Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2018

Table 1 Parameters used in numerical simulations (Material properties are at $T = 25^{\circ}$ C).

Water		
Density ¹	ρ_0	997 kg m $^{-3}$
Speed of sound ¹	c_0	1497 m s ⁻¹
Shear viscosity ¹	η	0.890 mPa s
Bulk viscosity ²	η'	2.47 mPa s
Compressibility ²	κ ₀	448 TP a^{-1}
Viscous boundary layer (@ 180 MHz) ^a	δ_v	39.7322 nm
Thermal conductivity ²	k_{th}	$0.603 \text{ W} \text{ m}^{-1} \text{ K}^{-1}$
Specific heat capacity ²	C_p	4183 J kg^{-1} K^{-1}
Thermal expansion coefficient ²	α_{th}	$2.97 \times 10^{-4} \text{ K}^{-1}$
Lithium Niobate (128° YX-cut LiNbO ₃)		
Speed of sound	c_{LN}	3994 m s ⁻¹
Density	ρ_{LN}	4700 kg m ⁻³
Poly-dimethylsiloxane (PDMS; 10:1)		
Density ^b	ρ_{PDMS}	1030 kg m^{-3}
Speed of sound ³	CPDMS	1076.5 m s^{-1}
SAW actuation parameters		
SAW wavelength	λ_{SAW}	21 μm
Excitation frequency ^e	f	190.19 MHz
Voltage potential	V_0	1 V

^{*a*} Calculated as $\delta_v = \sqrt{\frac{2\eta}{\rho_0 \omega}}$.

 b As provided by the supplier product data sheet (Sylgard[®] 184 Silicone Elastomer).

 c As provided by the supplier product data sheet (Sigma-Aldrich^®).

^{*d*} Calculated as $\kappa_p = \frac{3(1-\sigma_p)}{1+\sigma_p} \frac{1}{(\rho_p c_p^2)}$

^{*e*} Calculated as $f = \frac{c_{LN}}{\lambda_{SAW}}$ Note: The PDMS used experimentally consists of a 10:1 mixing ratio (i.e. 10 parts base and 1 part curing agent). The material properties used correspond to this mixing ratio.

References

- 1 W. M. Haynes, CRC handbook of chemistry and physics, CRC press, 2014.
- 2 P. B. Muller, R. Barnkob, M. J. H. Jensen and H. Bruus, Lab on a Chip, 2012, 12, 4617-4627.
- 3 J. K. Tsou, J. Liu, A. I. Barakat and M. F. Insana, Ultrasound in Medicine and Biology, 2008, 34, 963–972.