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Fig. S1 (A) 3-D rendering of system, (B) Physical prototype(red region) in the clinical laboratory of the 

Children’s Hospital of Chongqing Medical University. 

Fig. S2 (A) Blood is collected from a finger stick or venous draw. (B) 10 uL is pipetted into a preprepared PBS+SDS 
solution and (C) mixed. (D) the diluted and sphered blood is transferred to a disposable sample chamber and (E) 
placed in the system for measurement.  
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Portability and Cost Analysis: 

As seen in Figure S1, and Figure S2(E), the prototype system is still relatively large. Its volume 

is about 1 cubic foot, although as Figure S2(E) makes clear, the majority of this is empty space. 

Therefore, substantial miniaturization is expected in future versions of the instrument. 

Nevertheless, the system is small enough to be physically transported to remote locations, as 

we did when we moved it from our laboratory in Hefei to our field location in Chongqing. 

The cost-effectiveness of our instrument can be evaluated based on the cost per 

instrument and cost per test. For the cost per instrument, this can be compared with 

US$50,000 - US$150,000 for standard clinical instrumentation to perform a CBC. For our 

instrument, the total cost for our one-off prototype is US$3,550. The largest costs are the 

camera and optical lenses used in our system, these sum to US$1,400. These could potentially 

be further optimized (using a lower quality camera, discounts due to volume production, etc.), 

but represent the limiting factors in the cost of our device. The remaining US$2,150 comes 

from the optical mounting hardware, including precision translation mounts and other 

Fig. S3 Pixel to angle calibration. (A) and (B) are theoretical curves for 7 micron polystyrene beads following the 
manufacturer provided size information, and illuminated by green and red lasers, respectively. Blue points 
represent angular peak locations for each fringe. (C) and (D) Experimentally measured green and red scattering 
curves for the same polystyrene sample. Blue points represent pixel locations of fringe maxima. (E) and (F) show 
angular locations vs. corresponding pixel values for the blue points in (A)-(D). Linear fits provide a pixel-to-angle 
calibration for all pixels. 



elements not needed in a production model. While this cost is significant in a prototype stage, 

we expect these costs to be substantially reduced were the instrument to actually be 

commercialized for widespread clinical use. For example, our prototype is built with standard 

optical posts, post holders, and a relatively heavy optical breadboard, none of which would be 

expected to remain in a production model, substantially lowering weight and cost. 

For the cost per test, in our test this amounts only to the cost of the chambers used to 

hold the samples, which are US$1.16 per test (2 tests per slide). This can be compared with a 

cost, at the Children’s Hospital of Chongqing Medical University, of US$3 for a CBC 

measurement and US$10 for gel electrophoresis, which constitute the standard screening tests 

performed for anemia in that hospital’s clinical practice. Thus, our method represents at least 

a factor of 10 reduction in both cost per test and instrument cost compared to the clinical 

standard. Further, in addition to their substantial costs, standard clinical tests cannot be 

performed outside of a centralized clinical laboratory. 

Table S1 Baseline Values in HC Group , IDA Group and TT Group (µ±σ) 

Variable HC IDA TT 

No. of samples 195 49 24 

Age (years) 5.75±3.77 1.94±2.89a  3.03±3.16ab  

Age group(years)    

0~0.5（N,%） 4(2.1) 7(14.3) 6(25.0) 

0.5~2（N,%） 51(26.2) 33(67.3) 9(37.5) 

2~6（N,%） 56(28.7) 5(10.2) 4(16.7) 

6~15（N,%） 84(43.1) 4(8.2) 5(20.8) 

Females（N,%） 77(39.5) 14（28.6） 7(29.2) 

Males（N,%） 118(60.5) 35（71.4） 17(70.8) 

MCV (fL) 85.50±3.35 70.98±7.79a 63.15±6.56ab 

MCHC (g/L) 32.72±0.73 31.61±1.91a 31.02±0.93a 

RDW (%) 13.02±0.78 16.44±3.25a 16.72±2.04a 

aSignificantly different compared with HC group, p<0.05; bSignificantly different compared with IDA group, p<0.05. 

Note: MCV, erythrocyte mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration. 

 

 

Fig. S4 Classifying samples into healthy, IDA, and TT groups using QDA based on clinical values of MCV, 

MCHC, and RDW. (A) QDA decision between Healthy and anemia. (B) QDA decision between IDA and TT. 



 

Dependence of Machine Learning Models on Model Parameters: 

In order to mitigate the potential for over-fitting and over-performance of the model, our chosen 

algorithms (PLS, QDA, and SVM) have few hyperparameters to set, and the results are relatively 

insensitive to parameter choice, highlighting the robustness of the data and lending more 

confidence to our conclusions. For the QDA algorithm, the hyperparameters were not optimized, 

but kept the same as in our prior modeling of clinical data, which include using a quadratic decision 

surface and Euclidean distance metric. For SVM, we also did not optimize hyperparameters, but 

used the radial basis function with standardized variables, as driven by prior experience on 

multivariate Raman spectroscopy data. Therefore, for each method (PLS-QDA and PCA-SVM), the 

only hyperparameter varied was the PLS model rank, or how many PCA components to feed to the 

SVM algorithm.   

To explore the sensitivity of our cross-validation results to hyperparameter choice, in Figure 

S7 we show how the Youden’s Index for discriminating Healthy vs. Anemia (blue) and IDA vs. TT 

(red) varies as the hyperparameter is changed for our PLS-QDA and PCA-SVM models. As we can 

see from the plots, the choice of hyperparameter does not lead to a substantial variation in the 

Youden’s Index, particularly for the PCA-SVM model. The shaded regions represent the standard 

deviation among 20 runs of the CV, as the data partitioning changes. Instability caused by the 

relatively small size of the TT group would be expected to decrease substantially in a full-scale trial 

with a large (>100) population of TT patients.  

Fig S6 First three principal components of raw scattering data, color-coded by healthy, IDA, or TT. 

Fig. S5 Linear fitting result between the HGB and the MCV for anemic patients.  



 To further highlight this point, we performed a similar exploration of hyperparameter 

space using half of the dataset in a 10-fold cross-validation model to find the optimum set 

of hyperparameters, while the other half was used as an independent validation set using 

this optimized hyperparameter set. These results are shown in Figure R2, where the lines 

and shaded areas are as in Figure R1 (except using only half of the dataset), while the black 

dots and triangles on the two graphs represent the independent validation using the 

optimized hyperparameters (and allowing the IDA-TT and Healthy-Anemia discrimination 

to each have their own hyperparameter values).  We can see that the Youden’s Index for 

the Healthy vs. Anemia discrimination suffers slightly due to the relative paucity of data 

with which to form a model. Yet, the results are largely quite consistent with those 

obtained using the cross-validation method shown in the main text. However, we 

emphasize that while we believe our cross-validated results from our modestly-sized 

dataset accurately represents expected future performance, the method still requires 

rigorous evaluation using a multi-instrument, multi-center trial with a test and validation 

set for model construction, followed by a set of totally novel inference data. 

Fig. S7 – Youden’s Index of models vs. hyperparameters. (Left) PLS-QDA or (Right) PCA-SVM for 

discriminating healthy and anemia, and IDA vs. TT.  

Fig. S8 – Youden’s Index of models using an independent validation set. (Left) PLS-QDA or (Right) 

PCA-SVM for discriminating healthy and anemia, and IDA vs. TT.  


