Supplementary File S1. 

Implementation of the Model

We used BioNetGen1, a rule-based approach, to generate the model, which provides great help in models that involve dynamic assembly of multi-protein complexes. Our model is a whole-body model incorporating VEGF transport and kinetics, as well as the transport and kinetics of TSP1. We included all the significant species, which are shown in Fig. 1. The seed species and reaction rules are defined in BioNetGen, the rule-based modeling framework. These defined 86 seed species (29 in normal, 28 in blood, and 29 in tumor) participate in 452 reaction rules (129 in normal, 184 in blood, and 139 in tumor). Because of the numerous multi-species complexes, the 452 reaction rules and 86 seed species produce a total of 561 species and 2618 reactions. It is worth noting that this large number of species is due to the formation of complexes of species and the propagation of the reactions, of which some are highly similar and do not affect the soundness of the model. In the end, the BioNetGen will produce the MATLAB (The MathWorks, Natick, MA, USA) file needed to simulate the reaction network, which is a model that comprised of 561 non-linear ordinary differential equations (ODEs) predicting the species’ concentrations over time. The MATLAB model file is provided in Supplementary Files S2.

























Model parameters: numerical values and definitions.

	Parameter
	Description
	Unit
	Model Value
	Reference and Notes

	Geometric Parameters

	Stefanini et al. constructed the first whole body compartmental body of the VEGF system and described the derivations of following geometric parameters in their work2. They later published another modeling work3, which provides a more detailed supplementary table describing the model geometric parameters with experimental measurements. Here we report the value and the sources of parameters used in the model file provided by us. 

	BW
	Patient Body weight
	kg
	70
	
	

	Avogadro
	Avogadro constant
	mol-1
	6.02e+23
	
	

	ECM_conc
	Binding site density of extracellular matrix
	M
	7.5e-7
	4
	* The binding site density of VEGF and TSP1 are assumed to be the same as FGF.

	EBM_conc
	Binding site density of the basement membrane surrounding the endothelial cells
	
	1.3e-5
	5
	

	PBM_conc
	Binding site density of the basement membrane surrounding the parenchymall cells
	
	1.3e-5
	
	

	ECM_Vol_tis_norm
	Volume of extracellular matrix of which available to soluble species in normal tissue
	cm3/cm3 tissue
	0.061987
	2,3
	* The present work models a breast cancer patient of same characteristics as in previous works, which provide the derivation of these geometric parameters and sources of experimental measurements. 

	EBM_Vol_tis_norm
	Volume of microvessel basement membrane of which available to soluble species in normal tissue
	
	8.7e-5
	
	

	PBM_Vol_tis_norm
	Volume of tissue cells basement membrane of which available to soluble species in normal tissue
	
	3.07e-4
	
	

	ECM_Vol_tis_blood
	Volume of fluid space in blood of which available to soluble species
	cm3/cm3 tissue
	0.51931
	
	

	EBM_Vol_tis_blood
	Volume of luminal tumor endothelial cells basement membrane of which available to soluble species
	
	4.3e-4
	
	

	PBM_Vol_tis_blood
	Volume of luminal healthy endothelial cells basement membrane of which available to soluble species
	
	0.00421
	
	

	ECM_Vol_tis_dis
	Volume of extracellular matrix of which available to soluble species in breast tumor
	
cm3/cm3 tissue
	0.51931
	
	

	EBM_Vol_tis_dis
	Volume of microvessel basement membrane of which available to soluble species in breast tumor
	
	0.00027
	
	

	PBM_Vol_tis_dis
	Volume of tumor cells basement membrane of which available to soluble species in breast tumor
	
	0.002446
	
	

	vol_Norm
	Total volume of normal tissue
	cm3

	61321
	 6
	

	vol_Blood
	Total volume of blood tissue
	
	5000
	
	

	vol_Tumor
	Total volume of tumor tissue
	
	33.51032
	
	

	vol_Subc
	Total volume of subcutaneous compartment
	
	30
	
	

	tumorSA_Vol_tis_dis
	Total tumor cells surface area in tumor tissue
	cm2/cm3 tissue

