Supplemental material for the manuscript 'Confocal micro-X-ray fluorescence spectroscopy with a liquid metal jet source'

Experimental setups

Figure S1: Schematic of the used setups

Table S1: Characteristics of the three setups used for comparison

	MXRF	CMXRF 1	CMXRF 2
1: Microfocus X-ray tube	Cu anode	Mo anode	Rh anode
2: Polycapillary full lens	Yes	Yes	Yes
3: Excitation angle / °	45	45	51
4: Polycapillary half lens	No	Yes/ No	Yes / No
5: SDD detector	30 mm²	30 mm²	2 x 30 mm²
Same parts as liquid metal setup	2, 3, 4, 5	3, 5	
Characteristics		Suited for large samples, flexible	Fast mapping, vacuum and cryo environment available

Glass reference material

Table 2: Composition of the glass reference samples

Ζ	Constit.	PB2	PE3
5	B2O3	-	4.0
9	F	1.4	1.3
11	Na2O	0.09	15.3
12	MgO	0.23	-
13	Al ₂ O ₃	6.75	8.5
14	SiO ₂	42.542	50.07
15	P2O5	2.1	-
19	K ₂ O	0.04	0.95
20	CaO	21.3	0.60
22	TiO ₂	1.2	0.02
24	Cr ₂ O ₃	-	0.56
25	MnO	0.89	6.5
26	Fe ₂ O ₃	12.2	0.03
27	CoO	1.62	0.74
28	NiO	0.79	1.85
29	CuO	0.25	0.82
30	ZnO	0.45	0.92
33	As ₂ O ₃	-	0.44
38	SrO	0.008	0.31
39	Y2O3	-	0.18
41	Nb2O5	-	0.05
42	MoO3	-	0.87
47	Ag ₂ O	-	0.13
49	In2O3	-	0.09
50	SnO ₂	0.92	0.60
51	Sb2O3	-	0.43
52	TeO ₂	0.08	0.03
55	Cs2O	-	-
56	BaO	0.04	4.6
57	La2O3	-	0.40
73	Ta2O5	0.85	0.05
74	WO ₃	1.85	-
82	PbO	4.4	0.45
83	Bi2O3	-	0.08

Comparison ROI and deconvolution

Figure S2: Single point spectrum with overlapping Ca K and K K fluorescence.

When measuring in confocal mode, the count rate statistics of each individual spectrum are in many cases not satisfactory. Therefore, often a deconvolution of fluorescence peaks is not mandatory, as only main elements are considered. With this new setup, single spectra have sufficient counts for a deconvolution.

While for most elements, the difference between deconvolution and utilizing regions-of-interest (ROIs) is negligible, in two cases, deconvolution is mandatory. First, if two fluorescence lines overlap, like K K β and Ca K α in the single point spectrum in figure S2, only a deconvolution can yield a correct intensity distribution of Ca with reasonable count rate statistics. Second, for minor elements and high scattering of the matrix as present in biological samples, a ROI image can in some cases mirror the scattered background rather than the true distribution, see the Ti K fluorescence intensity distribution in the yz slice number 18 displayed in figure S3.

Figure S3: Ti K fluorescence image obtained with ROI analysis and through deconvolution.

Elemental images

Figure S4: Virtual xy slices for the Ca, Fe and Zn distribution.

Figure S5: Virtual xy slices for the K, Mn and Cu distribution.