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1. Numerical results

TangoPlus (Stratasys Corp.) is a rubber-like photopolymer for the print of flexible parts. We measure its Young’s 

module E = 0.504MPa within a deformation of up to 30%, and Poisson’s ratio ν = 0.495-0.499 is provided by the 

provider. An elastic model in Abaqus (Dassault Systèmes) is used to study the deformation of flexible membranes. 

A finite volume model in ANSYS Fluent (ANSYS Inc.) is used for the estimation of flow fields. Fig. S1A shows 

the case of the check valve closure. The check valve with G=60 μm and α=90°used in our MPS is chosen to 

simulate. Under 100 mbar pressure the check valve is fully closed, which agrees well with our experimental results 
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in Fig. 3A. Fig. S1B shows the deformation of the pressure membrane under 60 mbar. 3.2mm×4mm×0.3mm 

membrane we use in our MPS is simulated here. The maximum displacement of the pressure membrane (450 μm) 

is larger than the local channel height 400 μm, which ensures to fully close the channel. 70 mbar is required to fully 

close the channel in the experiments, which agrees well with our numerical results. Fig. S1C depicts the 

deformation of the vacuum membrane under a vacuum -90 mbar. Such deformation can compensate the overflow 

introduced by the upstream pressure membrane. In the experiments, we find that the vacuum required for 

compensating the overflow is -100 mbar, which agrees well with our numerical results. Fig. S1D shows the flow 

field in a branch channel of the sorting unit without applied pressure on the membrane. 

2. Compensation flow test via dual-membrane valve unit

The compensation flow is important for stable nanoliter droplet generation in MPS, so we made more test 

experiments to get the best value of applied vacuum for the compensation flow. We connect a glass capillary with 

ID 100 μm directly to the outlet of the dual-membrane valve unit. The change of the liquid meniscus in the capillary 

can reflect the stability of the output flow coming from the dual-membrane valve unit. As shown in the Fig. S2, 

when no vacuum is applied on the second membrane (Vacuum = 0 mbar), the liquid meniscus is moving far away 

from the reference origin. When the applied vacuum is small (Vacuum = -80 mbar), the liquid meniscus is more 

stable than the case of no vacuum applied, but still moves away from the reference origin. When the applied vacuum 

is larger (Vacuum = -120 mbar), the liquid meniscus recedes from the reference origin since the deformation of the 

second membrane is larger. When the applied vacuum reaches -100 mbar, the liquid meniscus almost stays at the 

reference origin, which shows the compensation works best under this vacuum value applied. 

3. Microfluidic chip

Fig. S3A shows the commercial desktop 3D-printer (Titian-2). We remove the original z-direction build platform 

and resin tank from the printer and we place a customized chip bed above the light source (Fig. S3B). The chips 

are placed in the chip bed for the exposure. The chip bed can be adjusted in XY plane for the exposure alignment 

(Fig. S3C). The desired pattern is acquired by projecting an image on the resin (photopolymer) through a projector 

without a physical mask (image mask). The exposure resolution provided by this projector can reach 25 μm/pixel. 

As shown in Fig. S3D, we dip a drop of resin on the bottom substrate and gently cover a top substrate with pre-

drilled holes. Then the resin fully spreads due to the surface tension. The white part in the image is exposed and 

cured and the black part is unexposed and uncured. With a superfast exposure (~1s), the resin is cured and 
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simultaneously bonded to the two substrates. Next, with a vacuum suction from the holes, the uncured resin can be 

removed and the microchannel is formed. The dimensions of typical microfluidic chips are shown in Fig. S3E. The 

height of the cured resin is 120 ± 5 μm.

As shown in Fig. S4A, shorter exposure time results in insufficient curing and some patterns are lost. 

Longer exposure time results in over-curing and desired patterns are smeared. 1.4 second exposure is optimum for 

our system. Fig. S4B shows that a minimum width of 25 μm can be built in a V-type structure, and a little sharpness 

of the pattern can be lost due to the capillary effects. Then we test the fabrication ability for microchannels. Fig. 