	1534
	7
	

	VesselSA_Vol_tis_dis
	Total microvessels surface area in tumor tissue
	
	105
	8
	

	VesselSA_Vol_tis_norm
	Total microvessels surface area in normal tissue
	
	108
	8
	

	fiberSA_Vol_tis_norm
	Total tissue cells surface in normal tissue
	
	664
	
	

	tumorCellSurfArea_tis_dis
	Surface area of one cancer cell
	cm2
	9.97e-6
	7
	

	VesselCellSurfArea_blood
	Surface are of the luminal side of an endotheali cell (blood)
	
	1.00e-5
	
	

	VesselCellSurfArea_tis_dis
	Surface are of the abluminal side of an endotheali cell in tumor tissue
	
	1.00e-5
	
	

	VesselCellSurfArea_tis_norm
	Surface are of an abluminal side of an endotheali cell in normal tissue
	
	1.00e-5
	
	

	fiberCellSurfArea_tis_norm
	Surface area of skeletal muscle nuclear domain
	
	1.85e-5
	8
	

	Secretion Rates

	The secretion rates of TSP1, MMP3, and proMMP9 are fitted in our study to match the experimental measurements9–12 as mentioned in Method section. The secretion rates of VEGF were fitted to in vivo population PK data in our previous modeling work13. The synthesis rates of a2M were introduced to whole body model in another previous modeling work of us14.

	qTSP1EC
	TSP1 secretion rate of endothelial cell in normal tissue (luminal side)
	
molecules/cell/s
	1
	
	* The secretion rates of TSP1, MMP3 and proMMP9 for tumor cell and endothelial cells in tumor are based on previous TSP1-VEGF breast tumor tissue model and are further tuned to match the experimental data as mentioned in Methods part. 


*Due to the scarcity of data, we assume the endothelial cells in tumor tissue and in normal tissue have same secretion property.

	qTSP1disEC
	TSP1 secretion rate of endothelial cell in tumor tissue (abluminal side)
	
	1
	
	

	qTSP1tum
	TSP1 secretion rate of tumor cell
	
	1
	
	

	qTSP1myo
	TSP1 secretion rate of a tissue cell in normal tissue
	
	0
	
	

	qMMP3_disEC
	MMP3 secretion rate of endothelial cell in tumor tissue
	
	5
	
	

	qproMMP9_disEC
	proMMP9 secretion rate of endothelial cell in tumor tissue
	
	1.2
	
	

	qMMP3_EC
	MMP3 secretion rate of endothelial cell in normal tissue
	
	5
	
	

	qproMMP9_EC
	proMMP9 secretion rate of endothelial cell in normal tissue
	
	1.2
	
	

	qMMP3_tum
	MMP3 secretion rate of tumor cell
	
	12
	
	

	qproMMP9_tum
	proMMP9 secretion rate of tumor cell
	
	24
	
	

	qMMP3_myo
	MMP3 secretion rate of a tissue cell in normal tissue
	
	4
	
	

	qproMMP9_myo
	proMMP9 secretion rate of a tissue cell in normal tissue
	
	4
	
	

	qV165_tumor
	VEGF165 secretion rate of tumor cell
	
	0.387
	13
	
* The tumor secretion rates were estimated 15 with experimental measurements 16–19 . The ratio of tumor secreted VEGF165 to VEGF121 is set to be 1:1. 


