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Supplementary theory 1: Theory of solving (large) electrical networks
Suppose a network with 9 nodes (labeled A-I) oriented in a 3-by-3 configuration, all connected horizontally and 
vertically by resistors (Fig. ST1). At node A an input current is applied. Node I is connected to ground, serving as 
reference node with a potential of 0 V. Furthermore, all horizontal resistors are equal: 

. Also, all vertical resistors are equal: . 𝑅1 = 𝑅2 = 𝑅6 = 𝑅7 = 𝑅11 = 𝑅12 = 𝑅ℎ 𝑅3 = 𝑅4 = 𝑅5 = 𝑅8 = 𝑅9 = 𝑅10 = 𝑅𝑣

The directions of the currents through all resistors are marked in the image. 

Fig ST1  Network consisting of 9 nodes, all connected horizontally and vertically by resistors.

Kirchhoff’s current law states that the sum of the currents in each node should equal 0 A. So for all nodes this results 
in:

A: 𝑖𝑖𝑛 + 𝑖3 ‒ 𝑖1 = 0

B: 𝑖1 + 𝑖2 ‒ 𝑖4 = 0

C: 𝑖5 ‒ 𝑖2 = 0

D: 𝑖6 ‒ 𝑖3 ‒ 𝑖8 = 0

E: 𝑖4 + 𝑖9 ‒ 𝑖6 ‒ 𝑖7 = 0

F: 𝑖7 ‒ 𝑖5 ‒ 𝑖10 = 0

G: 𝑖8 ‒ 𝑖11 = 0

H: 𝑖11 + 𝑖12 ‒ 𝑖9 = 0

I: 𝑖10 ‒ 𝑖12 ‒ 𝑖𝑖𝑛 = 0

When the branch currents are expressed in node voltages and resistances following Ohm’s law:

A:
𝑖𝑖𝑛 +

𝑢𝐷 ‒ 𝑢𝐴

𝑅3
‒

𝑢𝐴 ‒ 𝑢𝐵

𝑅1
= 0

B:

𝑢𝐴 ‒ 𝑢𝐵

𝑅1
+

𝑢𝐶 ‒ 𝑢𝐵

𝑅2
‒

𝑢𝐵 ‒ 𝑢𝐸

𝑅4
= 0

C:

𝑢𝐹 ‒ 𝑢𝐶

𝑅5
‒

𝑢𝐶 ‒ 𝑢𝐵

𝑅2
= 0

D:

𝑢𝐸 ‒ 𝑢𝐷

𝑅6
‒

𝑢𝐷 ‒ 𝑢𝐴

𝑅3
‒

𝑢𝐷 ‒ 𝑢𝐺

𝑅8
= 0

E:

𝑢𝐵 ‒ 𝑢𝐸

𝑅4
+

𝑢𝐻 ‒ 𝑢𝐸

𝑅9
‒

𝑢𝐸 ‒ 𝑢𝐷

𝑅6
‒

𝑢𝐸 ‒ 𝑢𝐹

𝑅7
= 0

F:

𝑢𝐸 ‒ 𝑢𝐹

𝑅7
‒

𝑢𝐹 ‒ 𝑢𝐶

𝑅5
‒

𝑢𝐹 ‒ 𝑢𝐼

𝑅10
= 0

G:

𝑢𝐷 ‒ 𝑢𝐺

𝑅8
‒

𝑢𝐺 ‒ 𝑢𝐻

𝑅11
= 0

H:

𝑢𝐺 ‒ 𝑢𝐻

𝑅11
+

𝑢𝐼 ‒ 𝑢𝐻

𝑅12
‒

𝑢𝐻 ‒ 𝑢𝐸

𝑅9
= 0

I:

