Electronic Supplementary Information

Enzymatic synthesis and polymerisation of β -mannosyl acrylates produced from renewable hemicellulosic glycans

Anna Rosengren^{1a}, Samuel J. Butler^{1a}, Monica Arcos-Hernandez^b, Karl-Erik Bergquist^b, Patric Jannasch^b, Henrik Stålbrand^a*

¹These authors contributed equally to the study

^aDepartment of Biochemistry and Structural Biology, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden.

^bCentre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden

*E-mail: Henrik.Stalbrand@biochemistry.lu.se, Tel: +46-46-222 8202, Fax: +46-46-222 4116

Fig. S1. TLC analysis of reactions with *Tr*Man5A (2 μ M), M₄ (5 mM) and HEMA (25 vol%). Total reaction volume was 50 μ l. On the TLC, 1 μ l of standards and 2 μ l of samples were loaded. St: Manno-oligosaccharide standards from DP1-DP6 (M₁-M₆), M4: M₄ control, 1: 5 min reaction, 2: 1 h reaction, 3: 5 h reaction. The arrow marks the indication that conjugates with HEMA were generated in the enzymatic reactions using M₄ as donor substrate.

Fig. S2. MALDI-ToF MS analysis of 24 h reactions with *Tr*Man5A and polymeric mannans as donor substrates, with or without HEMA included. Peak assignment is presented in Table S1. Red dots mark peaks that correspond to masses of products where HEMA has been conjugated with saccharides. H_n = hexose with DP n, Ac(n)= number of acetylations, $H_n^{Ac(n)}EMA$ = hexose with DP n (with or without acetylation) conjugated to HEMA. **A)** MS spectra of *Tr*Man5A reaction with LBG without HEMA. **B)** MS spectra of *Tr*Man5A reaction with LBG with HEMA included. **C)** MS spectra of *Tr*Man5A reaction with AcGGM without HEMA. **D)** MS spectra of *Tr*Man5A reaction with AcGGM with HEMA included.

Table S1. Peak assignment for peaks shown in the Fig. S2 MALDI-ToF MS spectra for A, B, C and D. Masses of peaks corresponding to products where HEMA has been conjugated with saccharides are marked red.

Peak assignment	Theoretical M+Na⁺	Found M+Na⁺ A <i>Tr</i> Man5A + LBG	Found M+Na ⁺ B <i>Tr</i> Man5A + LBG + HEMA	Found M+Na ⁺ C <i>Tr</i> Man5A + AcGGM	Found M+Na⁺ D <i>Tr</i> Man5A + AcGGM + HEMA
M1EMA	315.1056		315.0458		315.0887
H ₂	365.1060	365.0394	365.0424	365.0818	365.0883
H2 ^{Ac}	407.1165			407.0868	407.0986
H ₂ EMA	477.1584		477.0855		477.1381
H ₂ ^{AC} EMA	519.1690				519.1506
H ₃	527.1588	527.0773	527.0784		
H ₃ ^{Ac}	569.1694			569.1388	569.1499
H ₃ ^{Ac2}	611.1799			611.1467	611.1586
H ₃ EMA	639.2112		639.1271		
H ₃ ^{Ac} EMA	681.2218				681.2001
H ₄	689.2116	689.1177	689.1110		
H4 ^{Ac}	731.2222			731.1855	731.1995
H4 ^{Ac2}	773.2328			773.1956	773.2085
H4 ^{Ac2} EMA	885.2852				885.2575
H5 ^{Ac}	893.275			893.2343	893.2457
H ₅ ^{Ac2}	935.2856			935.2383	935.2560
H6 ^{Ac2}	1097.338			1097.2903	1097.2999
H ₆ ^{Ac3}	1139.349			1139.2938	1139.3103
H ₇ ^{Ac2}	1259.391			1259.3314	1259.3439

Fig. S3. $^{\rm 13}$ C NMR spectrum of the synthesised $M_2 EMA$ collected at 10 °C.

Fig. S4. Detailed resolved assignation of chemical shifts (δ_H) corresponding to protons in the mannose units of the synthesised M₂EMA.

Fig. S5. Assignation of chemical shifts (δ_c) corresponding to carbons in the mannose units of the synthesised M₂EMA. C-a, C-b correspond to chemical shifts of carbons in the acrylate.

Fig. S6. First order coupling constants (¹J _{C-1,H-1}) of M₂EMA showing values of 160 Hz which correspond to conformation of a β -linkage in the anomeric position.

Fig. S7. NOESY of M₁EMA showing strong crosspeaks between H-1 to H-2, H-3 and H-5, which correspond to β -anomer of the mannose unit. Insert shows the possible intra-residue NOE connectivities for the β -D-mannose unit.

Fig. S8. Overlay of ¹H – ¹³C HMBC (red, positive signals) and HSQC (blue, positive signals; yellow, negative signals) NMR spectra of the synthesised M₁EMA. Chemical shifts in ppm (δ). The horizontal lines are drawn at (from top to bottom): **(1)** δ_c 67.31 of C-a carbon, along that line direct bond J-coupling to H-a protons shown by the cross peaks in HSQC at δ_H 4.12 and at δ_H 3.94; **(2)** δ_c 70.45 of C-2 carbon, along that line direct bond J-coupling to δ_H 3.97 (H-2) shown by the cross peak in HSQC; **(3)** δ_c 99.92 of C-1 anomeric carbon with cross peak at δ_H 4.72 (H-1) in HSQC indicating a direct bond J-coupling between C-1 carbon and H-1 proton. The vertical line is drawn at δ_H 4.72 (H-1), in the **insert**, along this vertical line two long-range J-couplings to δ_c 70.45 (C-2) and to δ_c 67.31 (C-a) indicating the actual formation of the glycosidic linkage between the acrylate and the mannose unit at the anomeric carbon. All spectra were collected at 10 °C in D₂O.

Fig. S9. ¹H NMR spectrum of the synthesised M₁EMA collected at 10 °C. ¹H NMR (D₂0) δ in ppm: 6.14 (H-e), 5.71 (H-e), 4.72 (H-1, s), 4.33- 4.38 (H-b, m), 4.12 (H-a, m), 3.97 (H-2, dd), 3.94 (H-a, m), 3.90 (H-6, dd), 3.70 (H-6, dd), Impurity (3.64, s), 3.61 (H-3, dd), 3.54 (H-4, t), 3.35 (H-5, m), 2.70 (Impurity, s), 2.03 (Impurity, s), 1.92 (H-f, s). Brackets are used to group regions. Integral values for different peaks relative to the H-e of the acrylate peak are shown above the x-axis. There is only one H-1 shift as indicated in the spectra as expected due to the synthesised compound having one mannose unit.

S10. ¹³C NMR spectrum of the synthesised M₁EMA collected at 10 °C. ¹³C NMR (D₂0) δ in ppm: 169.73 (C-c), 135.76 (C-d), 126.99 (C-e), 99.92 (C-1), 76.31 (C-5), 72.91 (C-3), 70.45 (C-2), 67.31 (C-a), 66.75 (C-4), 64.29 (C-b), 62.49 (Impurity), 61.02 (C-6), 38.65 (Impurity), 17.43 (C-f). One peak in the sugar region at 99.92 ppm indicates the presence of one single mannose unit.