Supplemental document

Description	Parameters	Value	References
Henry's constant for oxygen	K_{H,O_2}	$1.32\times10^{-3}mol{\cdot}m^{-3}{\cdot}mmHg^{-1}$	[1]
Oxygen partial pressure in atmosphere	P_{O_2}	159 mmHg	[1,2]
Oxygen concentration in medium	C_{in,O_2}	0.21 mol/m ³	[3,4]
entering the system			
Oxygen diffusion in medium	D_{O_2}	$3 \times 10^{-9} \text{ m}^2/\text{s}$	[3,4,9]
Oxygen permeability in PDMS	P_{PDMS}	$3.786 \times 10^{-11} \text{ mol} \cdot \text{m} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \cdot \text{mmHg}^{-1}$	[5,6]
Hepatocyte maximum oxygen	V .	$4.8\times10^{-17}\ mol\cdot cell^{-1}\cdot s^{-1}$	[3,7,8]
consumption rate	• max,O ₂		
Michaelis-Menten constant for	$K_{\mathfrak{m},O_2}$	0.5 mmHg	[3,8]
hepatocyte oxygen consumption			

Table S1. Model parameters for oxygen transport and consumption at 37 °C.

Table S2. The primers used for real-time RT-PCR in this study.

Gene Symbol	Primers (forward/reverse; 5' to 3')
CYP1A1	GATGGTCAAGGAGCACTACA/AAAGAGGTCCAAGACGATGT
CYP1A2	TCAATGACATCTTTGGAGCAG/CTCTGTATCTCAGGCTTGGTC
CYP2B6	GGGAGATTGAACAGGTGATTG/GATGATGTACCCTCGGAAGC
CYP2C9	GGATTTGTGTGGGAGAAGC/TGAAGCACAGCTGGTAGAAG
CYP2D6	CGCATCCCTAAGGGAACGACA/CAGGAAGTGTTCGGGGTGGAA
CYP2E1	CCATCAAGGATAGGCAAGAG/TCCAGAGTTGGCACTACGAC
СҮРЗА4	TGTCCTACCATAAGGGCTT/GGCTGTTGACCATCATAAAAG
СҮРЗА5	ATATGGGACCCGTACACATG/CAGAGACCCTGACGATAGGAC
UGT1A1	GAATCAACTGCCTTCACCAA/GACTGTCTGAGGGATTTTGC
UGT2B4	TGTCTACAGCCTCCGCTTCT/GAACTGATCCCACTTCTTCATG
SULT1A1	GAGCCGCACCCACCTGTT/TGAACGACGTGTGCTGAACCAC
SULT2A1	AAAGACGTTAGAACCCGAAGA/TTTCCAGTCCCCAGATACACC
OAT2	GTGATGCTGCTGGCACTGGTT/CTCTTTCACATGGCCTTGGGTC
OCT1	AAGAGGATGTCACCGAAAAGC/GGATGAGCCCCTGATAGAGCA
SLCO1B3	GCCTAACCTTGACCTATGAT/CAGGTAAGTTATTCCATTGTTC
SLCO2B1	GGGAGTCCACGAAGAAGCAG/GACAGGACCACCAGCAGGAA
AHR	GGTTGTGATGCCAAAGGAAGA/TCATTCGGATATGGGACTCG
RXRα	TCGTCCTCTTTAACCCTGACTC/GCTGCTCTGGGTACTTGTGCT
PXR	GGTCCCCAAATCTGCCGTGTA/CCGGGCGTTGCGTTTCATG
CAR	TTGCAGAAGTGCTTAGATGCT/TCAGCTCTTCTTGCTCCTTACT
MRP2	GACAATTCTAATCTAGCCTACTCC/CATCAACTTCCCAGACATCC
BCRP	GTTCTTGGATGAGCCTACA/CTGAGGCCAATAAGGTCA
MDR1	GCTCGTGCCCTTGTTAGAC/GTGCCATGCTCCTTGACTC
BSEP	CCCTCATCCGAAATCCCAAGA/TGCAGTGCCATGTTCAAAACC
Albumin	ACCCCAAGTGTCAACTCCAA/GGTTCAGGACCACGGATAGA

Figure S1. FEM model geometry of the 3D-LOC for the simulation analysis of flow and oxygen mass transfer. (A) 3D geometry of the modeled microfluidic channel, which contained 180×6 arrays of microwells. (B) A single microwell geometry of 3D-LOC, which contained a microporous membrane and a Ø 200 µm cell spheroid. The microwell had a V-shape cross section with round bottom (Ø 250 µm × 25° Angle). The fluid channel height, top PDMS layer thickness and microwell depth were 200µm, *L* and *D_W*, respectively. (C) For comparison, a single microwell geometry with open microwell (Conventional perfusion method, 3D-perfusion) was also constructed and the dimension parameters were the same as those in (B).

Figure S2. A comparison of wall shear stress in two different perfusion methods (3D-perfusion and 3D-LOC). The wall shear stress distribution along the top red cut lines of the cell spheroid, described in (A), were plotted in different microwell depth configurations including (B) D_W = 200 µm, (C) D_W = 300 µm, and (D) D_W = 400 µm.

Figure S3. The percentage of the surface area of the cell spheroid (Oxygen concentration > C_{min}) in the 3D-perfusion method with open microwell (OW) and in the 3D-LOC method with membrane (MW) at different microwell depths (D_W = 200, 300 and 400 µm) and flow rates (Q = 1, 10 and 100 µL/min).

Figure S4. A comparision of cell spheroids viability and loss status in three different perfusion methods (3D-perfusion (P1), 3D-perfusion (P2), and 3D-LOC) perfusion cultured for 1-6 days at different flow rates including (A) $Q = 10 \mu L/min$, and (B) $Q = 100 \mu L/min$. White arrows indicate the direction of fluid flow. Scale bars = 400 μm .

Supplementary References

- 1. G. Mattei, S. Giusti and A. Ahluwalia, Processes, 2014, 2, 548-569.
- 2. A. R. Frisancho, Science, 1975, 187, 313-319.
- 3. D. Mazzei, M. A. Guzzardi, S. Giusti and A. Ahluwalia, Biotechnology and bioengineering, 2010, 106, 127-137.
- 4. P. Buchwald, Theoretical biology & medical modelling, 2011, 8, 20.
- 5. S. Giulitti, E. Magrofuoco, L. Prevedello and N. Elvassore, Lab on a chip, 2013, 13, 4430-4441.
- 6. E. Cimetta, M. Flaibani, M. Mella, E. Serena, L. Boldrin, P. De Coppi and N. Elvassore, The International journal of artificial organs, 2007, 30, 415-428.
- 7. S. L. Nyberg, R. P. Remmel, H. J. Mann, M. V. Peshwa, W. S. Hu and F. B. Cerra, Annals of surgery, 1994, 220, 59-67.
- 8. J. F. Patzer, 2nd, Artif Organs, 2004, 28, 83-98.
- 9. J. C. Haselgrove, I. M. Shapiro and S. F. Silverton, The American journal of physiology, 1993, 265, C497-506.