Robust and Electron Deficient Oxidovanadium(IV) Porphyrin

Catalysts for Selective Epoxidation and Oxidative Bromination Reactions in Aqueous Media.

Tawseef Ahmad Dar, Bhawna Uprety, Muniappan Sankar* and Mannar R. Maurya*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India

Table of contents	Page No.
Figure S1. MALDI-TOF spectrum of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using HABA matrix.	3
Figure S2. MALDI-TOF spectrum of $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using HABA matrix.	3
Figure S3. FT-IR spectra of (a) 3,5-dimethoxyphenyl porphyrin (b) $\mathbf{1}$ and (c) $\mathbf{2}$ using KBr pellets.	4,5
Figure S4. MALDI-TOF spectrum of oxidoperoxido species of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ generated with $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaHCO_{3} using HABA matrix.	5
Figure S5. MALDI-TOF spectrum of oxidoperoxido species of 2 in $\mathrm{CH}_{3} \mathrm{CN}$ generated with $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaHCO_{3} using HABA matrix.	6
Figure S6. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram (DTG) of 3,5-dimethoxyphenyl porphyrin, $\mathrm{H}_{2}(\mathrm{TPP})(\mathrm{OMe})_{8}$ at a heating rate of $10^{\circ} \mathrm{C} /$ minute scanned from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.	6

Figure S7. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram (DTG) of (1) at a heating rate of $10^{\circ} \mathrm{C}$ /minute scanned from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.	7
Figure S8. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram (DTG) of (2) at a heating rate of $10^{\circ} \mathrm{C} /$ minute scanned from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.	7
Figure S9. B3LYP/LANL2DZ set generated optimized geometry of 1 showing (a) top view and (b) side view. In the side view, front and back side substituents are not shown for better viewing.	8
Figure S10. UV-Visible spectra of $\mathbf{1}$ and $\mathbf{2}$ after being recovered from the catalytic reactions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .	9
Table S1. UV-Visible spectral data and molar absorptivity constants of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .	8
Table S2. Crystal structure data of $\operatorname{VOTPP}(\mathrm{OMe})_{8}(\mathbf{1})$ and $\operatorname{VOTPP}(\mathrm{OMe})_{8}(\mathrm{Br})_{16}$ (2).	9
Table S3. Selected average bond lengths and bond angles for $\operatorname{VOTPP}(\mathrm{OMe})_{8}(\mathbf{1})$ and $\operatorname{VOTPP}(\mathrm{OMe})_{8}(\mathrm{Br})_{16}(\mathbf{2})$ from single crystal XRD studies.	10
Equation 1: Equation used for calculating TOF (h^{-1}).	10

Figure S1. MALDI-TOF spectrum of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using HABA matrix.

Figure S2. MALDI-TOF spectrum of $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using HABA matrix.
(a)

(b)

(c)

Figure S3. FT-IR spectra of (a) 3,5-dimethoxyphenyl porphyrin (b) $\mathbf{1}$ and (c) $\mathbf{2}$ using KBr pellets.

Figure S4. MALDI-TOF spectrum of oxidoperoxido species of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ generated with $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaHCO 3 using HABA matrix.

Comment 1
Comment 2

Bruker Daltonics flexAnalysis

Figure S5. MALDI-TOF spectrum of oxidoperoxido species of 2 in $\mathrm{CH}_{3} \mathrm{CN}$ generated with $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaHCO_{3} using HABA matrix.

Figure S6. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram (DTG) of 3,5-dimethoxyphenyl porphyrin, $\mathrm{H}_{2}(\mathrm{TPP})(\mathrm{OMe})_{8}$ at a heating rate of $10{ }^{\circ} \mathrm{C} /$ minute scanned from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.

Figure S7. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram (DTG) of (1) at a heating rate of $10^{\circ} \mathrm{C} /$ minute scanned from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.

Figure S8. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram
(DTG) of (2) at a heating rate of $10^{\circ} \mathrm{C} /$ minute scanned from $25^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.

Figure S9. B3LYP/LANL2DZ set generated optimized geometry of $\mathbf{1}$ showing (a) top view and (b) side view. In the side view, front and back side substituents are not shown for better viewing.

Table S1. UV-Visible spectral data and molar absorptivity constants of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K.