S4C shows the channels through our chip length. For 16 mm long, the minimum width available is 190 μm (Fig. 

S4C1). Due to the capillary effects, uncured resin is difficult to remove from a very small and long channel. 

However, the typical microfluidic function length is usually hundred micrometers. If the length of the channel is 

640 μm and connected with wider ends, the capillary effects can be greatly reduced and ~ 50 μm channel can be 

precisely fabricated (Fig. S4C2). The typical nozzle size in the flow-focusing and T-junction structure we use is 

shown in Fig. S4D. Nanoliter droplets can be generated through these nozzles. 

In addition, we explore another advantage of this method that substrates can be chosen with highly degree 

of freedom. Besides the rigid substrates (PMMA and glass) we use in the MPS, the soft substrate (PET) can also 

be used which is shown in Fig. S5A. This demonstrates a great potential for fabricating flexible instruments such 

as wearable devices. In order to achieve high exposure resolution, the printable region is usually small. For current 

25 μm/pixel resolution, 24×24 mm2 can be exposed, which may be infeasible in some applications which require 

large areas. Therefore, we develop an extended exposure method to increase the printable area. 24×48 mm2 chip is 

fabricated (Fig. S5B). The movable chip bed can offer the possibility for twice exposure. We usually adopt a small 

overlap exposure area between two parts to make sure the resin is fully exposed to connect these two parts.  

4. QR-code module.

The information stored in QR-code can be interpreted by a reading camera as input commands to automate our 

MPS. Fig. S6 shows a typical QR-code routine we develop for generation of pre-defined red and blue droplets in 

our MPS.

5. Chip holder

Chip-to-World interfaces is important for the development of microfluidics because it is not straightforward to 

input liquids from macro-world to the microchannel. It is not easy for conventional soft-lithography technique to 
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obtain a user-friendly and robust interface. A couple of studies on developing interfaces have been reported53-55. 

Here we develop a simple, robust and user-friendly interface (chip holder) for connecting our microfluidic chips to 

the motherboard, which only requires simple freehand operation. The chip holder is modularly designed and 

possesses highly customized ability for different chips. The characteristics of chip holder is listed in Table S1. 

Assembly of the chip holder is also demonstrated in supplementary Movie S4.

Fig. S7A shows a schematic of chip holder which is integrated with the motherboard. It includes a holder 

base, a chip base, two wrenches, the screws for the wrench connection and four O-rings. O-rings are located in the 

notch to ensure sealing. Rotating the wrench only by hands can easily open and close the chip holder for chips 

loading and unloading. Fig. S7B and 7C show the close and open state, respectively. 

6. Supplementary Figures and Tables

Figure S1 (A) Closed check valve. (B) Deformed pressure membrane. (C) Deformed vacuum membrane. (D) 

Velocity profile in the sorting channel without deformation.

A

D

B

C
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Figure S2 Experiments showing the compensation flow with different vacuum applied in dual-membrane valve 

unit. 
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Figure S3 (A) Titian-2, 3D printer. (B) Our developed maskless lithography system. (C) The customized chip bed. (D) 

Fabrication process of a microfluidic chip. (E) Dimensions of the microfluidic chips.

A B C

D

E
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Figure S4 (A) Patterns acquired with different exposure time. (B) V-type structures. (C) Microchannel dimension test. (D) 

Dimensions of flow-focusing structure and T-junction structure for droplet generation. 

Figure S5 (A) Microfluidic chips with a flexible substrate (PET). (B) A microfluidic chip with extended area 

24×48 mm2. 

A B C1

D1C2 D2

A B
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Figure S6: The QR-code routine for droplet generation and manipulation.

Figure S7: (A) Schematic of the chip holder. (B) Chip holder close state. (C) Chip holder open state. 

