Supplementary Information

Cul-anchored onto mesoporous SBA-16 functionalized by aminated 3glycidyloxypropyltrimethoxysilane with thiosemicarbazide (SBA-16/ GPTMS-TSC-Cul): a heterogeneous mesostructured catalyst for S-arylation reaction under solvent-free conditions

Sara. S. E. Ghodsinia, Batool Akhlaghinia*

*Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974,

Iran.

Experimental

General

All chemical reagents and solvents were purchased from Merck and Sigma-Aldrich chemical companies and were used as received without further purification. The purity determinations of the products and the progress of the reactions were accomplished by TLC on silica gel polygram STL G/UV 254 plates. The melting points of the products were determined with an Electrothermal Type 9100 melting point apparatus. The NMR spectra were recorded on Brucker Avance 400 MHz instruments in CDCl₃ and DMSO- d_6 as solvent. Mass spectra were recorded with a CH7A Varianmat Bremem instrument at 70 eV electron impact ionization, in m/z (rel %). All the yields refer to isolated products after purification by thin layer chromatography or recrystallization from ethanol. In addition, the structures of all of prepared products were well corroborated by surveying their high-field ¹H NMR and ¹³C NMR spectral data and comparison of their melting points with known compounds.

Diphenyl sulfide^[1] (1S)

Diphenyl sulfide from thiourea (0.176 g, 95%) and S₈ (0.182 g, 98%). Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.34-7.31 (m, 5H), 7.29-7.25 (m, 3H), 7.23-7.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 135.9, 131.2, 129.4, 127.2; MS (70 eV, EI), *m/z* (%): 186 (M⁺, 12 %), 184 (M-2, 100%), 108 (C₆H₄S, 90%), 76 (C₆H₄, 42%), 65 (C₅H₅, 40%), 51 (C₄H₃, 28%).

Figure 1: ¹H NMR (400 MHz, CDCl₃) of Diphenyl sulfide (1S).

Figure 2: ¹³C NMR (100 MHz, CDCl₃) of Diphenyl sulfide (1S).

Figure 3: Mass spectrum of Diphenyl sulfide (18).

Bis(4-methoxyphenyl)sulfane^[1] (2S)

Bis(4-methoxyphenyl)sulfane from thiourea (0.172g, 70%) and S₈ (0.201 g, 82%). Yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.27 (d, *J* = 8.8 Hz, 4 H, Ar-H), 6.83 (d, *J* = 8.8 Hz, 4 H, Ar-H), 3.78 (s, 6 H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 159.1, 132.9, 127.6, 114.9, 55.5; MS (70 eV, EI), *m/z* (%): 246 (M⁺, 5 %), 243 (M-2, 65%), 140 (C₇H₇OS, 23 %), 77 (C₆H₅, 80).

Figure 4: ¹H NMR (400 MHz, CDCl₃) of Bis(4-methoxyphenyl)sulfane (2S).

Figure 5: ¹³C NMR (100 MHz, CDCl₃) of Bis(4-methoxyphenyl)sulfane (2S).

Figure 6: Mass spectrum of Bis(4-methoxyphenyl)sulfane (28).

Di-(p-tolyl) sulfane^[2] (38)

Di-(*p*-tolyl) sulfane from thiourea (0.158 g, 74%) and S₈ (0.182 g, 85%). Colorless oil; (Lit. 43–46 °C); ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.23 d, *J* = 8.4 Hz, 4 H, Ar-H), 7.10 (d, *J* = 7.6 Hz, 4H, ArH), 2.32 (s, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 137.1, 132.8, 131.2, 130.1, 21.3); MS (70 eV, EI), *m/z* (%): 214 (M⁺, 7%), 212 (M-2, 50%), 123 (C₇H₇S, 15%), 91 (C₇H₇, 67%).

Figure 7: ¹H NMR (400 MHz, CDCl₃) of Di-(*p*-tolyl) sulfane (**3**S).

Figure 8: ¹³CNMR (100 MHz, CDCl₃) of Di-(*p*-tolyl) sulfane (**3S**).

Figure 9: Mass spectrum of Di-(*p*-tolyl) sulfane (**3S**).

4,4'-Thiodibenzonitrile^[3] (48)

4,4'-Thiodibenzonitrile from thiourea (0.198 g, 84%) and S₈ (0.217 g, 91%). Yellow solid; mp 134-135 °C (Lit. 134 – 135 °C); ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.43 (d, *J* = 8.8 Hz, 4 H, Ar-H), 7.19 (d, *J* = 8.4 Hz, 4 H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 140.6, 133.0, 131.2, 118.2, 111.4.

Figure 10: ¹H NMR (400 MHz, CDCl₃) of 4,4'-Thiodibenzonitrile (4S).

Figure 11: ¹³C NMR (100 MHz, CDCl₃) of 4,4'-Thiodibenzonitrile (4S).

Bis (4-nitrophenyl) sulfane^[4] (5S)

Bis (4-nitrophenyl) sulfane from thiourea (0.231g, 84%) and S₈ (0.245 g, 89%). Yellow solid; mp 149-150 °C (Lit. 149-150 °C); ¹H NMR (400 MHz, DMSO-*d*₆): δ [ppm] = 7 δ 8.25 (dd, *J* = 8.4, 1.6 Hz, 4H), 7.64 (dd, *J* = 8.4, 2.0 Hz, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ [ppm] = 146.7, 142.2, 131.3, 124.8; MS (70 eV, EI), *m/z* (%): 276 (M⁺, 20%), 275 (M-1, 40%), 155 (C₆H₅NO₂S, 65%), 123 (C₆H₅NO₂, 90%).

