Supplementary Information

Continuous Removal of Small Nonviable Suspended Mammalian Cells and Debris from Bioreactors Using Inertial Microfluidics

Taehong Kwon^{a†}, Rujie Yao^{a†}, Jean-François P. Hamel^{b*} and Jongyoon Han^{a, c, d**}

 ^{a.} Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA.
^{b.} Department of Chemical Engineering, Massachusetts Institute of Technology, USA.
^{c.} Department of Biological Engineering, Massachusetts Institute of Technology, USA.
^{d.} BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.

[†]*These authors contributed equally.*

**Correspondence should be addressed to Jongyoon Han (<u>jyhan@mit.edu</u>) Phone: +1-617-253-2290, Fax: +1-617-258-5846

**Co-correspondence should be addressed to Jean-François. P. Hamel* (*jhamel@mit.edu*) *Phone:* +1-617-258-6665, *Fax:* +1-253-9894

Supplementary Figure 1 Comparison of input pressure between two devices (Device A: 200 μ m inner depth, 140 μ m outer depth, 1000 μ m width, Device B: 80 μ m inner depth, 130 μ m outer depth, 600 μ m width). Long-term (>days) continuous operation under input pressure of >20 pounds per square inch can lift off the PDMS piece from the bottom glass surface. Pressure was measured with a pressure flow cell (080-699PSX, SciLog, USA). Error bars, data range (*n* = 3, three different devices).

Supplementary Figure 2 Focusing positions of 20 and 15 μ m beads in the spiral channel (80 μ m inner depth, 130 μ m outer depth, 600 μ m width). The positions are in direction of channel width. The distance 0 and 600 um correspond to the inner and outer wall of the channel, respectively. Error bars are the standard deviations of the bead positions.

Supplementary Figure 3 Focusing behavior of fluorescent 6 and 10 μ m beads (FluoresbriteTM Plain YG Microspheres, Polysciences, USA) at the 6th loop in the single and 4-spiral devices. Input flow rates were varied from 1.5 mL/min to 1.1 mL/min and from 6 mL/min to 4.4 mL/min for the single and 4-spiral device, respectively. Symbol represents the position of peak intensity of a fluorescent streak. Error bar represents the width of fluorescent streak (threshold: 15% above normalized background intensity).

Supplementary Table 1 Estimation of reduction of dead cells during perfusion culture based on Monod growth kinetics

According to biomass balance,

Rate of dead cell accumulation = rate of dead cell generation – rate of dead cell removal

$$V \times dX = \mu \times dt \times X \times V - \alpha \times X \times F \times dt$$

$$\leftrightarrow \frac{dX}{dt} = \mu X - \alpha \times \frac{F}{V} \times X = \left(\mu - \alpha \times \frac{F}{V}\right) \times X$$

where *V* is working volume of the bioreactor; *X* is cell concentration in the bioreactor (million cells/mL); μ is death rate (hr⁻¹); *t* is time (hr); α is relative ratio of the cell concentration in the perfusate (removed stream) to that in the bioreactor (*e.g.*, chemostat when $\alpha = 1$); *F* is volumetric flow rate for the perfusate (removed stream; volumetric flow rate (mL/hr) for the outer outlet of the device).

Assuming $\mu = 0.02$ hr⁻¹ (typical growth rate is 0.03 hr⁻¹ for CHO cells), V = 350 mL, and F = 700 mL/day = 29.2 mL/hr,

$$\frac{dX}{dt} = (0.02 - \alpha \times 0.08) \times X$$

Figure	Single- pass dead cell removal efficiency (%)	α	Initial dead cell concentration (million cells/mL)	Time elapsed (hr)	Final dead cell concentration (million cells/mL)	Dead cell reduction compared with no dead cell removal (%)
N/A	0	0	X_0	96	$6.82X_0$	0
5c and 5d	3.5	0.15	X_0	96	$2.16X_0$	68.3
5c and 5d	6.1	0.23	X_0	96	$1.17X_0$	82.8
5c and 5d	14.2	0.48	X_0	96	$0.17X_0$	97.5
5c and 5d	14.2	0.48	X_0	192	$0.03X_0$	99.6
5c and 5d	20.1	0.60	X_0	96	$0.07X_0$	99.0