𝑢𝐹 ‒ 𝑢𝐼

𝑅10
‒

𝑢𝐼 ‒ 𝑢𝐻

𝑅12
‒ 𝑖𝑖𝑛 = 0

Rewriting the equations and filling in  and  yields:𝑅ℎ 𝑅𝑣

A:
𝑖𝑖𝑛 = 𝑢𝐴( 1

𝑅1
+

1
𝑅3

) ‒
𝑢𝐷

𝑅3
‒

𝑢𝐵

𝑅1
= 𝑢𝐴( 1

𝑅ℎ
+

1
𝑅𝑣

) ‒
𝑢𝐵

𝑅ℎ
‒

𝑢𝐷

𝑅𝑣
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B:
0 = 𝑢𝐵( 1

𝑅1
+

1
𝑅2

+
1

𝑅4
) ‒

𝑢𝐴

𝑅1
‒

𝑢𝐶

𝑅2
‒

𝑢𝐸

𝑅4
= 𝑢𝐵( 2

𝑅ℎ
+

1
𝑅𝑣

) ‒
𝑢𝐴

𝑅ℎ
‒

𝑢𝐶

𝑅ℎ
‒

𝑢𝐸

𝑅𝑣

C:
0 = 𝑢𝐶( 1

𝑅5
+

1
𝑅2

) ‒
𝑢𝐹

𝑅5
‒

𝑢𝐵

𝑅2
= 𝑢𝐶( 1

𝑅𝑣
+

1
𝑅ℎ

) ‒
𝑢𝐹

𝑅𝑣
‒

𝑢𝐵

𝑅ℎ

D:
0 = 𝑢𝐷( 1

𝑅6
+

1
𝑅3

+
1

𝑅8
) ‒

𝑢𝐸

𝑅6
‒

𝑢𝐴

𝑅3
‒

𝑢𝐺

𝑅8
= 𝑢𝐷( 1

𝑅ℎ
+

2
𝑅𝑣

) ‒
𝑢𝐸

𝑅ℎ
‒

𝑢𝐴

𝑅𝑣
‒

𝑢𝐺

𝑅𝑣

E:
0 = 𝑢𝐸( 1

𝑅4
+

1
𝑅9

+
1

𝑅6
+

1
𝑅7

) ‒
𝑢𝐵

𝑅4
‒

𝑢𝐻

𝑅9
‒

𝑢𝐷

𝑅6
‒

𝑢𝐹

𝑅7
= 𝑢𝐸( 2

𝑅𝑣
+

2
𝑅ℎ

) ‒
𝑢𝐵

𝑅𝑣
‒

𝑢𝐻

𝑅𝑣
‒

𝑢𝐷

𝑅ℎ
‒

𝑢𝐹

𝑅ℎ

F:
0 = 𝑢𝐹( 1

𝑅7
+

1
𝑅5

+
1

𝑅10
) ‒

𝑢𝐸

𝑅7
‒

𝑢𝐶

𝑅5
‒

𝑢𝐼

𝑅10
= 𝑢𝐹( 1

𝑅ℎ
+

2
𝑅𝑣

) ‒
𝑢𝐸

𝑅ℎ
‒

𝑢𝐶

𝑅𝑣
‒

𝑢𝐼

𝑅𝑣

G:
0 = 𝑢𝐺( 1

𝑅8
+

1
𝑅11

) ‒
𝑢𝐷

𝑅8
‒

𝑢𝐻

𝑅11
= 𝑢𝐺( 1

𝑅𝑣
+

1
𝑅ℎ

) ‒
𝑢𝐷

𝑅𝑣
‒

𝑢𝐻

𝑅ℎ

H:
0 = 𝑢𝐻( 1

𝑅11
+

1
𝑅12

+
1

𝑅9
) ‒

𝑢𝐺

𝑅11
‒

𝑢𝐼

𝑅12
‒

𝑢𝐸

𝑅9
= 𝑢𝐻( 2

𝑅ℎ
+

1
𝑅𝑣

) ‒
𝑢𝐺

𝑅ℎ
‒

𝑢𝐼

𝑅ℎ
‒

𝑢𝐸

𝑅𝑣

I:
‒ 𝑖𝑖𝑛 = 𝑢𝐼( 1

𝑅10
+

1
𝑅12

) ‒
𝑢𝐹

𝑅10
‒

𝑢𝐻

𝑅12
= 𝑢𝐼( 1

𝑅𝑣
+

1
𝑅ℎ

) ‒
𝑢𝐹

𝑅𝑣
‒

𝑢𝐻

𝑅ℎ

The resulting system of equations can also be written in matrix form:

