Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information

Synergistic catalysis of binary alkalis for recycling of unsaturated

polyester under mild conditions

Wenli An,^a Xiong-Lei Wang,^b Yang Yang,^a Huaxiu Xu,^a Shimei Xu,^{*a} and Yu-Zhong Wang^a

^{a.} Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials(MoE), State Key Laboratory of

Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of

Chemistry, Sichuan University, Chengdu 610064, E-mail: xushimei@scu.edu.cn

^{b.}.College of Chemical Engineering, Sichuan University, Chengdu 610064, China.

[†]Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx 00000x

Conversion mechanism

To explore the degradation mechanism and composition of UP-gel, thermogravimetric analysis (TGA) and element analysis (EA) for dried UP-gels with different molar ratios of DETA to NaOH were used to investigate contents of sodium and total nitrogen (ammonium nitrogen and amide nitrogen) in the UP-gel. To tell the content of ammonium nitrogen from amide nitrogen, acidified UP-gel was prepared for EA measurement by treated with 0.1 mol×L⁻¹ hydrochloric acid and then dried.

The residue of UP at 700°C was nearly zero, indicating that UP was composed of pure organic chemicals (Figure S3). The TG residues at 850°C of UP-gels were sodium carbonate. The compositions in UP-gels with different molar ratios of DETA to NaOH at 850°C were shown in Table S2. The generation rate of sodium carboxylate groups, ammonium carboxylate groups and amide groups were defined by the equation (1-3) respectively. There are four ester bonds in each structural unit of UP, so the amount of ester group is calculated as 4/538.8 (mol/g).

Generation rate of ammonium carboxylate =
$$\frac{\text{the amount of sodium carboxylate (mol)}}{\text{the amount of ester group (mol)}} \times 100\%$$

= $\frac{2 \times \text{the content of sodium carbonate (g/g) /106 (g/mol)}}{4/538.8 (mol/g)} \times 100\%$
= 2.541× the content of sodium carbonate (1)

$$Generation rate of ammonium carboxylate = \frac{\text{the amount of sodium carboxylate (mol)}}{\text{the amount of ester group (mol)}} \times 100\%$$
$$= \frac{\frac{1}{3} \times \text{the content of ammonium nitrogen (g/g)/14 (g/mol)}}{4/538.8 (mol/g)} \times 100\%$$
$$= 3.207 \times \text{the content of ammonium nitrogen}$$
(2)

Generation rate of amide =
$$\frac{\text{the amount of amide (mol)}}{\text{the amount of ester group (mol)}} \times 100\%$$

= $\frac{\frac{1}{3} \times \text{the content of amide nitrogen (g/g)/14(g/mol)}}{4/538.8 \text{ (mol/g)}} \times 100\%$
= 3.207 × the content of amide nitrogen

Adsorption isotherm and kinetics

In order to understand the adsorption mechanism, adsorption data was fitted by the Langmuir(4) isotherm models.

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{q_{\rm max}K_L} + \frac{1}{q_{\rm max}} \times C_{\rm e} \tag{4}$$

(3)

where the constant K_L is related to the energy of adsorption (L×mg⁻¹), q_{max} is the Langmuir maximum adsorption capacity (mg×g⁻¹), C_e (mg×L⁻¹) is the equilibrium solute concentration.

It is of significant importance to evaluate the adsorption rate for developing the theoretical researches and guiding the practical application projects. A pseudo-second model (5) was used to describe the adsorption kinetic.

$$\frac{\mathbf{t}}{\mathbf{q}_{t}} = \frac{1}{\mathbf{k}\mathbf{q}_{e}^{2}} + \frac{1}{\mathbf{q}_{e}} \times \mathbf{t}$$
(5)

where k is the pseudo-second order rate constant ($g \times mg^{-1} \times min^{-1}$), q_t and q_e are the adsorption capacities ($mg \times g^{-1}$) at t and at equilibrium time (min).

Figure S2 GPC chart of SMA obtained after 3 h (a), 5 h (b), 7 h (c) and 9 (h) of reaction respectively (reaction condition: catalyst (n (DETA & NaOH), 0.2 mol; n (DETA/NaOH), 6/1), atmospheric pressure, 100°C).

Entry	Time/h	Mn	Mw	Mw/Mn
а	3	3127	6724	2.15
b	5	3511	6807	1.94
С	7	4015	8570	2.13
d	9	3895	8662	2.22

able S1 GPC results of SMA.

Figure S3 TG curves of UP-gels with different molar ratios of DETA to NaOH.

						,				
content (utl)	DETA/NaOH (mol/mol)									
content/wt%	1/0	10/1	8/1	6/1	4/1	2/1	1/1	1/2	1/4	0/1
Sodium carbonate (TGA)	0.506	11.217	12.949	16.73	14.956	18.329	10.913	11.207	16.599	18.593
Total nitrogen of UP-gel	1.49	2.23	2.62	6.26	5.44	4.53	3.67	2.32	2.37	
Amide nitrogen of UP-gel	1.03	0	0	0	0	0	0	0	0	

Table S2The result of TGA and element analysis.

Table S3 Parameters of Langmuir isotherm model for the adsorption of MB and Cu²⁺.

Adsorbate	Langmuir					
	q _{max}	KL	R ²			
MB	775.2	0.4243	0.9999			
Cu ²⁺	171.5	0.2148	0.9978			

Table S4 Pseudo-second order rate constants for MB and Cu²⁺ adsorption on UP-gel.

Adsorbate	Pseudo-second order model				
	q _e	k	R ²		
MB	153.8	9.165×10 ⁻⁴	0.9990		
Cu ²⁺	121.8	2.043×10 ⁻³	0.9998		