* The ratio of tumor endothelial cell secreated VEGF165 to VEGF121 is set to 9:1 20. The normal endothelial cell is assumed to have same secretion rate as tumor endothelial cell. The ratio of normal cell secreted VEGF165 to VEGF121 is set to 92:8 21,22. 

	qV121_tumor
	VEGF121 secretion rate of tumor cell
	
	0.387
	
	

	qV165_disEC
	VEGF165 secretion rate of endothelial cell in tumor compartment
	
	0.0324
	
	

	qV121_disEC
	VEGF121 secretion rate of endothelial cell in tumor compartment
	
	0.0324*10/90

	
	

	qV165_myo
	VEGF165 secretion rate of tissue cell in normal tissue
	
	5.01e-9
	
	

	qV121_myo
	VEGF121 secretion rate of tissue cell in normal tissue
	
	5.01e-9*8/92
	
	

	ksyn_a2M
	a2M secretion rate in blood
	(mol/cm3 tissue)-1s-1
	6.27e-14
	6
	

	ksyn_a2M_fast
	a2M_ fast secretion rate in blood 
	
	3.14e-14
	
	

	Recycling of the receptors

	The recycling rates of receptors are originally from the first tumor tissue model of VEGF-Receptor System by Gabhann et al7. 

	sR_receptors
	Recycling rate of unbound receptors
	s-1
	0.00028
	7
	*We assume all receptors have same internalization and recycling rates.

	k_int_receptors
	Internalization rate of all ligated and unbound receptors
	
	0.00028
	
	

	Kinetic Parameters

	Gabhann et al applied following kinetic rates of VEGF system in their work of tumor tissue model7 and illustrated the conversion from in vitro parameters to tissue parameters basing on geometric parameters. Following reported values are in vitro parameters, which are converted to tissue parameters used by model during the generation of the MATLAB model file. The kinetic parameters are from our previous tumor tissue model of VEGF and TSP123. 

	kon_TSP1_GAG
	TSP1 binding to glycosaminoglycan
	M-1s-1
	5.00e+5
	23

	*The kinetic paramters of TSP1-receptor system are estimated in our previous tumor tissue model of VEGF and TSP1, which included detailed derivations.

	kon_TSP1_CD36
	TSP1 binding to CD36
	
	5.00e+5
	
	

	kon_TSP1_CD47
	TSP1 binding to CD47
	
	5.00e+5
	
	

	kon_TSP1_LRP1
	TSP1 binding to LRP1
	
	2.10e+5
	
	

	kon_TSP1_B1
	TSP1 binding to β1 integrin
	
	5.00e+5
	
	

	kon_TSP1_VEGF
	TSP1 binding to VEGF
	
	5.00e+5
	
	

	kon_TSP1_MMP3
	TSP1 binding to MMP3
	
	1.00e+5
	
	

	kon_V165_N1
	VEGF165 binding to Neuropilin-1
	
	3.20e+6
	24,25
	

	kon_V165_N2
	VEGF165 binding to Neuropilin-2
	
	1.00e+6
	26–28
	*~3-50 fold less tight than VEGF165-NRP1

	kon_V165_R1
	VEGF165 binding to VEGFR1
	
	3.00e+7
	29
	

	kon_V165_R2
	VEGF165 binding to VEGFR2
	
	1.00e+7
	30,31
	

	kon_V165_GAG
	VEGF165 binding to glycosaminoglycan
	
	8600
	32–34
	

	kon_V121_R1
	VEGF121 binding to VEGFR1
	
	3.00e+7
	13
	*Set to the same as V165- VEGR receptor

	kon_V121_R2
	VEGF121 binding to VEGFR2
	
	1.00e+7
	
	

	kon_MMP9_LRP1
	MMP9 binding to LRP1
	
	9245
	23
	

	kon_MMP3_proMMP9
	MMP3 binding to proMMP9
	
	10000
	
	

	kon_VEGF_a2M
	VEGF binding to alpha-2-macroglobulin
	
	25
	20,35
	

	kon_VEGF_a2M_fast
	VEGF fast binding to alpha-2-macroglobulin
	
	250
	
	

	koff_TSP1_GAG
	TSP1 binding to glycosaminoglycan
	s-1
	0.1
	23,36,37
	

	koff_TSP1_CD36
	TSP1 binding to CD36
	
	0.115
	
	

