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Data Analysis

Velocity Measurements

Likelihood Function. Particle tracking provides data on the positions (xnk, ynk) of the nth

particle at the kth time step. For simplicity, we focus our analysis on particle motions in the x
direction; motions in the y direction can be treated in similar fashion. During imaging, we capture
particle motions within a region of finite thickness centered on the focal plane z0. Consequently,
there is a distribution of particle velocities within the imaging region as characterized by a mean
velocity µU and a standard deviation σU . In particular, we make the convenient assumption that
the particle velocities are normally distributed as

p(U | µU , σU ) =
1√

2πσU
exp

(
−(U − µU )2

2σ2
U

)
, (S1)

where p( ) denotes the probability density. During the kth time interval (τ = tk − tk−1), the
displacement of a single particle (∆k = xk−xk−1) is also normally distributed with mean µ∆ = Uτ
and standard deviation σ∆ =

√
2Dpτ , where Dp is the particle diffusivity,

p(∆k | µ∆, σ∆) =
1√

2πσ∆

exp

(
−(∆k − µ∆)2

2σ2
∆

)
. (S2)

The probability of observing a series of K independent displacements {∆k} is given by the product

p({∆k} | µ∆, σ∆) =

K∏
k=1

p(∆k | µ∆, σ∆). (S3)

This distribution is conditioned on the particle velocity (i.e., on µ∆ = Uτ), which is itself uncertain.
A more useful distribution is obtained by marginalizing over the particle velocity as

p({∆k} | µU , σU , σ∆) =

∫
p({∆k} | µ∆, σ∆)p(U | µU , σU )dU. (S4)

Note that this distribution is conditioned on the three constant parameters µU , σU , and σ∆. Car-
rying out the integration, we obtain

p({∆k} | µU , σU , σ∆) =
1

(2πσ2
U )1/2

1

(2πσ2
∆)K/2

√
π

A
exp

(
B2

4A
− C

)
, (S5)

where the terms A, B, and C are given by

A =
1

2σ2
U

+
Kτ2

2σ2
∆

, B = −µU
σ2
U

− τ

σ2
∆

K∑
k=1

∆k, C =
µ2
U

2σ2
U

+
1

2σ2
∆

K∑
k=1

∆2
k. (S6)

Finally, the likelihood of obtaining the observed data for all N independent particles is

p({∆nk} | µU , σU , σ∆) =

N∏
n=1

1

(2πσ2
U )1/2

1

(2πσ2
∆)Kn/2

√
π

An
exp

(
B2

n

4An
− Cn

)
. (S7)
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Posterior Distribution. We are now prepared to estimate the unknown parameters µU , σU ,
and σ∆ from the data {∆nk} by application of Bayes theorem as

p(µU , σU , σ∆ | {∆nk}) ∝ p({∆nk} | µU , σU , σ∆)p(µU , σU , σ∆). (S8)

We assume a uniform prior distribution over the relevant region of parameter space,

p(µU , σU , σ∆) = constant. (S9)

The logarithm of the posterior distribution, p(µU , σU , σ∆ | {∆nk}), can then be written as

L(µU , σU , σ∆) = constant−
N∑

n=1

[
lnσU +Kn lnσ∆ +

1

2
lnAn −

B2
n

4An
+ Cn

]
. (S10)

The most probable parameter values are those which maximize this function. We used numerical
optimization methods to identify these most probable parameters. Additionally, the reliabilities of
our estimates were evaluated by approximating the posterior distribution as a multivariate normal
distribution and examining the corresponding covariance matrix. Specifically, we expanded the
logarithm of the posterior in a second order Taylor expansion about the most probable value; the
desired covariance matrix is equal to the inverse of the computed Hessian matrix.

Special Case (Kn = K). When the number of displacements is the same for each particle, it is
possible to derive simple expressions for the most probable parameters values and their reliabilities,
which provide useful insight into the sources of uncertainty our estimates. These expressions are
conveniently expressed in terms of the sample means and standard deviations of the respective
particle displacements,

µn =
1

K

∑
k

∆nk, σ2
n =

1

K − 1

∑
k

(∆nk − µn)2. (S11)

Using these statistics, the most probable parameter values are

µU,o =
1

τN

∑
n

µn, (S12)

σ2
∆,o =

1

N

∑
n

σ2
n (S13)

σ2
U,o =

1

N

∑
n

(µn
τ
− µU,o

)2
−
σ2

∆,o

τ2
. (S14)

As noted above, the reliability of these estimates can be obtain by approximating the posterior
distribution as a multivariate normal distribution about these most probable values. The respective
variances of the marginal distributions for each of the three parameters are