[
1

𝑅ℎ
+

1
𝑅𝑣

‒
1

𝑅ℎ
0 ‒

1
𝑅𝑣

0 0 0 0 0

‒
1

𝑅ℎ

2
𝑅ℎ

+
1

𝑅𝑣
‒

1
𝑅ℎ

0 ‒
1

𝑅𝑣
0 0 0 0

0 ‒
1

𝑅ℎ

1
𝑅ℎ

+
1

𝑅𝑣
0 0 ‒

1
𝑅𝑣

0 0 0

‒
1

𝑅𝑣
0 0

1
𝑅ℎ

+
2

𝑅𝑣
‒

1
𝑅ℎ

0 ‒
1

𝑅𝑣
0 0

0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

2
𝑅ℎ

+
2

𝑅𝑣
‒

1
𝑅ℎ

0 ‒
1

𝑅𝑣
0

0 0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

1
𝑅ℎ

+
2

𝑅𝑣
0 0 ‒

1
𝑅𝑣

0 0 0 ‒
1

𝑅𝑣
0 0

1
𝑅ℎ

+
1

𝑅𝑣
‒

1
𝑅ℎ

0

0 0 0 0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

2
𝑅ℎ

+
1

𝑅𝑣
‒

1
𝑅ℎ

0 0 0 0 0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

1
𝑅ℎ

+
1

𝑅𝑣

] ∙ [
𝑢𝐴

𝑢𝐵

𝑢𝐶

𝑢𝐷

𝑢𝐸

𝑢𝐹

𝑢𝐺

𝑢𝐻

𝑢𝐼 

] = [
𝑖𝑖𝑛

0

0

0

0

0

0

0

0

]
As node I is the reference node,  can be filled in and the right column of the matrix can be omitted. Then, to 𝑢𝐼 =  0

prevent having an overdetermined system, the equation corresponding to reference node I (bottom row) can also 
be omitted in this matrix:

[
1

𝑅ℎ
+

1
𝑅𝑣

‒
1

𝑅ℎ
0 ‒

1
𝑅𝑣

0 0 0 0

‒
1

𝑅ℎ

2
𝑅ℎ

+
1

𝑅𝑣
‒

1
𝑅ℎ

0 ‒
1

𝑅𝑣
0 0 0

0 ‒
1

𝑅ℎ

1
𝑅ℎ

+
1

𝑅𝑣
0 0 ‒

1
𝑅𝑣

0 0

‒
1

𝑅𝑣
0 0

1
𝑅ℎ

+
2

𝑅𝑣
‒

1
𝑅ℎ

0 ‒
1

𝑅𝑣
0

0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

2
𝑅ℎ

+
2

𝑅𝑣
‒

1
𝑅ℎ

0 ‒
1

𝑅𝑣

0 0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

1
𝑅ℎ

+
2

𝑅𝑣
0 0

0 0 0 ‒
1

𝑅𝑣
0 0

1
𝑅ℎ

+
1

𝑅𝑣
‒

1
𝑅ℎ

0 0 0 0 ‒
1

𝑅𝑣
0 ‒

1
𝑅ℎ

2
𝑅ℎ

+
1

𝑅𝑣

] ∙ [
𝑢𝐴

𝑢𝐵

𝑢𝐶

𝑢𝐷

𝑢𝐸

𝑢𝐹

𝑢𝐺

𝑢𝐻

] = [
𝑖𝑖𝑛

0

0

0

0

0

0

0

]
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This can be summarized as:
𝐺 ∙ 𝑈 = 𝐼

Here  is a matrix containing the conductivities (which is the inverse of resistances) between all nodes,  is a vector 𝐺 𝑈
containing the potentials in these nodes and  is a vector with the currents imposed onto these nodes.𝐼
To directly produce such a matrix describing the system of equations of any (large) electrical network, the following 
patterns or rules can be followed, as recognized in this matrix:

 The matrix eventually has an equal number of rows and columns, both equaling the total number of nodes 
minus 1.