	koff_TSP1_CD47
	TSP1 binding to CD47
	
	0.005
	
	

	koff_TSP1_LRP1
	TSP1 binding to LRP1
	
	0.0025
	
	

	koff_TSP1_B1
	TSP1 binding to β1 integrin
	
	0.05
	
	

	koff_TSP1_VEGF
	TSP1 binding to VEGF
	
	0.005
	
	

	koff_TSP1_MMP3
	TSP1 binding to MMP3
	
	0.0022303
	
	

	koff_V165_N1
	VEGF165 binding to Neuropilin-1
	
	0.001
	24,25
	

	koff_V165_N2
	VEGF165 binding to Neuropilin-2
	
	0.001
	26–28
	

	koff_V165_R1
	VEGF165 binding to VEGFR1
	
	0.001
	29
	

	koff_V165_R2
	VEGF165 binding to VEGFR2
	
	0.001
	30,31
	

	koff_V165_GAG
	VEGF165 binding to glycosaminoglycan
	
	0.00069
	32–34
	

	koff_V121_R1
	VEGF121 binding to VEGFR1
	
	0.001
	13
	

	koff_V121_R2
	VEGF121 binding to VEGFR2
	
	0.001
	
	

	koff_MMP9_LRP1
	MMP9 binding to LRP1
	
	0.00049
	23
	

	koff_MMP3_proMMP9
	MMP3 binding to proMMP9
	
	0.001
	
	

	koff_VEGF_a2M
	VEGF binding to alpha-2-macroglobulin
	
	1.0e-4
	20,35
	

	koff_VEGF_a2M_fast
	VEGF fast binding to alpha-2-macroglobulin
	
	1.0e-4
	
	

	kc_V165N_R2
	Coupling of VEGFR2 and Neuropilin
	           (mol/cm2)-1s-1
	1.00e+14
	38,39
	*Estimated in 38 using data from 39. 

	kc_V165R2_N
	Coupling of VEGFR2 and Neuropilin
	
	3.10e+13
	
	

	kc_R1_N
	Coupling of VEGFR1 and Neuropilin
	
	1.00e+14
	13
	*Set to the same as R2-N receptor

	kc_CD36_R2
	Coupling of CD36 and VEGFR2
	
	3.10e+11
	23
	

	kc_CD36_B1
	Coupling of CD36 and  β1 integrin
	
	3.10e+13
	
	

	kc_CD47_R2
	Coupling of CD47 and VEGFR2
	
	3.10e+11
	
	

	kdissoc_R2_N
	Coupling of VEGFR2 and Neuropilin
	s-1
	0.001
	38,39
	

	kdissoc_R1_N
	Coupling of VEGFR2 and Neuropilin
	
	0.01
	13
	*Assumed to be slower dissociation than R2-N.

	kdissoc_CD36_B1
	Coupling of VEGFR1 and Neuropilin
	
	0.001
	23
	

	kdissoc_CD36_R2
	Coupling of CD36 and VEGFR2
	
	0.001
	
	

	kdissoc_CD47_R2
	Coupling of CD36 and  β1 integrin
	
	0.001
	
	

	Degradation and Clearance Rates

	The degradation rates and clearance rates are estimated by conversion from reported half-life time in literatures. The cleavage rate of TSP1 are fitted to match experimental data in our previous work23. The catalytic rate of the activation of proMMP9 by MMP3 and the cleavage of VEGF165 by MMP were previously reported in modeling works by Vempati36,37.  

	kdeg_aV
	Degradation rate of bevacizumab
	s-1
	4.415e-8
	
	

	kdeg_VEGF
	Degradation rate of VEGF
	
	1.93e-4
	40
	

	kdeg_TSP1
	Degradation rate of TSP1
	
	3.3e-4
	23
	

	kdeg_MMP
	Degradation rate of MMP
	
	0.0012
	
	

	kdeg_TSP1mim
	Degradation rate of ABT-510
	
	1.60e-4
	41
	*Assumed to be same as clearance rate.