Compound	B Band(s),nm	Q band(s), nm
$\mathrm{VO}(\mathrm{TPP})(\mathrm{OMe})_{8}(\mathbf{1})$	$425(5.57)$	$547(4.28)$
$\mathrm{VOT}(\mathrm{TPP})(\mathrm{OMe})(\mathrm{Br})_{16}(\mathbf{2})$	$463(5.31)$	$592(4.24)$

Figure S10. UV-Visible spectra of $\mathbf{1}$ and $\mathbf{2}$ after being recovered from the catalytic reactions in DCM at 298 K .

Table S2. Crystal structure data of $\operatorname{VO}(\mathrm{TPP})(\mathrm{OMe})_{8}(\mathbf{1})$ and $\mathrm{VO}(\mathrm{TPP})(\mathrm{OMe})_{8}(\mathrm{Br})_{16}(\mathbf{2})$.

	1-NC (from $\left.\mathbf{C H}_{3} \mathbf{C N}\right)$	$\mathbf{2}$
Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~V}$	$\mathrm{C}_{52} \mathrm{H}_{28} \mathrm{Br}_{16} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~V}$
Formula wt.	945.88	2182.28
Crystal system	Orthorhombic	Orthorhombic
Space group	P c c n	P c a b
$a(\AA)$	$13.829(5)$	$20.733(9)$
$b(\AA)$	$14.439(5)$	$26.304(12)$
$c(\AA)$	$26.153(5)$	$28.112(13)$
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	90	90
$\gamma\left({ }^{\circ}\right)$	90	90
Volume $\left(\AA^{3}\right)$	5222.15	15331.2
Z	8	12
$\mathrm{D}_{\text {cald }}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	1.272	2.836
$\lambda(\AA)$	0.71073	0.71073
$\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)$	293 K	5640
No. of reflns.	6490	2634
No. of indepnt. reflns.	3816	7.83
R	9.27	23.13
R_{w}	26.32	1861933
$\mathrm{CCDC} \mathrm{No}$.	1861934	

Table S3. Selected average bond lengths and bond angles for $\mathrm{VO}(\mathrm{TPP})(\mathrm{OMe})_{8}$ (1) and $\mathrm{VO}(\mathrm{TPP})(\mathrm{OMe})_{8}(\mathrm{Br})_{16}(\mathbf{2})$ from single crystal XRD studies.

	1	2
Bond Length (\AA)		
$\mathrm{N}-\mathrm{C}_{\alpha}$	1.371 (9)	1.365 (4)
$\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$	1.445 (1)	1.455 (5)
$\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$	1.37 (1)	1.352 (5)
$\mathrm{C}_{\alpha}-\mathrm{C}_{\mathrm{m}}$	1.393 (1)	1.387 (5)
M-N	2.704	2.082 (3)
$\Delta \mathrm{C}_{\beta}{ }^{\text {a }}$	0.036	1.011
$\Delta 24^{\text {b }}$	0.030	0.495
$\Delta \mathrm{C}_{\text {a }}$	0.026	0.396
$\Delta \mathrm{C}_{\mathrm{m}}$	0.021	0.044
$\Delta \mathrm{N}$	0.033	0.113
$\Delta \mathrm{M}$	0.555	0.453
Bond Angle (${ }^{\circ}$)		
$\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}_{\mathrm{m}}$	125.725 (6)	124.262 (3)
$\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$	110.02 (6)	106.875 (3)
$\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}-\mathrm{C}_{\mathrm{m}}$	124.26 (6)	128 (3)
$\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$	107.03 (6)	107.625 (3)
$\mathrm{C}_{\alpha}-\mathrm{N}-\mathrm{C}_{\alpha}$	105.92 (5)	110.242 (3)
$\mathrm{M}-\mathrm{N}-\mathrm{C}_{\alpha}$	126	121.875 (2)
N-M-N	150.955	154 (1)
adjacent pyrrole rings	2.96	35.065
Mean dihedral angle Relative to Mean Plane (${ }^{\circ}$)		
meso-Ph	74.17, 75.43	55.6, 53.17
Pyrrole	1.41, 2.14	25.655, 24.695

${ }^{\mathrm{a}} \Delta \mathrm{C}_{\beta}$ refers to the mean plane deviation of β-pyrrole carbons.
${ }^{\mathrm{b}} \Delta 24$ refers to the mean plane displacement of 24 -atom core.

Equation 1: Equation used for calculating TOF

$$
\text { TOF }\left(h^{-1}\right)=\% \text { conversion } \times \text { mmol of substrate } / 100 \times \text { mmol of cat. used } \times \text { reaction time }(h)
$$