 When two nodes  and  are connected, in the matrix at place  and  the negative conductance 𝑖 𝑗 𝐺(𝑖,𝑗) 𝐺(𝑗,𝑖)
between the nodes is filled in: . If two nodes  and  are not connected, the 𝐺(𝑖,𝑗) = 𝐺(𝑗,𝑖) =‒ 1 𝑅𝑖𝑗 𝑖 𝑘
conductivity between these nodes is 0: . The matrix is thus symmetrical in the main 𝐺(𝑖,𝑘) = 𝐺(𝑘,𝑖) = 0
diagonal. In addition, capacitors can also be described in such a conductance matrix as their conductance 
is .𝐺𝐶 =  𝑗𝜔𝐶

 On the main diagonal the negative sum of each row is inserted:  .𝐺(𝑖,𝑖) =‒ 𝐺(𝑖,𝑗) ‒ 𝐺(𝑖,𝑘) ‒ ...
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Supplementary theory 2: Sensitivity distributions
In four-terminal resistance measurements, electric fields and current densities develop in 3D space, resulting in 
different contributions of separate volume elements to the final measured resistance.1 Theory for resistance 
extraction from such four-terminal measurements was developed by Geselowitz,2 and was recently summarized by 
Wang et al.3 Geselowitz’s approach starts by mapping the pattern of current flow between the current carrying 
electrodes. At every location in the measured volume, the current flow is described by the current density  (A/m2): 𝐽
a vector quantity with magnitude and direction. The local current density gives rise to a local electrical field, which 
is also a vector quantity, dependent on the local electrical resistivity. Geselowitz shows that this generated field is 
picked up the strongest by the readout electrodes, when this field is exactly in line with the field that would exist 
when the same current was sent through the readout electrodes instead of through the excitation electrodes 
(shown schematically in Fig ST2). The interchangeability of the excitation and readout electrode pairs is Geselowitz’s 
reciprocity theorem. On the basis of this theorem, later authors calculated a sensitivity coefficient for every small 
volume element, quantifying the extent to which it contributes to the total measured impedance.1, 4 As this 
sensitivity coefficient is thus based on the extent to which the generated and measured fields of vectors line up, it 
contains the dot product of two vectors. Grimnes and Martinsen1 calculated the sensitivity coefficient based on the 
dot product of the current densities, while, as another option, Metherall et al.4 had used the dot product of the 
developed electric fields in earlier work. In this paper we follow the formulation of Grimnes et al. for the sensitivity 
coefficient :𝑆

(ST2-1)
𝑆 =

𝐽1 ⋅ 𝐽2

𝑖2

In this equation,  is the current density vector (A/m2) in each volume element when a current  (A) is injected 𝐽1 𝑖
between the two excitation electrodes.  is the current density when  is injected between the two readout 𝐽2 𝑖
electrodes.1 The higher the value for the sensitivity coefficient, the more a change in the resistivity of this volume 
element will affect the total resistance. A negative sensitivity means that an increase in the resistivity of this volume 
element will, maybe surprisingly but not counterintuitively, result in a lower total measured resistance.
Geselowitz2, Metherall4 and Grimnes1 et al. only considered resistive behavior in the measured volume, and not the 
case where (some of) the charge is capacitively stored in the measured volume. Capacitive charging, however, will 
occur across the cell layer during impedance spectroscopy because of the capacitive behavior of cell membranes.5, 

6 The sensitivity coefficient equally applies to such a case, as the current densities in Eq. ST2 can be written as the 
sum of a conductive current density , and a capacitive charging current density :𝜎𝐸 𝜖𝑑𝐸 𝑑𝑡

Fig. ST2 | Schematic illustration of the sensitivity distribution of four-terminal impedance sensing in a uniformly conductive cylinder. The electrical field 
arising when current is applied between the excitation electrodes is superimposed on the electric field arising when the same current is applied between 
the readout electrodes (following the reciprocity theorem). Where the fields align, the resulting sensitivity is high; where the fields are perpendicular the 
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(ST2-2) 
𝑆 =

𝐽1 ⋅ 𝐽2

𝑖2
=

(𝜎𝐸1 + 𝜖
𝑑𝐸1

𝑑𝑡 ) ⋅ (𝜎𝐸2 + 𝜖
𝑑𝐸2

𝑑𝑡 )
𝑖2

In this equation,  is the electric field vector (V/m),  is the conductivity (S/m) and  is the permittivity (F/m). With 𝐸 𝜎
increasing frequency,  increases and thereby the magnitude of the contribution of the capacitive charging 𝑑𝐸 𝑑𝑡
current to the total current increases; in impedance spectroscopy this is observed by a decrease of impedance with 
increasing frequency. Therefore, the sensitivity coefficient distribution within the measured volume could be 
derived from the finite-element model with both resistive and capacitive elements presented in this paper.

resulting sensitivity is 0; and where the fields oppose each other the resulting sensitivity is negative. Adapted from Kauppinen et al.7
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Supplementary figures

Supplementary Fig 1 The semi-transparent gold electrodes in the gut-on-a-chip device allow microscopic inspection of the Caco-2 cells cultured between them.