δ2(µU ) =
σ2
U,o

N

[
1 +

1

K

(
σ∆,o

τσU,o

)2
]
, (S15)

δ2(σ∆) =
σ2

∆,o

2N(K − 1)
, (S16)

δ2(σU ) =
σ2
U,o

N

[
1

2
+

1

K

(
σ∆,o

τσU,o

)2

+
1

2K(K − 1)

(
σ∆,o

τσU,o

)4
]
. (S17)
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These uncertainty estimates are useful in choosing the duration of the particle tracks Kτ used
in experiment. Specifically, they suggest that tracks longer that Kτ ∼ Dp/σ

2
U are increasingly

ineffective in reducing the uncertainty in the parameters µU and σU . For example, for 500 nm
tracer particles (Dp = 10−12 m2/s in water) and velocity variations of σU = 0.1 µm/s, this condition
suggests that tracks should be ca. 100 s long; slower flows require longer tracks.

Fitting the Velocity Profiles

We used Bayesian data analysis1 combined with Markov Chain Monte Carlo (MCMC) sampling
to evaluate the proposed model and infer the model parameters. We focused our analysis on the
mean particle velocity within the focal region µU (see previous section) as a function of height z
within the channel. This average velocity includes contributions from particles moving at different
heights within the channel (not just those in the focal plane). We model this average velocity by
the convolution

ṽx(z) =

∫ H

0
g(z′ − z)vx(z′)dz′, (S18)

where the function g(z − z′) describes the contribution of particles at height z′ to the measured
velocity at height z. In general, this function is expected to depend on the distribution of tracer
particles in the channel and on the details of particle imaging and tracking. Here, we assume that
particles withing a characteristic distance w contribute to the image as

g(z′ − z) =
C(z)√
2πw2

exp

(
−(z − z′)2

2w2

)
. (S19)

Here, C(z) is a normalization factor for the truncated normal distribution on the domain 0 < z < H,

C(z̃) =
1

2

[
erf

(
1− z̄√

2w̄

)
+ erf

(
z̄√
2w̄

)]
, (S20)

where z̄ = z/H and w̄ = w/H. For buoyancy driven flow, the profile for the average velocity ṽx(z)
is derived using equation (6) in the main text to obtain

ṽx(z̃)

UB
=

4w̃

C(z̃)

√
2

π

[
(2(1− z̄)2 − (1− z̄) + 4w̄2)e−

z̄2

2w̄2 − (2z2 − z + 4w̄)e−
(1−z̄)2

2w̄2

]
+ 8(2z̄ − 1)(3w̄2 − (1− z̄)z̄), (S21)

Using this model, we inferred the magnitude of the velocity UB and the width of the averaging
function w assuming Gaussian noise in our measurements of the average velocity profiles. MCMC
sampling was performed in Python using the pymc3 package.2
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Hydrodynamic Model

Numerical Solution (Pe = 0)

Scaling lengths by the channel height H, velocity by V = βgGH3/ν, and pressure by µU/H, the
hydrodynamic equations in the main text can be written in dimensionless form as

0 =
∂vx
∂x

+
∂vx
∂x

, (S22)

0 = −∂p
∂x

+
∂2vx
∂x2

+
∂2vx
∂z2

, (S23)

0 = −∂p
∂z

+
∂2vz
∂x2

+
∂2vz
∂z2

+ x. (S24)

The no-slip conditions at the boundaries of the channel imply that vx = vz = 0 for x = 0,W
and z = 0, 1. This incompressible 2D flow can be expressed in terms of the stream function ψ
where vx = ∂ψ/∂z and vz = −∂ψ/∂x. Subtracting the z-derivative of equation (S23) from the
x-derivative of equation (S24), we obtain

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂z2
+
∂4ψ

∂z4
= ∇4ψ = 1, (S25)

subject to the following boundary conditions

∂xψ(0, 0) = ∂xψ(0, 1) = ∂xψ(W, 0) = ∂xψ(W, 1) = 0, (S26)

∂zψ(0, 0) = ∂zψ(0, 1) = ∂zψ(W, 0) = ∂zψ(W, 1) = 0. (S27)

For a given channel width W , this above equation was solved numerically using the finite element
method in COMSOL. In the numerical implementation, it was convenient to decompose the 4th
order equation above into three 2nd order equations as

P =
∂2ψ

∂x2
, Q =

∂2ψ

∂z2
,

∂2P

∂x2
+
∂2P

∂z2
+
∂2Q

∂z2
= 1. (S28)

Analytical Solution for H/W � 1

In the limit of short channel, flow is approximately unidirectional in the x-direction; equations
(S23) and (S24) can be simplified as

