Precise isotope analysis of tellurium by an inductively coupled plasma mass spectrometry using a double spike method

Yusuke Fukami*a, Jun-Ichi Kimurab, and Katsuhiko Suzukia

^a Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan, Email: fukamiy@jamstec.go.jp

^bDepartment of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan

Table S1. Normalised Te istope compositons of unspiked samples.

Sample	$\delta^{126/125} Te_N^{\ a}$	$\delta^{130/125} Te_N^{\ a}$
NOD A-1 (Fe-Mn nodule, Atlantic ocean)	0.02 ± 0.05	0.02 ± 0.03
NOD P-1 (Fe-Mn nodule, Pacific ocean)	$0.02 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	0.01 ± 0.03
JMn-1 (Fe-Mn nodule, Pacific ocean)	$0.00 ~\pm~ 0.04$	$0.02 \hspace{0.1cm} \pm \hspace{0.1cm} 0.04$
GXR-1 (jasperoid, Drum mountains, Utah)	$0.00 ~\pm~ 0.04$	0.01 ± 0.03

Uncertainties are given by two-standard deviation (2SD) calculated from 5blocks in one run. The 2SD of $\delta^{126/125}$ Te_N and $\delta^{130/125}$ Te_N for standard analyses are 0.05 and 0.03, respectively (n = 5). Mass fractionation was corrected by normalising 125 Te/ 128 Te to be 0.22204 using exponential law. ^a Subscript of "N" represents the results relative to normalised standard.