	c_aV
	Clearance rate of bevacizumab in blood
	
	3.82e-7
	42
	*According to FDA label, Bevacizumab has a 21 days half-life.

	c_aV_VEGF
	Clearance rate of VEGF-bound bevacizumab in blood
	
	3.82e-7
	42
	*Assumed to be same as free Bevacizumab.

	c_VEGF
	Clearance rate of bevacizumab in blood
	
	0.0010797
	43
	

	c_TSP1
	Clearance rate of TSP1 in blood
	
	0.00033
	23
	* Assumed to be same as degradation rates.

	c_MMP
	Clearance rate of MMP in blood
	
	0.0012
	
	

	c_TSP1mim
	Clearance rate of ABT-510 in blood
	
	1.60e-4
	41
	*According to the reported 1.2 hours half-life in circulation of human body. 

	c_a2M
	Clearance rate of alpha-2-macroglobulin in blood
	
	3.85e-5
	6
	

	c_a2M_fast
	Clearance rate of alpha-2-macroglobulin fast-binding in blood
	
	3.85e-3
	
	

	k_TSP1cleave
	The cleavage rate of TSP1 through proteolysis
	s-1
	0.00386
	23,36,37
	

	k_act_MMP3_proMMP9
	A Michaelis-Menten Activation constant of the activation of MMP9 by MMP3
	s-1
	0.0019
	
	

	kp_mmp
	The proteolysis rate of VEGF by MMPs
	(mol/l)-1s-1
	631
	
	

	Receptor Numbers

	The density of VEGF receptors and co-receptors on endothelial and tumor cells are systematically reported in our previous work15, which are taken from in vitro and in vivo measurements using quantitative flow cytometry44. Currently, there is a paucity of quantitative data for the number of TSP1 receptors on endothelial and tumor cells. Thus, we used the reported qualitative data in Human Protein Atlas to estimate the values as mentioned in Method Section. The numbers of receptors on the endothelial cell are set to be half of that for parenchymal cells (tumor cells or muscle fibre cells), assuming equal distribution on the luminal and abluminal surfaces.

	CD36_number_tum
	CD36 receptor number on tumor cell
	receptors/cell
	2500
	
	*Estimated according the qualitative data shown in Human Protein Atlas. 

	CD47_number_tum
	CD47 receptor number on tumor cell
	
	10000
	
	

	LRP1_number_tum
	LRP1 receptor number on tumor cell
	
	5000
	
	

	B1_number_tum
	β1 integrin number on tumor cell
	
	10000
	
	

	CD36_number_disEC
	CD36 receptor number on tumor endothelial cell
	
	1250
	
	

	CD47_number_disEC
	CD47 receptor number on tumor endothelial cell
	
	5000
	
	

	LRP1_number_disEC
	LRP1 receptor number on tumor endothelial cell
	
	2500
	
	

	B1_number_disEC
	β1 integrin receptor number on tumor endothelial cell
	
	5000
	
	

	CD36_number_normEC
	CD36 receptor number on normal endothelial cell
	
	1250
	
	

	CD47_number_normEC
	CD47 receptor number on normal endothelial cell
	
	1250
	
	

	LRP1_number_normEC
	LRP1 receptor number on normal endothelial cell
	
	625
	
	

	B1_number_normEC
	β1 integrin receptor number on normal endothelial cell
	
	2500
	
	

	CD36_number_myo
	CD36 receptor number on skeletal muscle fiber cell
	
	2500
	
	

	CD47_number_myo
	CD47 receptor number on skeletal muscle fiber cell
	
	2500
	
	

	LRP1_number_myo
	LRP1 receptor number on skeletal muscle fiber cell
	
	1250
	
	

	B1_number_myo
	β1 integrin receptor number on skeletal muscle fiber cell
	
	5000
	
	

	R1_number_tum
	VEGFR1 receptor number on tumor cell
	
	1100
	15
	*VEGF receptor density followed our previous studies which uses the in vivo and in vitro measurements using quantitative flow cytometry. 

