22 μ L, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. GC-MS analysis of the organic solvent revealed that no benzyl deuterated product formed.

(b) Treatment of aldehyde 2a-d₁: A mixture of acetophenone (1a, 24 μ L, 0.2 mmol), aldehyde (2a-d₁, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol) and H₂O (22 μ L, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. After cooling to room temperature, the reaction was diluted with ethyl acetate and water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the benzene deuterated product. ¹H NMR analysis revealed that the benzyl deuterated product was formed in 32%.

7.962 7.956 7.956 7.776 7.776 7.777 7.471 7.471 7.473 7.4139 7.4139 7.4139 7.4139 7.4139 7.4139 7.4139 7.4139 7.4139 7.4139 7.7149 7.7149 7.7149 7.7149 7.71

---0.000

(c) Treatment of D_2O : A mixture of acetophenone (1a, 24 µL, 0.2 mmol), benzaldehyde (2a, 61 µL, 0.6 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol) and D₂O (22 µL, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. After cooling to room temperature, the reaction was diluted with ethyl acetate and water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the benzene deuterated product. ¹H NMR analysis revealed that the benzyl deuterated product formed in 38%.

---0.000

(d) Thiazole formation from (*E*)-chalcone: A mixture of (*E*)-chalcone (43 mg, 0.2 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol) and H₂O (22 μ L, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. After cooling to room temperature, the reaction was diluted with ethyl acetate and water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ EtOAc = 200/1) to yield the product **3a** (17.0 mg, 52%).

(e) Thiazole formation from (*E*)-chalcone and 2j: A mixture of (*E*)-chalcone (1a') (43 mg, 0.2 mmol), 2-chlorobenzaldehyde (2j) (24 μ L, 0.2 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol) and H₂O (22 μ L, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. GC-MS analysis of the organic solvent revealed that four thiazole products formed.

(f) Free radical trapping experiment with TEMPO, BHT, and DBE: Three reactions were performed under standard conditions with 2.0 equiv of radical trapping agent. After cooling to room temperature, the reaction was diluted with ethyl acetate and water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ EtOAc = 200/1). Then the product of each reaction was isolated to provide the following conversions:

$$Ph + PhCHO + NH_{4}I + S_{8} \xrightarrow{\text{TEMPO}} Ph + S_{8} \xrightarrow{\text{Ph}} Ph + S_{8} \xrightarrow{\text{Standard}} Ph + S_{8} \xrightarrow{\text{Ph}} Ph + S_{8} \xrightarrow{\text{Ph$$

(g) Treatment of the following ketones: A mixture of 3,3-dimethylbutan-2-one (26 μ L, 0.2 mmol) / propan-2-one (15 μ L, 0.2 mmol), benzaldehyde (2a, 61 μ L, 0.6 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol) and H₂O (22 μ L, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. Then, the mixture was flushed through a short column of silica gel with EtOAc, and the combined organic layer was dried over magnesium sulfate. With dodecane (46 μ L, 0.2 mmol) as the internal standard, GC analysis of the organic solvent revealed that trace amounts of both 5-benzyl-4-(*tert*-butyl)-2-phenylthiazole and 5-benzyl-4-methyl-2-phenylthiazole formed.

(h) Reaction with dibenzylidene acetone (dba): A mixture of dibenzylidene acetone (48 mg, 0.2 mmol), benzaldehyde (2a, 30 μ L, 0.3 mmol), NH₄I (58 mg, 0.4 mmol), S₈ (12.8 mg, 0.4 mmol)

and H_2O (22 µL, 6 equiv) in pyridine (0.6 mL) was stirred under ambient air at 150 °C for 20 h. Then, the mixture was flushed through a short column of silica gel with EtOAc, and the combined organic layer was dried over magnesium sulfate. With dodecane (46 µL, 0.2 mmol) as the internal standard, GC-MS analysis revealed that the corresponding product formed in 25%.

Ph + PhCHO + NH₄I + S₈ standard Ph + PhCHO + NH₄I + S₈ standard Bn S Ph 25%

Copies of ¹H and ¹³C NMR spectra of all products

¹H and ¹³C NMR spectra of 3a

¹H and ¹³C NMR spectra of 3b

¹H and ¹³C NMR spectra of 3c

¹H and ¹³C NMR spectra of 3d

¹H and ¹³C NMR spectra of 3e

¹H and ¹³C NMR spectra of 3f

¹H and ¹³C NMR spectra of 3g

¹H and ¹³C NMR spectra of 3h

¹H and ¹³C NMR spectra of 3i

¹H and ¹³C NMR spectra of 3j

¹H and ¹³C NMR spectra of 3k

¹H and ¹³C NMR spectra of 3l

-0.000

¹H and ¹³C NMR spectra of 3m

¹H and ¹³C NMR spectra of 3n

S58

¹H and ¹³C NMR spectra of 30

¹H and ¹³C NMR spectra of 3p

¹H and ¹³C NMR spectra of 3q

¹H and ¹³C NMR spectra of 3r

¹H and ¹³C NMR spectra of 3s

¹H and ¹³C NMR spectra of 3t

¹H and ¹³C NMR spectra of 3u

¹H and ¹³C NMR spectra of 3v

¹H and ¹³C NMR spectra of 3w

¹H and ¹³C NMR spectra of 3x

¹H and ¹³C NMR spectra of 3y

¹H and ¹³C NMR spectra of 3z

¹H and ¹³C NMR spectra of 3aa

¹H and ¹³C NMR spectra of 3ab

¹H and ¹³C NMR spectra of 3ac

- 4.264

-0.000

¹H and ¹³C NMR spectra of 3ad

¹H and ¹³C NMR spectra of 3ae

¹H and ¹³C NMR spectra of 3af

¹H and ¹³C NMR spectra of 4a

110 100 90 fl (ppm) o

¹H and ¹³C NMR spectra of 4b

¹H and ¹³C NMR spectra of 4c

¹H and ¹³C NMR spectra of 4d

¹H and ¹³C NMR spectra of 4e

¹H and ¹³C NMR spectra of 4f

¹H and ¹³C NMR spectra of 4g

¹H and ¹³C NMR spectra of 4h

¹H and ¹³C NMR spectra of 4i

¹H and ¹³C NMR spectra of 4j

¹H and ¹³C NMR spectra of 5a

¹H and ¹³C NMR spectra of 5b

¹H and ¹³C NMR spectra of 5c

¹H and ¹³C NMR spectra of 5d

$\begin{array}{c} 7.995\\ 7.975\\ 7.975\\ 7.975\\ 7.617\\ 7.555\\ 7.555\\ 7.555\\ 7.555\\ 7.556\\ 7.4219\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.4419\\ 7.245\\ 7.245\\ 7.264\\ 7.264\\ 7.265\\ 7.055\\ 7.055\end{array}$

¹H and ¹³C NMR spectra of 5e

¹H and ¹³C NMR spectra of 5f

¹H and ¹³C NMR spectra of 5g

¹H and ¹³C NMR spectra of 5h

¹H and ¹³C NMR spectra of 5i

¹H and ¹³C NMR spectra of 5k

¹H and ¹³C NMR spectra of 5l

¹H and ¹³C NMR spectra of 6a

¹H and ¹³C NMR spectra of 6b

