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Video Caption:

Supplementary video S1 –Time- lapsed interferometric imaging of human RBC propelling along the length 
of waveguide.

Supplementary video S2–Time-lapsed recovered phase movie using interferometric movie shown in the 
supplementary video S1.

Supplementary Note

Phase retrieval algorithm:

The Fourier transform based phase retrieval algorithm was used to study the structural changes in RBC 
while propelling it onto the surface of the waveguide. The 2D intensity variation of the image hologram 
can be expressed as follows1, 2:

𝑓(𝑥,𝑦) = 𝑎(𝑥,𝑦) + 𝑏(𝑥,𝑦)cos [2𝜋𝑖(𝑓𝑥𝑥 + 𝑓𝑦𝑦) + 𝜙(𝑥,𝑦)]                    (1)

where  and  are the background (DC) and the modulation terms, respectively. Spatially-varying 𝑎(𝑥,𝑦) 𝑏(𝑥,𝑦)

phase  contains information about the specimen. ,  are the spatial carrier frequencies of 𝜙(𝑥,𝑦) 𝑓𝑥 𝑓𝑦

interferogram along  axes. In practical applications, it is envisaged that ,  and  are 𝑥,𝑦  𝑎(𝑥,𝑦) 𝑏(𝑥,𝑦) 𝜙(𝑥,𝑦)

slowly varying functions compared to the variation introduced by the spatial carrier frequencies , and .  𝑓𝑥  𝑓𝑦

   

The above intensity modulation can be rewritten in the following form for convenience 

𝑓(𝑥,𝑦) = 𝑎(𝑥,𝑦) + 𝑐(𝑥,𝑦)exp [2𝜋𝑖(𝑓𝑥𝑥 + 𝑓𝑦𝑦)] + 𝑐 ∗ (𝑥,𝑦)exp [ ‒ 2𝜋𝑖(𝑓𝑥𝑥 + 𝑓𝑦𝑦)]               (2)

where

𝑐(𝑥,𝑦) = 𝑏(𝑥,𝑦)exp (𝑖𝜙(𝑥,𝑦))                                               (3)

The Fourier transform of Eq. 2 is given as follows: 

𝐹(𝜉𝑥,𝜉𝑦) = 𝐴(𝜉𝑥,𝜉𝑦) + 𝐶(𝜉𝑥 ‒ 𝑓𝑥,𝜉𝑦 ‒ 𝑓𝑦) + 𝐶 ∗ (𝜉𝑥 + 𝑓𝑥,𝜉𝑦 + 𝑓𝑦)                  (4)

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2018



2

The term is simply a background (DC) term at the origin in the Fourier plane. The term𝐴(𝜉𝑥,𝜉𝑦)

corresponds to +1 order term contains information about the object and situated at 𝐶(𝜉𝑥 ‒ 𝑓𝑥,𝜉𝑦 ‒ 𝑓𝑦)

. Similarly,  is –1 order term situated at  which carry complex  ( + 𝑓𝑥, + 𝑓𝑦) 𝐶 ∗ (𝜉𝑥 + 𝑓𝑥,𝜉𝑦 + 𝑓𝑦) ( ‒ 𝑓𝑥, ‒ 𝑓𝑦)

conjugate information about of the specimen. After applying Fourier filtering of zero and – 1 order terms, 
Eq. 4 can be reduced into the following form:

𝐹(𝜉𝑥,𝜉𝑦) = 𝐶(𝜉𝑥 ‒ 𝑓𝑥,𝜉𝑦 ‒ 𝑓𝑦)                                                        (5)

The filtered spectrum is, first, shifted at the origin and then inverse Fourier transformed to retrieve the 
complex signal ,  𝑓(𝑥,𝑦)

𝑓(𝑥,𝑦) = 𝑐(𝑥,𝑦) = 𝑏(𝑥,𝑦)exp (𝑖𝜙(𝑥,𝑦))                                            (6)

subsequently the wrapped phase map from the following expression2, 3:

where  and  are the imaginary and real part 
𝜙(𝑥,𝑦) = tan ‒ 1 [𝐼𝑚(𝑓(𝑥,𝑦))