	R2_number_tum
	VEGFR2 receptor number on tumor cell
	
	550
	
	

	N1_number_tum
	Neuropilin-1 receptor number on tumor cell
	
	39500
	
	

	N2_number_tum
	Neuropilin-2 receptor number on tumor cell
	
	39500
	
	

	R1_number_disEC
	VEGFR1 receptor number on tumor endothelial cell
	
	3750
	
	

	R2_number_disEC
	VEGFR2 receptor number on tumor endothelial cell
	
	300
	
	

	N1_number_disEC
	Neuropilin-1 receptor number on tumor endothelial cell
	
	20000
	
	

	N2_number_disEC
	Neuropilin-2 receptor number on tumor endothelial cell
	
	20000
	
	

	R1_number_normEC
	VEGFR1 receptor number on normal endothelial cell
	
	550
	
	

	R2_number_normEC
	VEGFR2 receptor number on normal endothelial cell
	
	350
	
	

	N1_number_normEC
	Neuropilin-1 receptor number on tumor endothelial cell
	
	17000
	
	

	N2_number_normEC
	Neuropilin-2 receptor number on tumor endothelial cell
	
	0
	
	

	R1_number_myo
	VEGFR1 receptor number on skeletal muscle fiber cell
	
	0
	
	

	R2_number_myo
	VEGFR2 receptor number on skeletal muscle fiber cell
	
	0
	
	

	N1_number_myo
	Neuropilin-1 receptor number on skeletal muscle fiber cell
	
	34500
	
	

	N2_number_myo
	Neuropilin-2 receptor number on skeletal muscle fiber cell
	
	0
	
	

	Transportation Rates

	The vascular permeability of VEGF uses the rates estimated in the first whole body model of VEGF basing on the size of molecule2. The lymphatic flow was introduced into the model in another work later43.

	k_lymph_dis
	The transport rate through lymphatic flow from tumor to blood
	cm3/s
	0
	43
	*Assumed to be negligible.

	k_lymph
	The transport rate through lymphatic flow from normal tissue to blood
	
	0.0333333
	
	

	kperm_B_T_VEGF
	Microvascular permeability to VEGF in the tumor
	cm/s
	4.0e-7
	2
	

	kperm_B_N_VEGF
	Microvascular permeability to VEGF in the normal tissue
	
	4.0e-8
	
	

	kperm_B_T_aV
	Microvascular permeability to Bevacizumab in the tumor
	
	3.0e-7
	
	*Assumed to be smaller than VEGF

	kperm_B_N_aV
	Microvascular permeability to Bevacizumab in the tumor
	
	3.0e-8
	
	

	Properties of the Anti-angiogenic Drugs

	The binding properties of VEGF are directly measured in an experimental study45.

	antiVEGF_dosage
	Administration dosage of Bevacizumab
	mg/kg
	10
	
	

	antiVEGF_MW
	Molecular weight of Bevacizumab
	Da
	150000
	
	

	infTime_antiVEGF
	Infusion time of Bevacizumab
	s
	5400
	
	* infusion in 1.5 hours.

	Kd_V165_antiVEGF
	The dissociation constant of Bevacizumab and VEGF165
	M
	2.2e-9
	45
	

	Kd_V121_antiVEGF
	The dissociation constant of Bevacizumab and VEGF121
	
	2.2e-9
	
	

	koff_V165_antiVEGF
	The binding of Bevacizumab and VEGF165 (koff)
	s-1
	2.0e-4
	
	

	koff_V121_antiVEGF
	The binding of Bevacizumab and VEGF165 (koff)
	
	2.0e-4
	
	


* Here, M = moles/liter of interstitial fluid available to soluble species.
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