Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2018

1 Supplementary Information

2 Elucidation of the fate of zinc in model plants using single particle

3 ICP-MS and ESI tandem MS

- 4
- 5 Justyna Wojcieszek ^a, Javier Jiménez-Lamana ^{b,*}, Katarzyna Bierla ^b, Monika Asztemborska ^c,
- 6 Lena Ruzik ^a, Maciej Jarosz ^a and Joanna Szpunar ^b
- 7
- 8 ^aChair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Poland
- 9 ^bInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- 10 (IPREM) UMR 5254, CNRS-UPPA, Hélioparc, Pau, France
- 11 ^cIsotopic Laboratory, Faculty of Biology, University of Warsaw, Warsaw, Poland

12

13 Corresponding author

- 14 * Telephone: +33540175037. E-mail: j.jimenez-lamana@univ-pau.fr
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- __
- 26

27 Enzymatic digestion of plant tissues

Grounded samples of leaves and roots (0.025 g) were homogenized with 8 mL of 2 mM citrate buffer (pH 4.5) by using an ultrasonic probe. After the end of homogenization, 2 mL of enzyme (Macerozyme R-10) solution (0.01 g of enzyme powder for roots and 0.05 g of enzyme powder for leaves, dissolved in 2 mL of ultrapure water) was added and the samples were shaken in a water bath at 37°C for 24 hours. The final conditions of the enzymatic digestion method were chosen according to the optimization described in detail in a previous work¹. After the incubation, the obtained suspensions were filtered with a 0.45 µm syringe filter (Sigma Aldrich) and analyzed by SP-ICP-MS.

35

Compound	Weight / L
NH ₄ NO ₃	0,4 g
KH ₂ PO ₄	0,2 g
KCl	0,1 g
$CaCl_2 \times 6H_2O$	0,25 g
$MgSO_4 \times 7H_2O$	0,25 g
FeSO ₄ x 7H ₂ O	0,0015g
MnCl ₂ x 4H ₂ O	0,389 mg
NiSO ₄ x 6H ₂ O	0,056 mg
LiCl	0,028 mg
CuSO ₄ x 5H ₂ O	0,056 mg
$Al_2(SO_4)_3$	0,611 mg
H ₃ BO ₃	0,028 mg
KI	0,056 mg
Co(NO ₃) ₂ x 6H ₂ O	0,028 mg
KBr	0,056 mg
NaMoO ₄ x 2H ₂ O	0,055 mg

36 Table S1. Composition of the culture medium used for plants cultivation

37

38

39

40

41

45 References

- 46 1 J. Jiménez-Lamana, J. Wojcieszek, M. Jakubiak, M. Asztemborska and J. Szpunar, J. Anal. At.
- 47 Spectrom., 2016, **31**, 2321–2329.