𝑅𝑒(𝑓(𝑥,𝑦))]                                                    (7)
𝐼𝑚 𝑅𝑒

of the complex signal. The reconstructed wrapped phase map lies between  to . These discontinuities –𝜋 + 𝜋

are then corrected by minimum LP–norm two dimensional (2D) phase unwrapping algorithm4. The retrieved 
unwrapped phase map can be further used to calculate corresponding height map ‘h(x, y)’ by using the 
following expression3: 

ℎ(𝑥,𝑦) =
𝜆

4𝜋∆𝑛
𝜙(𝑥,𝑦)                                                              (8)

where,  is the difference between refractive indices of cell and outside medium.  is the peak wavelength ∆𝑛 𝜆

of the light source (  = 632 nm for He-Ne laser).𝜆

Waveguide trapping theory of RBC deformation:

The phenomenon of RBC deformation can be explained using the finite element numerical simulations of 
optical forces and optical pressure of RBC trapped on top of waveguide surface5. The optical force can be 
found by integrating the Maxwell stress tensor T over the cell surface S 6, 7:

   

𝐹⃗ =
 

∮
𝑆

𝑇⃡ ∙ 𝑛̂ 𝑑𝑆.           (9)

where the outwardly directed unit normal on the surface is given by . It has been shown previously that 𝑛⃗

the determination of optical forces using local optical pressure instead of using Maxwell stress tensor 
approach results in smaller noise and use smaller computational time5, 8. The force density  on a non-𝑓

magnetic, isotropic dielectric body in an electromagnetic field is 9, 10:

𝑓 =‒
1
2

𝜖0𝐸2∇𝜖 (10)

with  denoting the electric permittivity of vacuum, E the electric field and  is the permittivity gradient. 𝜖0 ∇𝜖
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It was reported that the net effect of the force density (i.e. pressure multiplied with surface normal) was to 
straighten the part of the cell that is overlapping with the evanescent field and make it parallel to the 
waveguide5. Although, the largest force component was to attract the RBC towards the surface. As the cell 
is an elastic body, the net effect of the optical forces (force density) is to press the cell downwards and to 
straighten the part of the cell that is interacting with the evanescent field and make it parallel to the 
waveguide. When this part of the cell is becoming straight, the rest of the cells deform and a change in the 
shape occurs. The elastic membrane of the RBC plays a crucial role in spreading the localized optical 
pressure over the entire cell11.

Influence of the trapping beam (i.e. IR light) on the phase measurement

We systematically studied the influence of IR wavelength on phase measurement results. The trapping 
experiments of RBCs with and without IR filter both are performed, which is inserted into the beam path 
just before the camera. Any significant change in the recovered phase maps of trapped RBC with and 
without IR filter is not observed. However, it is observed that the use of IR filter degrades the interferogram 
quality and subsequently reduces the spatial phase sensitivity of the system due to multiple reflections of 
laser light between top and bottom surfaces of IR filter. Therefore, insertion of IR filter into the beam path 
is not preferred. 

The IR beam does not influence the phase measurement results because of the following reasons: (1) there 
is no coherence between IR (used for trapping), and red (used for phase imaging) because both the light 
sources emit statistically independent radiation. Therefore, IR beam would not interfere with He-Ne laser 
beam and subsequently does not influence the phase results, (2) in our proposed system; IR light beam is 
not directly reaching at the camera plane. The IR photons scattered due to the roughness of waveguide and 
specimens (RBC) and un-scattered photons are actually reaching at the camera plane, which are very less 
in numbers. To see these photons at the camera plane, the camera is run at maximum exposure and gain. 
However, the numbers of photons due to phase imaging laser (He-Ne laser @ 632 nm wavelength) are quite 
high, which increases the signal to noise (SNR) of interferogram and subsequently reduces the influence of 
IR light on the phase measurements of RBCs. In case of IR leaking to the camera, it will increase the DC 
level in the interferogram and results a decrease in the reconstructed phase sensitivity and (3) spectral 
response of the CMOS camera for IR wavelength (~1070 nm) is quite poor (quantum efficiency (QE) < 
5%). However, QE of the camera is maximum at 600 nm wavelength. This again increases the SNR of 
recorded interferogram at 632 nm and reduces the effect of IR wavelength.  