Figure 12: ¹H NMR (400 MHz, DMSO-*d*₆) of Bis (4-nitrophenyl) sulfane (5S).

Figure 13: ¹³C NMR (100 MHz, DMSO- d_6) of Bis (4-nitrophenyl) sulfane (58).

Figure 14: Mass spectrum of Bis(4-nitrophenyl) sulfane (5S).

4,4'-Thiodianiline^[5] (6S)

4,4'-Thiodianiline from thiourea (0.177 g, 82%) and S₈ (0.185 g, 86%). Brown solid, mp 107-108 °C (Lit. 107-108 °C); ¹H NMR (400 MHz, CDCl₃): δ [ppm] 7.15 (d, *J* = 8.0 Hz, 4 H, Ar-H), 6.60 (d, *J* = 8.0 Hz, 4 H, Ar-H), 3.67 (s, 4 H, NH₂); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 145.8, 132.9, 125.2, 115.9.

Figure 15: ¹H NMR (400 MHz, CDCl₃) of 4,4'-Thiodianiline (7S).

Figure 16: ¹³C NMR (100 MHz, CDCl₃) of 4,4'-Thiodianiline (78).

4,4'-Thiodiphenol^[6] (7S)

4,4'-Thiodiphenol from thiourea (0.137 g, 63%) and S₈ (0.148 g, 68%). White solid; mp 151-153 °C (Lit. 150-153 °C); ¹H NMR (400 MHz, (400 MHz, DMSO- d_6): δ [ppm] = 9.62 (s, 2H), 7.14 (d, J = 8.4 Hz, 4H), 6.73 (d, J = 8.4 Hz, 4H); ¹³C NMR (100 MHz, DMSO- d_6): δ [ppm] = 157.0, 132.7, 124.7, 116.3.

Figure 17: ¹H NMR (400 MHz, DMSO-*d*₆) of 4,4'-Thiodiphenol (**7S**).

Figure 18: ¹³C NMR (100 MHz, DMSO-*d*₆) of 4,4'-Thiodiphenol (**7S**).

Di (thiophen-2-yl) sulfane^[7] (88)

Di (thiophen-2-yl) sulfane from thiourea (0.146 g, 74%) and S₈ (0.168 g, 85%). Yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.63–7.53 (m, 2H), 7.45–7.34 (m, 2H), 7.27–7.11 (m, 2H); ¹³C NMR (100MHz, CDCl₃): δ [ppm] = 135.5, 132.7, 129.6, 137.47.

Figure 19: ¹H NMR (400 MHz, CDCl₃) of Di (thiophen-2-yl) sulfane (88).

Figure 20: ¹³C NMR (100 MHz, CDCl₃) of Di (thiophen-2-yl) sulfane (88).

Di(naphthalen-1-yl)sulfane^[8] (9S)

Di(naphthalen-1-yl)sulfane from thiourea (0.214 g, 75%) and S₈ (0.206 g,72%). White solid. mp 156-157 °C (Lit. 156-158 °C), ¹H NMR (400 MHz, (400 MHz, CDCl₃): δ [ppm] = 8.43–8.40 (m, 2 H, Ar-H), 7.89–7.87 (m, 2 H, Ar-H), 7.78–7.76 (m, 2 H, Ar-H), 7.55–7.51 (m, 4 H, Ar-H), 7.32–7.30 (m, 4 H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 134.3, 132.8, 132.6, 130.1, 128.8, 128.2, 126.9, 126.6, 126.0, 125.3; MS (70 eV, EI), *m/z* (%): 286 (M⁺, 8%), 285 (M-1, 52%), 282 (M-4, 90%), 160 (C₁₀H₈S, 70%), 127 (C₁₀H₇, 60%).

Figure 21: ¹H NMR (400 MHz, CDCl₃) of Di(naphthalen-1-yl)sulfane (98).

Figure 22: ¹³C NMR (100 MHz, CDCl₃) of Di(naphthalen-1-yl)sulfane (9S).

Figure 23: Mass spectrum of Di(naphthalen-1-yl)sulfane (98).

References

- [1] G. Azadi, Z. Taherinia, A. Naghipour, A. Ghorbani-Choghamarani, J. Sulfur Chem., 2017, 38, 303.
- [2] P. Zhao, H. Yin, H. X. Gao, C. J. Xi, J. Org. Chem., 2013, 78, 5001.
- [3] J-H. Chun, Ch. L. Morse, Frederick T. Chin, V. W. Pike, Chem. Commun., 2013, 49, 2151.
- [4] V. S. Pilyugin, S.L. Kuznetsova, Y. E. Sapozhnikov, G. E. Chikisheva, G.V. Kiseleva, T.P.
- Vorob'eva, E. V. Klimakova, N. A. Sapozhnikova, R.D. Davletov and Z. B, Galeeva, *Russ. J. Gen. Chem.*, 2008, **78**, 446.
- [5] Y. Zhang, L. Liu, J. Chen, J. Chem. Res., 2013, 37, 19.
- [6] F. Mohanazadeh, H. Veisi, A. Sedrpoushan, M.A. Zolfigol, F. Golmohammad, S. Hemmati and M. Hashemi, *J. Sulfur. Chem.*, 2014, **35**, 7-13.
- [7] M. Kuhn, F. C. Falk, J. Paradies, Org. Lett., 2011, 13, 4100.
- [8] A. Ghorbani-Choghamarani, Z. Taherinia, RSC Adv., 2016, 6, 59410.