Supplementary Information

Size-based sorting of hydrogel droplets using inertial microfluidics

Ming Li^{1,2}, Mark van Zee¹, Keisuke Goda^{3,4,5}*, Dino Di Carlo^{1,6,7}*

¹Department of Bioengineering, University of California, Los Angeles, USA.

²School of Engineering, Macquarie University, Sydney, Australia

³Department of Chemistry, University of Tokyo, Tokyo, Japan.

⁴Japan Science and Technology Agency, Tokyo, Japan.

⁵Department of Electrical Engineering, University of California, Los Angeles, USA.

⁶California NanoSystems Institute, University of California, Los Angeles, USA.

⁷Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, USA.

*corresponding authors

Supplementary Figure S1. Hydrogel droplets migrate to equilibrium positions depending on size in a straight rectangular microchannel. The average distance to the channel centreline decreases with increasing size at Re = 32.8 and 87.5 at the end of the straight rectangular microchannel.

Supplementary Figure S2. Differences in average distance to the channel centreline between hydrogel droplets with a diameter of 45 μ m and larger diameter drops (i.e. diameter = 55-95 μ m) at Re= 55.7.

Supplementary Figure S3. A photograph of hydrogel droplets encapsulated with *E. gracilis* in an oil solution collected and incubated in a 1.5 mL centrifuge tube.

Supplementary Figure S4. Variations of cell number per droplet and average diameter of cell-laden hydrogel droplets with respect to incubation time.

Supplementary Figure S5. The viability of *E. gracilis* cells was not significantly affected by either encapsulation within hydrogel droplets nor inertial effects.

Supplementary Movie Captions

Supplementary Movie S1. Size-dependent lateral inertial equilibrium positions for hydrogel droplets of different sizes at the downstream expansion region. High-speed microscopic video at a flow rate of 500 μ L/min (Re = 55.7).

Supplementary Movie S2. Separation of cell-laden and empty hydrogel droplets varying in size at the outlets of the inertial microfluidic device. High-speed microscopic video at a flow rate of 500 μ L/min (Re = 55.7).