If other trapping wavelength (say 532nm) is used for all trapping experiments, then a narrow 
bandpass green filter would be needed into the beam path as the QE of the camera at 532 nm wavelength 
is quite high (~ 70 %). However, this may reduce the spatial phase sensitivity of QPM due to multiple 
reflections inside the green filter.

Spatial phase sensitivity of QPM:

The smallest morphological changes that can be measured by the proposed technique are defined by the 
phase/height sensitivity of the system. The spatial phase/height measurement sensitivity of the system is 
quantified using standard flat mirror and waveguide substrate as a test specimen. 
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First, spatial phase sensitivity of the system is measured with a standard optical flat mirror (Size: 1”; 
Flatness: λ/10 @ 633 nm; Supplier: Thorlabs) placed under proposed QPM. Supplementary Fig. S1a 
illustrates the interferogram of flat mirror. The recorded interferogram is processed using Fourier Transform 
fringe analysis algorithm for the retrieval of phase and subsequently height map of flat mirror. The phase 
and height map of the standard flat mirror are depicted in Supplementary Figs. S1b and S1c. The spatial 
phase and height measurement sensitivity of the system thus obtained is found to be equal to 24.2 mrad and 
1.2 nm. Next, experiment is performed with waveguide chip (see Fig.1c in the main text) for the 
measurement of spatial phase sensitivity and compared with the results obtained for flat mirror. 
Supplementary Figs. S1d – S1f depict the recorded interferogram, recovered phase and subsequently 
measured height variation of the waveguide chip. The spatial phase and height measurement sensitivity of 
the system in case of waveguide is found to be equal to 50.9 mrad and 2.6 nm respectively. 
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Supplementary Fig. S1. Comparison of spatial phase sensitivity of the system in case of flat mirror and 
waveguide as a test specimen. (a, d)  Interferograms, (b, e) recovered phase maps and (c, f) corresponding 
height maps obtained for flat mirror and waveguide substrate, respectively. 

Table S1 shows the comparison of spatial phase and height measurement sensitivity while using flat mirror 
and waveguide as test specimens. The peak to valley (P-V) error in the phase/height measurement for 
waveguide is observed to be approximately twice than that for standard mirror. This could be due to the 
multiple reflections from the ~2 μm thick SiO2 layer over the Si substrate (see Fig.1c in the main text).  

Table S1. Variation of Standard deviation (SD) and peak to valley (P-V) error of the spatial phase/height 
measurement sensitivity of the system in case of flat mirror and waveguide as a test specimen. 

Phase sensitivity (mrad.) Height measurement sensitivity (nm)Test object
SD P-V error SD P-V error

Mirror 24.2 143.1 1.2 7.2
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Waveguide 50.9 313.3 2.56 15.8

The P-V spatial phase sensitivity of the system during optical trapping is found to be equal to ~ 313 mrad, 
which corresponds to the height measurement accuracy of 16 – 20 nm. The spatial phase sensitivity is 
observed to be less during optical trapping than that for standard flat mirror.  This could be due to the 
formation of unwanted spurious fringes, which arise due to multiple reflections from several layers of 
waveguide structures, water-coverslip and air-coverslip interfaces. This is further confirmed experimentally 
by employing the system for the height measurement of 20 nm rib height waveguide. The 20nm rib height 
of optical waveguide is not visible, i.e., embedded with phase noise of the system, in the reconstructed 
RBCs phase map (Supplementary Fig. S2a). However, a 50nm rib height introduces a constant waveguide 
phase into the RBC’s phase maps as depicted in Supplementary Fig. S2b. 