Table S1: Characteristics of the chip holder.

Description Parameter

Maximum operating pressure 0.4 MPa

Sealing material Buna-N rubber/ fluorocarbon rubber (oil resistant)

O-ring ID 1mm (compatible 1/16” OD tubing)

Compatible chip thickness 0 ~ 6 mm

Compatible chip sizes Customized

C

BA
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Table S2: Working state of the units at different stages with QR-code defined as %R,5,M%B,5,L#R.a

Progress
Red 

water 
pump

Blue 
water 
pump

Oil 
Pump

Red 
water 
valve

Blue 
water 
valve

Left 
branch 
channel

Middle 
branch 
channel

Right 
branch 
channel

QR-
module Remark

○ ○ ○ ○ ○ ○ ○ ○ ○ Initial state
○ ○ － ○ ○ ○ ○ ○ ○ Fill channel with oil

－ － － ○ ○ ○ ○ ○ ○ Adjust water 
position

Prepare
the system

○ ○ － ○ ○ ○ ○ ○ －
Read the QR 

message
－ ○ － ○ － － ○ － ○ Pump the red waterGenerate

red drops ○ ○ － － － － ○ － ○ 5 red drops 
generated

○ － － － ○ ○ － － ○ Pump the blue waterGenerate 
blue drops ○ ○ － － － ○ － － ○ 5 blue drops 

generated
○ ○ ○ ○ ○ － － － ○ Pick the chipMission 

accomplished ○ ○ ○ ○ ○ ○ ○ ○ ○ Turn off the MPS
a○: Close state －: Running state

7. Legends of Supplementary Movies S1 to S5

7.1 Supplementary Movie S1:

On-chip pump for droplet generation.

This movie contains three video clips to demonstrate nanoliter droplet generation in USB-like microfluidic chips 

using our on-chip flow pumps. Food dyes are used in aqueous phase for enhancing visualization. The first video 

shows the droplet generation in flow-focusing structure with two on-chip pumps for the oil phase input and one 

on-chip pump for the aqueous phase input. All pump motors run at full speed of 1000 rounds per minute (rpm). 

The video is recorded with 3000 frames per second (fps) and played with 300 fps. The second video shows the 

droplet generation in double T-junction structure with two on-chip pumps for the aqueous phase input and one on-

chip pump for the oil phase input. All pump motors run at full speed of 1000 rpm. The video is recorded with 1000 

fps and played with 100 fps. The third video shows the droplet generation with programmable compositions. The 

pump for the blue aqueous phase input initially runs at 100 rpm to offer a relatively large flow rate. The pump for 

the red aqueous phase input initially runs at 1000 rpm to provide a relatively small flow rate. The rotating speeds 

for these two pumps vary reversely in 10 seconds. The video is recorded with 300 fps and played with 300 fps.

7.2 Supplementary Movie S2:
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Droplet control with a single valve and a dual-membrane valve.

This video first shows the impact of overflow on the unexpected droplet generation when a single pneumatic valve 

is used for the fluid switching. When the dual-membrane valve is applied, the droplet generation can be ceased 

immediately and regenerate without unexpected droplets, which ensures the accurate number of droplet generation. 

The video is recorded with 60 fps and played with 30 fps.

7.3 Supplementary Movie S3:

Satellite droplet sorting.

This video demonstrates that satellite droplets are sorted to the side channel with different pressure applied on the 

branch channels. The video is recorded with 100 fps and played with 30 fps.

7.4 Supplementary Movie S4:

Assembly of the chip holder.

This video demonstrates how the chip holder works for loading USB-chips into the MPS, and is played at 25 fps.

7.5 Supplementary Movie S5:

Pre-defined number of droplet generation and distribution.

This video demonstrates that with a pre-defined QR-code %R,5,M%B,5,L#R, 5 red and 5 blue droplets are 

automatically generated and sorted into the designated channel. The video is recorded with 60 fps and played with 

30 fps.