Supplementary Fig 2 The formation of 3D intestinal villi within the epithelium over time as observed by differential interference contrast (DIC) microscopy. 

Supplementary Fig 3 Investigating the convergence of the output parameter Rmeas (resistance between readout electrodes resulting from input current and 
associated electrode potentials). Electrical simulations were performed iteratively, doubling the total number of nodes each time. In the top graphs, the values 
of output parameter Rmeas are displayed. In the bottom graphs, the change (in %) of the current simulation compared to the previous simulation is shown. At 
approximately 2000 by 144 nodes (~290000, red dashed line) the change between subsequent simulations reaches 0.5%, leading to the conclusion that this is a 
sufficient amount of nodes to faithfully model the TEER measurements in the gut-on-a-chip. As input parameters a flat monolayer (a) or a monolayer with 250 
µm high villi (b) was used, both with a TEER of 1000 Ω·cm2, subjected to an AC current of 100 Hz.
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Supplementary Fig 4 Impedance spectra from the paper accompanied by their phase spectra. It can be seen that both the experimental measurements and the 
simulations of an electrical network consisting of only resistors and capacitors give rise to -180° phase shifts. This can be explained by changes in the general 
direction of the current, which is illustrated using the potential distributions at a TEER of 1000 Ω·cm2 that were also shown in the main paper (Fig. 3a). When 
going from 10 Hz to 100 kHz, the polarity of the readout electrodes shifts -180° due to channel geometry and electrode configuration: the potential of the 
bottom readout electrode becomes larger than the potential of the top readout electrode, effectively swapping the terminals. This effect, that has also been 
described by Grimnes and Martinsen,1 makes these data unsuitable for general impedance fitting methods.
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Supplementary Fig 5 Confocal images of a Caco-2 cell layer cultured under flow for 9 days revealed an approximated villi height of 150 µm to 250 µm and an 
average inter-villi spacing of 167 µm. Therefore, the sinusoidally modeled villi have a period of 167 µm and a height range of 0 µm (flat monolayer) up to 
300 µm (differentiated villi). Blue shows nuclei, green shows actin filaments, scalebar is 100 µm.

Supplementary Fig 6 Investigating the convergence of the output parameter Rmeas, analogously to Supplementary Figure 3. For subsequent simulations 
networks of 2000 by 120 nodes (~240000, red dashed line) were used. As input parameters a flat monolayer (a) or a monolayer with 250 µm high villi (b) was 
used, both with a TEER of 1000 Ω·cm2, subjected to an AC current of 100 Hz.
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Supplementary Fig 7 Electrical simulations with different input TEERs to model static barrier development in the 6-electrode chip. Note in a that also here 
electrode polarity inverts at low input TEER or high frequency, corresponding to the -180° phase shift seen in the impedance spectra.
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Supplementary Fig 8 Electrical simulations with increasing villi area ratio to assess the influence of villi formation on impedance spectra.
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Supplementary tables

Supplementary Table 1 | TEER of Caco-2 monolayers in Transwell for comparison with TEER in static chips. TEER values were measured at four time points in 
three wells with Caco-2 barriers, which were allowed to mature for 6 weeks. The average TEER ± standard deviation for these twelve measurements was 736 ± 
120 Ω cm2. Analogously to the chips, TEER was measured using electrical impedance spectroscopy by connecting the same Autolab PGStat12 to the probe 
cables of an Endohm chamber.

6 weeks         + 0 h 1 h 2 h 24 h
Transwell 1 766 Ω·cm2 865 Ω·cm2 832 Ω·cm2 613 Ω·cm2

Transwell 2 813 Ω·cm2 846 Ω·cm2 822 Ω·cm2 662 Ω·cm2

Transwell 3 792 Ω·cm2 676 Ω·cm2 679 Ω·cm2 460 Ω·cm2

Average 736 Ω·cm2

Standard deviation 120 Ω·cm2
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