To measure the height measurement accuracy of the system during trapping, experiment is conducted on a 
50 nm rib height waveguide. Supplementary Figs. S3a – S3c present the interferogram, recovered phase 
and subsequently measured height map of the 50 nm optical waveguide. The height of the waveguide is 
measured to be equal to 49.7  2.5 nm by employing the present system. Thus, the height measurement ±

accuracy of the system lies between 20 and 50 nm. Therefore, the proposed technique has the capability to 
measure small morphological change (> 20 nm) in the height of RBCs or any other cell. 
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Supplementary Fig. S2. Quantitative phase imaging of human RBCs when sample is prepared on an 
optical waveguides having rib height of 20 nm and 50 nm. (a) Recovered phase map of RBCs without the 
appearance of 20 nm waveguide. (b) Recovered phase map of RBCs with 50 nm rib height waveguide in 
the background.    
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Supplementary Fig. S3. Measurement of phase/height measurement accuracy of the system using 50 nm 
thick rib waveguide as a test specimen. (a)  Interferogram, (b) recovered phase map and (c) corresponding 
height map obtained for 50 nm thick standard rib waveguide. 

Comparison of strip and rib waveguides: 

The propagation losses as a function of waveguide width for the strip and rib waveguide structures have 
been extensively studied12, 13. It has been reported that the propagation losses are higher for narrow strip 
waveguide than for rib waveguide structures due to the roughness of the etched sidewalls13, 14. In the present 
study, a comparative analysis of the strip and rib waveguide geometries was performed to obtain the best 
fit for the waveguide trapping and QPM integrated setup. 

Strip waveguide H=220 nm
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Supplementary Fig. S4. Phase maps of the RBCs with the waveguide background information of strip waveguides 
having widths:(a) 2.5, (b) 3, (c) 4, (d) 5, (e) 10 μm and height H=220 nm.
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Rib waveguide  H=20nm
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Supplementary Fig. S5.Phase maps of the RBCs with the rib waveguide structure having height H = 220 nm and 
varying waveguide widths: (a) 2.5, (b) 3, (c) 4, (d) 5, and (e) 10 μm.The straight red lines were used to depict the 
position of rib waveguides.    

First, a comparative study of the strip (H = 220 nm) and rib (H = 20 nm) waveguide having different widths 
(w = 2.5, 3, 4, 5, 10 μm) was made. Supplementary Figs. S4 and S5 show the total phase value, i.e., RBC 
+ waveguide phase, for two different waveguide geometries. It is evident from the phase images shown in 
Supplementary Fig. S4 (a – e) that for the strip waveguides (H=220 nm), phase reconstruction of the RBCs 
are noisy at the edges of the waveguide, this was due to its abrupt change in the phase values at the edges. 
The edges of the waveguide suffers from sidewall roughness due to the fabrication process (ion-beam 
etching)15. Moreover, the sidewall roughness is random in nature along the length of the waveguide. Strip 
waveguide has thickness of 220nm, while the rib height is only 20 nm for rib waveguides. Consequently, 
there is far less sidewall roughness and smaller abrupt phase change at the edges for a rib waveguide as 
compared to a strip waveguide. Therefore, rib waveguides do not suffer from all the phase errors at the 
edges of the waveguide, thus producing a smooth RBC phase map as shown in Supplementary Fig. S5 (a – 
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e).Rib waveguides were therefore preferred over strip waveguide for this work. Two straight red lines in 
the phase images were drawn to show the position of the rib waveguide, which otherwise is not visible due 
to small rib height of 20 nm.
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Supplementary Fig. S6.Reconstructed phase maps of the RBCs for different waveguide heights; (a) 8, (b) 20, (c) 50, 
(d) 150, and (e) 220 nm, having 2.5 μm waveguide width. The straight red lines in few phase images depict the position 
of the waveguide.  

