Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2018

Discrimination between ionic silver and silver nanoparticles in consumer products using graphite furnace atomic absorption spectrometry

Jakub Gruszka^a, Elżbieta Zambrzycka-Szelewa^a, Janusz S. Kulpa^b, Beata Godlewska-Żyłkiewicz^a*

^a Department of Analytical Chemistry, Institute of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland.

^b Electrical, Computer, Software, and Systems Engineering Department Embry-Riddle Aeronautical University, Daytona Beach, FL 32114

Corresponding author: E-mail: bgodlew@uwb.edu.pl

Fig. ESI 1. Pyrolysis and atomization curves of the standards containing 5 μ g L⁻¹ of Ag⁺ or AgNPs stabilized with 2·10⁻³ mol L⁻¹ trisodium citrate: **a**) wall atomization; pyrolysis curves (T_{at} = 950°C), atomization curves (T_{pyr} = 250°C); **b**) atomization from pyro-coated tube with Omega platform; pyrolysis curves (T_{at} = 1050°C), atomization curves (T_{pyr} = 350°C).

Fig. ESI 2. Atomic absorption signals registered for individual silver form and model mixtures containing Ag^+ and AgNPs of nominal diameter of 20 nm (**a-c**) or 40 nm (**d-f**) in different concentrations ratio.

Table ESI 1

The composition of model mixtures tested for simultaneous determination of $\mbox{Ag}^{\mbox{\tiny +}}$ and $\mbox{AgNPs}.$

Qualitative composition			Quantitative composition			
Series	X	Y		Ag ⁺ or AgNPs concentration, μg L ⁻¹		Total silver concentration,
1	Ag^+	AgNPs 10 nm	N			
2	Ag^+	AgNPs 20 nm	19			
3	Ag^+	AgNPs 40 nm		X	Y	— μ <u>ς</u> L
4	Ag^+	AgNPs 60 nm	a	2.5	5.0	7.5
5	AgNPs 10 nm	AgNPs 60 nm	b	5.0	2.5	7.5
6	AgNPs 10 nm	AgNPs 40 nm	c	5.0	5.0	10.0
7	AgNPs 20 nm	AgNPs 40 nm	d	7.5	2.5	10.0
8	AgNPs 10 nm	AgNPs 20 nm	e	2.5	7.5	10.0
9	AgNPs 20 nm	AgNPs 60 nm	f	2.5	2.5	5.0
10	AgNPs 40 nm	AgNPs 60 nm				