0 = −∂p
∂x

+
�
�
�∂2vx

∂x2
+
∂2vx
∂z2

, (S29)

0 = −∂p
∂z

+
�

�
�∂2vz

∂x2
+
�

�
�∂2vz

∂z2
+ x. (S30)

Integrating equation (S36), we find that the pressure is of the form

p = xz + f(x), (S31)

where f(x) is an unknown function of x. In order that equation (S35) not depend on position x
along the channel, this function must be linear f(x) = Ax where A is a constant to be determined.
Substituting the pressure into equation (S35) and integrating, we find

vx(z) =
z3

6
+A

z2

2
+Bz + C. (S32)
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The constants A, B, and C are uniquely determined by the boundary conditions, vx(0) = vx(1) = 0,
and by the condition of no net flow along the channel∫ 1

0
vx(z)dz = 0. (S33)

The resulting solution is

vx(z) =
z3

6
− z2

4
+

z

12
. (S34)

The maximum (dimensionless) velocity is vmax = (3−
√

3)/6 = 0.0080 and occurs at z = (3±
√

3)/6.

Analytical Solution for H/W � 1

In the limit of tall channels, flow is approximately unidirectional in the z-direction; equations (S23)
and (S24) can be simplified as

0 = −∂p
∂x

+
�
�
�∂2vx

∂x2
+
�

�
�∂2vx

∂z2
, (S35)

0 = −∂p
∂z

+
∂2vz
∂x2

+
�

�
�∂2vz

∂z2
+ x. (S36)

Assuming the pressure has the form p = Az, we can integrate equation (S36) to obtain the solution

vz(x) = −W 3

[
1

6

( x
W

)3
− 1

4

( x
W

)2
+

1

12

( x
W

)]
. (S37)

The peak velocity scales as vmax ∼W 3 as illustrated in Figure 3b.
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Simulations of Bacterial Chemotaxis

To illustrate the effects of gradient driven flows on the chemotaxis of bacterial populations, we
investigate a simple model that describes (1) the (active) diffusive motion of individual bacteria,
(2) their systematic migration in the solute gradient, (3) their convective transport with the fluid,
and (4) their sedimentation under gravity. In particular, we consider a suspension of bacteria
moving in a microfluidic glucose gradient similar to that shown in Figure 2. In the model, the
bacteria concentration cb(x, z, t) is governed by the following conservation equation

∂cb
∂t

+ (v + vc + vs) · ∇cb = Db∇2cb, (S38)

where Db is the bacteria diffusivity, v = vx(z)ex is the fluid velocity, vc = Ucex is the (constant)
chemotactic velocity, and vs = Usez is the (constant) sedimentation velocity. The fluid velocity is
described by hydrodynamic model described above. Initially, the bacteria concentration is assumed
to be uniform throughout the gradient channel

cb(x, z, 0) = cob . (S39)

We assume that there is no flux of bacterial through the boundaries of the channel. The transient
concentration profile is computed numerically in COMSOL.

Figure (S1) shows the result of two simulations showing chemotaxis without (left) and with
(right) buoyancy-driven convective flows. In the simulations, the bacteria swim to the left towards
higher solute concentrations (positive chemotaxis) and sediment into the bottom half of the channel.
Buoyancy driven flows along the bottom half of the channel drive the bacteria in the opposite
direction. As a result, the apparent chemotactic velocity is significantly reduced by the presence of
convective flows. At the same time, buoyancy driven flows do not change the qualitative behavior of
the bacteria and might therefore be overlooked in quantifying bacteria chemotaxis. This numerical
example corresponds to experimentally relevant estimates of bacterial motion such as a chemotactic
velocity Uc = 0.5 µm/s, bacterial diffusivity Db = 25 µm2/s, and sedimentation velocity Us =
0.5 µm/s.3 The channel height H = 100 µm and buoyancy driven flow velocity UB = 1 µm/s are
similar to those observed in our experiments.
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Figure S1: Transient concentration profile cb(x, z, t) for a population of chemotactic bacteria mov-
ing in a concentration gradient without (left) and with (right) buoyancy driven flows. In the
simulations, length is scaled by the channel height H, time by H2/Db, velocity by Db/H, and
concentration by cob . The chemotactic velocity is Uc = −2(Db/H), the sedimentation velocity
Us = −2(Db/H), and the channel width W = 5H. On the right, the characteristic magnitude
of the buoyancy driven flows is UB = 4(Db/H). The plots below show the concentration profiles

integrated over the height of the channel—that is,
∫ H

0 cb(x, z, t)dz.
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