Next, the effect of waveguide height on the phase images was studied for a given width of the waveguide 
(of 2.5 μm). Supplementary Fig. S6 (a – e) shows the phase images of RBCs on waveguides of different 
heights (H = 8, 20, 50, 150, 220 nm). It was depicted from Supplementary Fig. S6 (a) and (b) that there was 
negligible influence on the RBC phase images by the waveguide with rib height of 8 – 20 nm, while the 
phase artifacts started to appear when waveguides with rib height above 50 nm were used. Consequently, 
for all the studies in this work rib waveguide with rib height of 20 nm was chosen. 
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Defocus correction algorithm:

Before the measurement of various RBCs morphological parameters, a focus correction algorithm is 
employed for the accurate phase measurement. Focus correction algorithm is implemented by taking the 
Fourier transform of the complex signal ‘ ’ to obtain an angular spectrum16, 17.  𝑓(𝑥,𝑦;0)

𝐴(𝑓𝑥,𝑓𝑦;0) =
∝

∬
‒∝

𝑓(𝑥,𝑦;0)𝑒
‒ 𝑗2𝜋(𝑓𝑥𝑥 + 𝑓𝑦𝑦)

𝑑𝑥𝑑𝑦                                     (11)

where,  and  are the transform variables in terms of direction cosines ,  of the wave 𝑓𝑥 = 𝛼⁄𝜆 𝑓𝑦 = 𝛽⁄𝜆 𝛼 𝛽

vector with respect to x, y axis and wavelength . The angular spectrum  is then propagated along 𝜆 𝐴(𝑓𝑥,𝑓𝑦;0)
the propagation direction ‘z-axis’ to obtain the field at different plane situated at a distance ‘z’  by using 
the following expression17:

𝐴(𝑓𝑥,𝑓𝑦;𝑧) = 𝐴(𝑓𝑥,𝑓𝑦;0)𝑇(𝑓𝑥,𝑓𝑦)                                                     (12)

where,  is the freespace transfer function which is defined as follows17:𝑇(𝑓𝑥,𝑓𝑦)

𝑇(𝑓𝑥,𝑓𝑦) = {𝑒
‒ 𝑗

2𝜋𝑧
𝜆

1 ‒ (𝜆𝑓𝑥)2 ‒ 𝜆𝑓𝑦
2

, 𝑓2
𝑥 + 𝑓2

𝑦 <
1
𝜆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
�                                (13)

Then, inverse Fourier transform is done to obtain complex field ‘ ’ in spatial domain at z distance: 𝑓(𝑥,𝑦;𝑧)

𝑓(𝑥,𝑦;𝑧) =
∝

∬
‒∝

𝐴(𝑓𝑥,𝑓𝑦;𝑧)𝑒
𝑗2𝜋(𝑓𝑥𝑥 + 𝑓𝑦𝑦)

𝑑𝑓𝑥𝑑𝑓𝑦                                    (14)

 is the calculated complex field at a distance z. This can be further used to calculate the accurate  𝑓(𝑥,𝑦;𝑧)

phase/height maps related to specimens during their holographic phase imaging if the accurate defocus 
distance is known.   

To calculate the defocus distance the complex field ‘ ’ obtained from the Fourier transform method 𝑓(𝑥,𝑦;0)

(Eq. 6) is propagated across a range of – d µm to + d µm by following the steps mentioned above. The 

amplitude variance ‘ ’ is then calculated corresponding to each propagated complex field  by 𝑀 𝑑
𝑣𝑎𝑟 𝑓(𝑥,𝑦;𝑑)

using the following expression17:

𝑀 𝑑
𝑣𝑎𝑟 =

1
𝜇∑∑[|𝑓(𝑥,𝑦;𝑑)| ‒ 𝜇]2                                                  (15)

where μ is the mean of the amplitude of the complex field at distance d. The sharpness curve is formed by 
plotting the amplitude variance as a function of reconstruction distance. The minimum of the sharpness 
curve gives information about the defocus distance or true focal plane of the objective lens. Finally, the 
complex field ‘ ’ is propagated by above calculated defocus distance using the steps given above to 𝑓(𝑥,𝑦;0)

accurately calculate the phase/height maps of the specimens.
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Influence of defocus on the RBCs phase images:

Supplementary Fig. S7 clearly depicts the influence of defocus on the extracted RBC phase map. The 
recorded interferogram correspond to human RBCs is shown in Supplementary Fig. S7a. As can be seen, 
if we employ Fourier transform based phase recovery algorithm without focus correction, then defocused 
RBC phase information is reconstructed as illustrated in Supplementary Fig. S7b, which greatly influence 
the measurements related to RBC’s morphological parameters.  
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Supplementary Fig. S7. Defocus correction of the human RBC’s reconstructed phase images. (a) Interferogram of 
human RBCs. (b) Reconstructed phase maps of human RBCs without focus correction. (c) Sharpness curve of 
amplitude variance as a function propagation distance z. (d) Reconstructed phase maps of human RBCs with focus 
correction using the angular spectrum propagation approach. 

Therefore, it is mandatory to accurately quantify amount of defocus present in recorded interferograms. 

Supplementary Fig. S7c is the sharpness curve depicting the variation of amplitude variance ‘ ’ 𝑀 𝑑
𝑣𝑎𝑟

(calculated using Eq. 15) as a function of propagation distance ‘z’. It can be envisaged from Supplementary 
Fig. S7c that minimum of sharpness curve lies at z = + 8 µm, which gives information about true focal 
plane of the objective lens. The defocused RBC phase information is further refocused by propagating the 
complex field from the reconstruction plane to the focal plane of the objective lens (i.e., d = +8 µm) using 
angular spectrum propagation approach. After digital refocusing of the complex field, nice RBC phase map 
having perfect donut shape is reconstructed (Supplementary Fig. S7d).
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Additional experimental result:

During planar trapping and transportation of the RBC, the size of central donut region was decreased, while 
the size of the cell was slightly increased. Supplimentry Fig. S8 shows the phase images of the untrapped 
and trapped RBC from another series of experiments that provide a better overview about the change in 
maximum phase value in 3D view and the increase in the size of the RBC. The upper two rows of 
Supplementary Fig. S8 depict the quantitative phase images of the untrapped RBC (laser is off), whereas, 
the lower two rows represent the phase images of the trapped RBC, while propelling it on the top surface 
of the waveguide. In Supplimentry Fig. S8 the phase images of the RBC are obtained from the 
interferometric movie by selecting the region of interest and obtaining the phase at different time points. 
Prior to switching on the laser at t= 17 sec, there was little variation in the phase valuse of the RBC. It can 
be noticed that during trapping, the maximum phase value of RBC decreases. 
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Supplementary Fig. S8. Time lapsed quantitative phase images of untrapped (upper two rows) and trapped 
(Lower two rows) RBC. The color bar is in radians.  
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Supplementary Fig. S9. Bar plots (a) of the maximum phase values ( ) and (b, c) of the mean phase 𝜑𝑚𝑎𝑥

values of RBC’s time lapsed frames of region I and region II (shown in Fig. 4a) for laser off (0 – 14s frames) 
and on (26 – 40s frames) conditions for a single movie (experiment).
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Supplementary Fig. S10. The bar plot of human RBC’s EI along x and y axis during waveguide trapping 
for 9 different experimental series.

Quantification of cell’s surface area:

The total surface area ‘S’ of the RBC’s membrane is the sum of all the area elements ‘A1’ and projected 
area ‘A2’ as illustrated in Supplementary Fig. S11, which is calculated by utilizing Eq. 20.

The area element of the cell’s top surface

𝑑𝐴1 = 𝑑𝑥1𝑑𝑦1                                                                         (16)

The sum of all the area elements

𝐴1 = ∑
𝑖

𝑑𝐴𝑖 = ∑
𝑖

𝑑𝑥𝑖𝑑𝑦𝑖                                                             (17)

The projected area element of the cell’s top surface on  plane 𝑥 ‒ 𝑦

𝑑𝐴2 = 𝑑𝑥2𝑑𝑦2                                                                     (18)

The sum of all the projected area elements

𝐴2 = ∑
𝑗

𝑑𝐴𝑗 = ∑
𝑗

𝑑𝑥𝑗𝑑𝑦𝑗                                                           (19)

The total surface area ‘S’ of RBC’s membrane:

𝑆 = 𝐴1 + 𝐴2                                                                            (20)

Thus, 3D cell’s information is utilized for all the calculations related to morphological parameters such as 
surface area, volume, surface area to volume ratio and sphericity.   
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Supplementary Fig. S11. Quantification of cell’s membrane surface area.
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